• Nie Znaleziono Wyników

The Journal of Industrial and Engineering Chemistry, Vol. 6, No. 7

N/A
N/A
Protected

Academic year: 2022

Share "The Journal of Industrial and Engineering Chemistry, Vol. 6, No. 7"

Copied!
86
0
0

Pełen tekst

(1)

The Journal of Industrial and Engineering Ghemistry

Pub l i s hed b y T H E A M E R I C A N C H E M I C A L S O C I E T Y

AT B A S T O N , P A .

Volume VI J U L Y , 1914 N o 7

BOARD OF EDITORS Editor: M . C . W h i t a k e r

Assistant Editor: Le o l a E . M a r r s

Associate Editors: G . P. A d am so n , E . G . B a ile y , H. E . B arn a rd , G . E . B a rto n , A . V . B lein in ger, f f m . B lu m , ffm . B ra d y, C . A . B row n e, F . K . C am e ro n , f f m . C am p b e ll, F . B . C arp e n te r, C . E . C a sp a ri, V . C o b le n tz , W. C . G eer, W . F . H illeb ran d , W . D . H orne, T . K a m o i, A . D . L ittle , C . E . L u ck e, P . C . M c llh in e y , J. M. M a tth e w s, T . J. P a rk e r, J. D . P en n o ck , C liffo rd R ich ard so n , W . D . R ich a rd so n , G . C . S to n e, E. T w itch ell, R . W ah l, W . H . W a lk e r, W . R . W h itn e y , A . M . W righ t.

P u b lish e d m o n th ly . S u b sc r ip tio n p rice t o n o n -m e m b ers of th e A m eric a n C h e m ica l S o c ie ty , $ 6 .0 0 y ea r ly . F o r eig n p o sta g e , se v e n ty -fiv e c e n ts, C a n a d a , C u b a a n d M e x ic o e x c e p te d .

E n te r e d as S e c o n d -c la s s M a tte r D e c e m b e r 19, 1908, a t th e P o st-O ffice a t E a s to n , P a ., u n d er th e A c t of M a r ch 3 , 1879.

C ontributions sh ou ld be addressed to M. C. W hitaker, Columbia U n iv ersity , N ew York City

Communications c o n cern in g a d v ertisem en ts should be se n t to T he A m erican C hem ical S o c ie ty , 42 W est 39th S t., N ew York City S u b scrip tion s and c la im s for lo st c o p ie s sh ou ld be referred to Charles L. P arsons, B ox 505, W ashington, D. C.

Es c i i e n b a c h Pr i n t i n o Co m p a n y, Ea s t o n. Pa.

T A B L E O F Ed i t o r i a l s :

N itrates in C olorado S o ils ... 532 Or i g i n a l Pa p e r s:

E lectric F urnaces for H eatin g S teel. B y A lc a n H irsch. 533 Stud y of A u th e n tic Sam ples of G um T urp en tin e. B y

A. W . S ch o rg er... : ... 541 The H yp och lorite of Lim e T re a tm e n t of a M u n icip al

W ater S u p p ly and a S tu d y of C e rta in R esista n t B acteria. B y S ta n le y Judson T h o m a s ... 548 The R a d io a c tiv ity of th e W aters of S ara to g a Springs,

N ew Y o rk . B y R ich a rd B . M oo re and C . F . W h it- tem ore ; ... 552- The E ffect of F erric S a lts and N itrite s 011 th e O rtho-

T olid ine and Starch -Iod id e T e sts for F re e Chlorine.

B y J. W . E llm s and S. J. H a u ser... 553 A N ew M eth o d for th e D eterm in ation of H yd rocyan ic

A cid and th e A lk a li C yan id es. B y G . E . F . Lundell

•and J. A . B rid g m a n ... 554 A M ethod for th e R a p id Q u a n tita tiv e A n alysis of

Bronze and B rass. (P b, C u, Sn, Sb, F e and Zn.) B y R ichard E d w in Lee, John P . T ric k e y and W a lter _ H. F e g e ly ... 556

• The C hem ical E v a lu a tio n o f W ood for Pu lp . B y M . L. G riffin ... 560 D eterm ination of C arb o n in Soils and Soil E x tracts.

_ B y J. W . A m es and E . W . G a ith e r... 561 The M eltin g and S olid ifyin g P o in ts of M ix tu res of

F a t ty A cid s and th e U se of T h e se P o in ts to D e ­ term ine the C om position of Such M ix tu res. B y E. T w itc h e ll... 564 The Specific H e at of M ilk and M ilk D erivatives.' B y

Arden R . Johnson and B . W . H a m m e r... 569 Note on th e P recip itatio n of L a ctalb u m in in C o w s’

M ilk . B y W . O. W alk er and A . F . G ra n t C ad enh ead The A bsorp tion of C e rta in R a d icals b y L e a ve s in V aryin g S tag es of D e ca y , and th e E ffe c t of Leaves on th e A bsorp tion of T h ese R a d icals b y a Soil. B y H. A . N o y e s ... 574 D istribution of C e rta in C on stitu en ts in th e Separates

of Loam Soils. B y L. A . S te in k o en ig ...

The P rep aration of “ N e u tra l” A m m on ium C itrate.

B y E rm on D . E a stm a n and Joel H . H ild eb ra n d . . . A Procedure for Sep aratin g O rgan ic A m m on iates from

the M in eral P ortion of C om m ercial F ertilizers. B y

^ C. H. Jones and G . F . A n d erson ...

The A v a ila b ility of N itro gen in K e lp . B y J o h n A . C ullen La b o r a t o r y a n d Pl a n t:

P itot T u b es for the M easurem en t of G as V elocities.

^ B y A n drew M . F a ir lie ...

The N o n -U n ifo rm ity of D ry in g O ven T em peratures.

B y Lorin H . B a ile y ... 585 573

576 577

580 581

583

C O N T E N T S

A M a n o sta t for U se in G as A n alysis. B y H a rv e y N . G ilb e rt... 5 8 5 Ad d r e s s e s:

T h e E xcessive Q u an tities of N itra tes in C erta in C o lo ­ rado Soils. B y W m . P . H e a d d e n ... 5 8 6 T h e W orkin gs of the C aliforn ia Insecticide Law'. B y

G eo. P . G r a y ... 5 9 0 C u r r e n t I n d u s t r i a l N e w s : C orrection ; M easurin g

R a p id ly C han gin g T em p eratu res; T h e A u stralian C oal T ra d e ; A N ew R ecord ing D e vice; T h e K o n g sb erg S ilve r W orks, N o rw a y ; P rod uction of Z in c in Europe,

1913; M in in g in C h in a; T h e Oil R esources of th e B r it­

ish E m p ire; C oal S torag e and G as M an u fa ctu re ; T h e C orrosion of Iron b y D issolved O xygen ; T h e L igh tin g of R io de Janeiro; T h e U tiliza tio n of Sulfite-C ellulose W aste; C an ad ian C o k e O vens; G erm an and English E x p o rts of A m m onium S u lfate in 1 9 1 2 and 1 9 1 3 ; D e ­ stru ction of an A rtificial L e a th er F a c to r y ... 5 9 4 Am e r i c a n In s t i t u t e o f Ch e m i c a l En g i n e e r s:

A cco u n t of M eetin g ; Papers; E x cu rsio n s... 5 9 8 Som e Professional O bligations. B y M . C . W h ita k e r. 5 9 9

\ N o t e s a n d Co r r e s p o n d e n c e : T h e In ven tion of C e llu lo id ; Sym posium on the R ecovery' of W ool G rease; G u a ran ­ teed C hem icals; T o x ic ity of V arious W ood P reserva­

tives— A N o te ; N o te on M ean in g of "Im p u ritie s” and H ow T h e y Shou ld be D eterm ined in G rease, T allo w , E tc .; T e s t of G ila R iv e r N a tu ra l A lu m in um S u lfate in W ate r Pu rification; T h e E ffects of th e E n silage Process on th e S o lu b ility and M etab olism of F lo a ts r M in e In ­ spectors In stitu te of the U . S .; N in th International C o n ­ gress of A p p lied C h em istry; V a n ’t H off F u n d for the En dow m en t of R esearch in Pure and A p p lied C h em ­ istry; A m erican C hem ical S o ciety — A n n u al' M eetin g ; A . C . S. D irectory, 1 9 1 4 ; Ind ustrial C hem ists and Chem ical E ngineers— A . C . S .— C om m ittee on A lum Specifications— C orrection and N o tice; T h e D ifferen ­ tiation of N a tu ra l and O il A sp h alts— C o rre ctio n 60 1 P e r s o n a l N o t e s ... 6 0 7 G o v e r n m e n t P u b l i c a t i o n s ... 6 0 8

B o o k R e v i e w s : E ngineering T herm od yn am ics; D as

L eb en sm ittelgew erb e; Exercises in G as A n alysis;

T reatise on th e C eram ic Ind ustries; U n tersu chu ng der K ohlenw asserstoffole und F e tte ; C oal T a r D istillatio n ;.

T asch en buch fiir die anorganischchem ische G ro ssin -' dustrie; D etails of C y an id e P ractice; T asch en b uch fiir G erb erei-C h em ik er... 6 1 1 N e w P u b l i c a t i o n s ... 6 1 4 R e c e n t I n v e n t i o n s ... 6 1 5 M a r k e t R e p o r t ... 6 1 6

(2)

532 T H E J O U R N A L O F I N D U S T R I A L ' A N D E N G I N E E R I N G C H E M I S T R Y V o l . 6, No. 7

EDITORIALS

V

N I T R A T E S I N C O L O R A D O S O IL S

In a n u m ber of p u b lica tio n s, H eadden , of th e C olorad o E xp e rim e n t S ta tio n , has show n th a t th e soils of C o lo ­ rad o co n tain in v a rio u s places excessive q u a n titie s of n itra tes. O rd in a rily go od , c u ltiv a te d soil he fo u n d to co n tain from 5 to S p a rts of n itra tes per m illion of th e d r y soil. In th e n itra te areas, h o w e ver, m an y th o u san d p a rts per m illion of n itra te n itrogen w ere foun d. In one sam ple of su rface soil th e re w ere fo u n d 6.54 per cen t of sodium n itra te or n e a rly 11 to n s in an acre of gro u n d ta k e n to th e d ep th of 1 inch. T h e high n itra te co n ten t is ge n e ra lly fo u n d in sp ots b u t these sp ots often g ro w to co ve r larg e areas. T h u s w h a t w as five or six y e a rs ago a sp o t has gro w n to in v o lv e as m uch as . six, eigh t, an d m ore acres. T h e n itra te s are present in large q u a n titie s in n um erous areas scatte re d o v er 300 to 400 sq u are m iles. T h e orch ards in a single d istrict in clu d in g 50 sq u are m iles h a v e been p ra c tic a lly ruined.

T h ese o b serva tio n s an d stu d ies are of so g rea t in terest an d im p o rta n ce to a g ricu ltu ra l in v e stig a to rs th a t it is a m a tte r fo r co n g ra tu la tio n th a t P rofessor H ead d en has been p re v a ile d upon to fu rnish his ow n sta te m e n t of his w o rk in o th er colum ns of T h i s J o u r n a l .

A b rief rep e titio n of the, p rin cip al resu lts, how ever, can be g iv e n here.

A s a resu lt of th e n itra te accu m u latio n , in a n um ber of p lace s large areas h a ve been m ade sterile. W h e th er large or sm all th e affected areas are ch ara cte rize d b y a b row n co lo ratio n , m ealiness of th e soil, a high n itra te c o n te n t, and, unless th e n itra te co n ten t is e x cessiv ely h igh , b y th e presence of n itrog en -fixin g organism s such as a zo to b a cte r. W ith .the increase in th e colored p atch es a n d th e a m o u n t of n itra te , th e crop s co ve rin g th e in ­ v o lv e d areas ra p id ly d ete rio rate and e v e n die ou t. T h e g re a te st in ju r y has been to th e apple orch ard s th o u gh o th er crop s such as a lfa lfa , su gar beets, etc., h a v e been serio u sly in ju red . T h e tro u b le is com m on to several sectio n s of th e S ta te . Som etim es it has occu rred in lig h t sa n d y loam s, som etim es in c la y soil, som etim es in c o m p a ra tiv e ly lo w -lyin g lands, again on hillsides.

Sodium ch lorid e is also presen t in large am ou n ts in th e C o lo rad o soils. A cco rd in g to H eadden , h o w ever, th is s a lt th o u gh in ju rio u s in larg e a m ou n ts does n o t produce a n y of th e ch a ra cte ristic ph enom ena ob served in th e d y in g o rch ard s, w hile a p p licatio n of large q u an tities (5 po u nd s to a fo u r-ye ar-o ld tree) of sodium n itra te to an exp erim e n tal o rch ard and irrig a tin g to brin g the n itra te in c o n ta c t w ith th e fee d in g ro o ts reproduced th e id e n tica l p h eno m ena n o ticed in th e o th e r'o rch a rd s w here th e trees h ad died. I t w ou ld seem th en th a t w h a te v e r co n trib u tin g cause th ere m a y be, th e sodium n itra te presen t in th e soil is sufficien t to brin g a b o u t th e d ete rio ratio n and d ea th of trees and crops in the affected areas.

T h o u g h th e presence of th e h ig h ly excessive q u an tities of n itra te w hich b rin g a b o u t loss of general p ro d u c tiv e ­ ness in v o lv e s o n ly a sm all p e rcen tage of th e arable C olorad o soil, th e fo rm atio n of these high n itra te areas

in th e v a rio u s sectio ns of th e S ta te is a problem of g re a t im p o rtan ce and concern to agriculturalists of C o lo rad o and a p h enom enon of th e greatest interest to ch em ists and b acterio lo gists.

In soils in general th e fo rm atio n of n itrates is brought a b o u t b y sev eral soil m icroo rgan ism s w hich fix nitrogen from th e air, fo rm am m onia fro m more complex n itrogen ou s com po unds, and fo rm n itrite s and nitrates fro m am m oniu m com pounds. A s a rule th e nitrates in soil are sm all in am o u n t. A c c o rd in g ly , th e Colorado situ a tio n is e x ceed in gly rem ark ab le.

A s to th e origin of th e n itra te s th e re is some dispute.

H ead d en holds th a t th e ab n o rm al accum ulation of n itra te s can n o t be due to e v a p o ra tio n of surface waters co n tain in g n itra te s com in g from a d istance from soil or shale since: (1) n eith er soil nor shale contain a sup­

p ly of n itrogen a d e q u a te to a cco u n t for the forma­

tio n of n itra te s fo u n d ; (2) th e n a tu ra l w ater and the irrigatio n w a ter co n tain o n ly sm all quantities of n itra te s ; (3) th e b ro w n n itra te -co n ta in in g areas often occu r a t a high ele v a tio n . In ad d itio n th e accumulation of n itra te s m a y occu r on w ell d rained lands, where the w a te r le v e l is som e d istan ce fro m th e su rface. Headden’s p o sitive conclusion is th a t th e source of th e nitrates is th e atm osp h ere, th e n itrogen of w hich is fixed by a zo to b a cte r. In su p p o rt of H e ad d en ’s conclusions, S a c k e tt fo u n d th a t th e C o lo rad o soils were rich in a zo to b a cte r w h ich h a d th e p o w er to fix nitrogen in solu tio n and in soil and fixed it a t a ra te sufficient to a cco u n t fo r th e n itra tes fo u n d in th e soil, provided the n itro g en is n itrified b y oth er organism s.

S a c k e tt likew ise fo u n d th a t th e C o lo rad o soils have a h igh er a m m o n ifyin g po w er th a n h a v e ordinary soils and a h igh er n itrify in g po w er and com es to the con­

clusion th a t th e excessive n itra te presen t in certain C o lo rad o soils has resu lted fro m th e com bined action of n itrogen -fixin g, a m m o n ify in g , and n itrify in g organ­

ism s. Since th e C o lo rad o soils are poor in organic m a tte r and a zo to b a cte r requires a su p p ly of carbohy­

d ra te fo r its d evelo p m e n t and th e fixatio n of nitrogen, it seem ed difficult to a cco u n t for th e source of energy n ecessary to su p p o rt su ch a rich nitrogen-fixing flora as possessed b y th e soils in question . R o b b in s, however, fo u n d th e alg ae flora esp ecially th e blue-green algae ( Cyanophyceae) to be v e r y ab u n d an t. I t is well known th a t certain b a c te ria and algae en ter into symbiotic relatio n sh ip in w hich th e algae fu rnish th e bacteria w ith a su itab le form of c a rb o h y d ra te s. T h e algae in th e C o lo rad o soil m a y fu rnish th e necessary food m aterial fo r a zo to b a cte r.

A n opposin g vie w is th a t of S te w a rt and G r e a v e s

(A gric. E x p t. S ta ., U ta h , B u ll. 1 1 4) th a t th e nitrates of th e C o lo rad o soil h a v e th e ir origin in th e co u n try rocks.

T h e fa c t th a t in w id e ly d istrib u te d areas in the arid w est dep osits of n itra tes are fo u n d w hich do owe their origin to lea ch in g fro m th e c o u n try rock, supports, in th e ir opinion, th e th e o r y th a t th e excessive q u a n t i t i e s

of n itra te s fou n d in th e soil of C o lo rad o owe their origin

(3)

July, 1 914 T H E J O U R N A L O F I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y 533 to the sam e source as do th e o th er w ater-solu ble salts.

Further, S te w a rt and G re a ve s claim th a t in H ead d en ’s work w herever th ere w as a v a ria tio n in n itric n itrogen there was a v a ria tio n in chlorine in th e sam e direction which w ould seem to' in d icate a com m on origin of th e nitrates and chlorides. T o ta k e a p a rticu la r case, th e y point out th a t w here th e re w as an increaese in th e su r­

face soil of 561 pounds of n itra te s per acre tw o inches of soil during th e years from 190 9-1911 th ere w as an increase of 10,430 po u nd s or over five to n s of chlorine.

In another case, referred to b y H ead d en in B u lle tin 1 5 5» the n itra te n itro gen increased from 1907 to 1911 from a trace to 621 pounds. In th e sam e in te rv a l th e chlorine co n ten t in creased 236,883 p ounds. T h e y come to the in e v ita b le conclusion th a t th e re m u st be an upward m o vem en t of th e w ater-so lu ble salts, th a t the chlorides m ust com e from th e gro u n d w ater. A c ­ cordingly, th e y ask th e p e rtin e n t q u estion , “ W h y may not th e n itric n itro g en be acco u n ted for in the same w a y ? ” E v a p o r a tio n ' of th e soil w ater w ould explain th e d ep osit of n itra te s since acco rd in g to th e ir calculations, assum ing th e op tim u m a m o u n t of w ater, 18 per cent, to be p resent, o n ly on e-half y e a r of m axi­

mum evap o ratio n w ou ld d ep osit th e q u a n tity of n itro ­ gen a ctu a lly d ep osited in tw o yea rs. If th e ground water contain s o n ly 74.48 p a rts per m illion of chlorine as com puted b y H ead d en , th e ev a p o ra tio n w ould account for o n ly 203 po u nd s of ch lorin e, w hereas the actual am o u n t fo u n d in th e sam p les m en tion ed was

E L E C T R IC F U R N A C E S F O R H E A T IN G S T E E L 1 B y A l c a n H i r s c h

R e c e iv e d M a y 25, 1914

The field of usefulness of th e electric fu rn ace for m etallurgical purpo ses is so e x te n siv e th a t it is deem ed advisable to lim it th e scope of th is p a p e r to a discus­

sion of electric fu rn aces used fo r h ea tin g steel for th e various k ind s of h e a t tre a tm e n t, fo rgin g and en am eling.

A broad vie w of th e d ev elo p m e n t of electric fu rnaces by the w riter and his a sso ciates d u rin g th e p a st y ea r, together w ith d etails of design, co n stru ctio n and op era­

tion, as d eterm in ed b y th e m are presen ted herein.

The essential d a ta o n ly are g iv en as it is b elieve d th a t extensive d etails are lik e ly tp lead to confu sion. I t is thought such a p resen tatio n o f b asic principles will make the p aper of m ore v a lu e to users of electric furnaces th a n an exte n d ed rep o rt of all th e d a ta co l­

lected.

Prior to 1 913 a tte m p ts w ere m ade to p u t fo rth fu r­

naces for m etallu rg ica l purposes, b u t excep t for th e very sm all fu rn aces, th e se can n o t be considered as having had com m ercial success. T h e fa cts w hich form the basis of th is p aper occurred under th e w riter’s observation and are p r a c tic a lly e x c lu siv e ly gath ered from his exp erience of th e p a st y ea r.

By reason o f in d u stria l p ra ctice and certain oth er

1 A uthor’s a b stra ct o f report on research carried o u t under a C arnegie Fellowship gran ted b y th e Iro n an d S te e l I n s titu te o f G r ea t B ritain . T h e complete report of th is w ork w a s p resen ted a t th e A n n u a l M e e tin g o f th e institute, M a y 7 , 1914.(

m an y tim es greater. So th e y conclude th a t thp grou n d w a ter has a greate r co n cen tratio n in chlorine an d n itro ­ gen th a n assum ed and th a t b o th a ccu m u late in th e su rface soil b y e v ap o ratio n o f th e w ater.

S te w a rt and G rea ves do n ot d en y th a t n itrogen fixatio n m a y ta k e place to a certain e x te n t in th e C o lo ­ rado soil and in som e places to an ap p reciab le degree, b u t do hold th a t w h a te v e r th e o ry acco u n ts fo r th e accu m u latio n of chlorides in th e C o lo rad o soils m u st acco u n t also for th e greate r p o rtio n o f th e .n itra te s p resent. T o th ese argu m en ts of S te w a rt a n d 'G re a v e s , H eadden has opposed n um erous o b jectio n s w hich can ­ n o t be considered here. Suffice it to sa y , th a t w hile th ere can be no possible q u estion of th e occasion al o ccu rren ce of a bn orm al q u an tities of n itra te s in th e

“ a lk a li” soils of C o lo rad o , th e origin of th ese excessive n itra te accu m u latio n s is not settled .

In th e ir en d eavo r to exp lain th e origin of th e n itra te and to rem ed y th e con d itio n s as th e y arise, th e vario u s in v e stig a to rs sh ould m eet w ith general en cou ragem en t.

I t is g r e a tly to be desired t h a t th e n itra te fo rm atio n should be considered from all vie w p o in ts to th e end th a t a ccu m u latin g d a ta and suggestion s m a y th e m ore q u ic k ly develop an h arm on ious conclusion , to th e a d ­ van tag e. of p ra ctica l a gricu ltu re and to th e increase of th e sum to ta l of h u m an know ledge.

B u r e a u o p S o i l s M . X . S U L L I V A N

De p a r t m e n t o f Ag r i c u l t u r e Wa s h i n g t o n

lim itatio n s, both fu el and electric fu rn aces can be d ivid ed in to tw o classes:

I— F u rn aces o p eratin g a b o v e i8 o o ° F . F o rge fu r­

naces are th e m ain and m ost im p o rta n t d ivisio n of th is class.

I I — F u rn aces o p eratin g below 1800° F . T h is class com prises fu rn aces for p ra ctic a lly all h ea t tre a tin g as w ell as en am elin g. A lth o u g h fu rn a ce s o p eratin g a t th e low er te m p eratu re s w ill be considered first it m ust be borne in m ind th a t th e g rea te r p a rt of the principle and th e o ry u n d e rly in g th e co n stru ctio n and op eratio n of m od erate and low te m p e ratu re fu rn a ce s also applies to th e h igh er te m p eratu re furnaces.

T R A N S F E R E N C E O F H E A T F R O M H E A T I N G M E D I U M TO M E T A L

T h e m etal restin g on th e h earth of th e fu rn a ce re­

ceives its h eat in several differen t w a y s: ( i) F ro m th e b rick w o rk in th e fu rn ace in c o n ta c t w ith th e m etal;

(2) b y co n d u ctio n fro m th e p ro d u cts of com bu stion ; (3) b y rad iatio n from th e h o t w alls, roof and in can d es­

cen t p a rticles in th e b u rn ing gases. G e n e rally sp e a k ­ ing, in th e fu el-fired fu rnaces, each of th ese p a th s de­

livers h eat of th e sam e order of m agn itu d e, b u t u su a lly th e a m o u n t of h ea t passing b y m eans of b rick and m etal in c o n ta c t is less th a n th a t b y a n y oth er p a th . If o n ly a sm all p o rtio n of th e h e a t passes in to th e m etal b y d irect c o n ta c t w ith th e b rick , th e rate of h e a tin g in 'a ll ex cep t th in pieces is q u ite slow . M o re fre q u e n tly

th a n is g e n e ra lly sup posed th is p a th of h ea t tr a n s ­

ORIGINAL PAPERS

(4)

fer is th e d eterm in in g fa c to r in th e rate of h ea tin g.

A n excellen t exam p le of th is k in d w as b ro u g h t to th e w rite r’s a tte n tio n w here die b lo ck s w ere b ein g heated . In this in stan ce th e fu rn a ce w as h eate d to a su fficien tly h igh te m p e ra tu re so th a t th e h e a t co n ten t of th e b rick w o rk w as su fficien t to su p p ly th e n ecessary h e a t to raise th e b lo ck s to th e desired te m p e ratu re . Som e­

tim es th e h ie l w as allow ed to ru n sp a rin g ly th ro u g h ­ o u t th e op eratio n , w hile a t oth er tim es it w as sh u t off e n tire ly a fte r th e b lo ck w as p lace d in th e fu rn ace.

A T M O S P H E R E I N F U R N A C E S

T h e atm o sp h ere of fuel-fired fu rn a ce s is exceed in gly u n ce rtain . S lig h t va ria tio n s in con d itio n s h a ve been fo u n d to m ake m ark ed va ria tio n s in resu lts, an d as th e atm o sp h ere is cap ab le of a g re a t m a n y va riatio n s, i t is, th erefo re, q u ite d ifficu lt to m a in ta in it a t a definite com p o sition. W ith o xid izin g con d itio n s th e form ation of scale occurs, w hile in a' red u cin g atm osp h ere local ca rb u riza tio n resu lts fro m th e so o ty flam es. In th e p ro d u ctio n of h igh -grad e steel th e con d itio n of h earth atm o sp h ere is, of course, e x ceed in gly im p o rta n t.

T h e e le ctric fu rn ace p rovides in m an y respects ju s t w h a t th e fu el fu rn a ce la ck s; i. c., a m eans for th e tran sferen ce of h e a t in a v e r y effe ctive m anner, and a fu rn a ce atm osp h ere w hich is n ot o n ly of a v e r y de­

sirab le com po sition, b u t w hich is a b so lu te ly d ep en dable.

T h is atm o sp h ere is u su a lly of a slig h tly red u cin g n atu re, cau sed b y th e presence of carbon m onoxide, due to th e com bu stion of th e g ra p h ite or carbon resistor w hich lib e ra te s th e e lectrica l en ergy in th e fo rm of h eat.

In som e fu rn aces h a v in g m ore th a n one door, or op erated w ith doors open all th e tim e, th e atm osp h ere m ay be n eu tral. I t is due to th ese n eu tral or red u cin g con d itio n s th a t th e fo rm atio n of scale is g r e a tly m in i­

m ized. T h e w riter has in m ind an electric fu rn ace w h ich w as o p erate d w ith a loss of scale am o u n tin g to e ig h ty or even n in e ty per cen t less th a n w as occasioned b y th e e m p lo ym e n t of an oil-fired fu rn a ce fo r th e sam e w o rk. F o r special w o rk w here an oxid izin g atm osp h ere is requ ired , as fo r in stan ce in en am elin g, th is is easily accom p lish ed in th e electric fu rn a ce b y em p lo yin g a m uffle, th e resistors b eing p laced in a n y desired p o si­

tio n on th e o u tside of th e m uffle.

E L E C T R I C F U R N A C E S F O R T E M P E R A T U R E S B E L O W l 8 0 0 ° F . f u r n a c e s w i t h m e t a l l i c r e s i s t o r s— -The in d u strial e lectric fu rn a ce s of th is ty p e w h ich h a ve o b ta in ed com m ercial success h a ve e m p lo ye d a resistan ce w ire or rib b on as th e h e a tin g elem ent. T h e lim ita tio n s of th ese wire or rib b o n -w o u n d fu rn aces are q u ite m arked , g e n e ra lly sp ea k in g, as regards b o th te m p e ratu re and c a p a c ity . A s w ill be show n su b seq u en tly, te m p e ra ­ tu re and c a p a c ity o f a fu rn ace are clo sely in terrela ted . T h is in terrela tio n of te m p e ratu re and c a p a c ity , h ow ­ ever, is n o t o f so m uch consequence in th e sm all fu r­

n aces w here th e com bin ed w a ll and door losses are co n sid e ra b ly in excess of th e h e a t a c tu a lly u tilize d in raisin g th e m etal to th e desired te m p e ratu re . T h e c a p a c ity of th e m etallic resistor fu rn ace is a t m ost b u t a v e r y fe w k ilo w a tts. F u rn aces w ith a large r c a p a c ity w ou ld be q u ite ou t of th e qu estion b ecause of th e cost of th e resistance elem en t due to th e large am o u n t of

534 T H E J O U R N A L O F I N D U S T R I A L

w ire req u ired an d th e exp ense of w inding. The fur­

naces are, th e re fo re , lim ited to prod u ction s of small size and also to rath er m o d erate te m p eratu re s as danger of b u rn in g o u t due to o v e rh e a tin g is qu ite imminent.

F o r sm all fu rn aces, h o w e ver, th is ty p e has proven q u ite s a tis fa c to ry in a large q u a n tity of w ork of an ex p e rim e n ta l'n a tu re .

f u r n a c e s e m p l o y i n g n o n-m e t a l l i c r e s i s t o r s com­

prise tw o ty p e s : (1) T h o se w here th e m etal to be h eate d is in c o n ta c t w ith th e resisto r; (2) those where th e m etal to be h eate d is o u t of c o n ta c t w ith the re­

sistor.

F u rn a ce s of th e first class h a v e had b u t one com­

m ercial exam ple, and th a t h as h ad v a ry in g success.

T h is is th e b a th fu rn a c e 1 w h ich em p lo ys a conducting b a th of salt, u su a lly b ariu m chloride and potassium ch lorid e, w h ich is fu sed b y th e passage of the current th ro u g h it. T h e steel to be h eate d is im mersed in th is b a th of fused salts. T h is ty p e of fu rn ace appears to th e w riter to be to o lim ite d fo r exte n sive industrial a p p licatio n , an d , th erefo re, w ill be given only this b rief m ention.

F u rn a ce s of th e second class, th o se em p lo yin g non- m etallic resistors, w here th e m etal is h eated out of c o n ta c t w ith th e resisto r, hold fo rth m uch promise for fu tu re d evelo p m e n t, in th e op inion of th e writer.

R e ce n t exp erience w ith th e ir op eratio n has demon­

s tra te d th e ir s u ita b ility to m a n y k ind s of work. In general, fu rn aces of th is class ap p e ar to th e casual ob­

server, v e r y sim ilar to th e fuel-fired furnaces, save fo r th e fa c t th a t in stead of eq u ip m en t for burning fu el, electrical eq u ip m en t w ill be n oted . T h e electric cu rren t is b ro u g h t to th e fu rn a ce b y su itab le cables w hich are co n n ected to electrod es p ro jectin g from the fu rn ace . T h ese electro d es run th ro u g h th e furnace w all and c a rry th e cu rren t to th e resistor w hich liber­

ates, in th e form of h e a t, th e electrica l en ergy put into th e fu rn ace . T h e resisto r is of a re fra c to ry conducting m aterial, such as g ra p h ite , u su a lly in granu lar form, and has a cross-section of 30 to 100 square inches acco rd in g to th e cu rren t desired. T h e resistors are u su a lly p lace d b en e ath th e h earth , th e h ea t from them b eing co m m u n icated th ro u g h th e h earth to the metal.

F o r th e design of a h e a t-tre a tin g fu rn ace to operate a t a h earth te m p eratu re of 1800 0 F ., or less, th e follow­

in g d a ta h ave been fou n d n ecessary fo r th e prelim inary calcu latio n of th e m ajo r p o in ts of design:

1— T h e h earth dim ensions.

2— T h e p ro d u ctio n o f m etal per u n it of tim e.

3— T h e m axim u m a m o u n t of m etal on the hearth at a n y tim e.

4— T h e desired te m p eratu re .

5— T im e fo r ch arg in g and disch argin g.

l o c a t i o n o f r e s i s t o r T h e first step in th e design is th e ap p ro xim atio n of th e lo catio n of th e resistor, b u t th is depends so m e w h at on th e ph ysical charac­

te ristics of th e m aterial em p lo ye d for the resistor.

R e sisto rs p laced in th e fu rn ace in g ran u lar or similar form h a v e been m uch m ore e x te n siv e ly e m p l o y e d

in th e larger fu rn ace th a n a n y o th er kind . Rods of

1 A n a rticle on th is fu rn ace b y L. M . C ohn w ill be found in the Electrotech. Z e it., A ug. 2, 1906.

A N D E N G I N E E R I N G C H E M I S T R Y V o l. 6, No. 7

(5)

July, 1914 T H E J O U R N A L O F I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y 535 graphite and also of oth er m aterials, m etalloids as

well as the ch a ra cte ristic n o n -m etallic m aterials, have been tried fo r use as resistors. A lth o u g h som e of these will u n d o u b te d ly find com m ercial fields, as y e t nothing has p ro ven s a tis fa c to ry in th is d irection.

Attention, th erefore, w ill be confined to gran u lar or similar m aterials, of w hich gra n u la r g ra p h ite has served m ost s a tisfa cto rily .

For the usual ty p e o f electric fu rn a ce w ork of th is class the lo catio n of th e resisto r is lo g ic a lly in th e base of the hearth. F o r a sm all p ro p o rtio n of th e furnaces, however, resistors can be p laced elsew here ad vised ly.

These positions are a lo n g th e side of th e h earth and possibly even alo ng th e to p . F u rn a ce s requ irin g re­

sistors in th ese la tte r lo catio n s are th o se ta k in g piles of sheet m etal or p o ts of m aterials, and th e like. H ow- ever, with one la y e r of pieces, w hich rests d ire ctly on the hearth, th e lo catio n of th e resisto r h ad b est be exclusively in th e base. T h e reasons for th is are:

(1) heat has a te n d e n c y to ascend rath er th a n to de­

scend; (2) c o n ta c t b etw e en h o t b rick and th e m etal to be heated fa c ilita te s h e a tin g; (3) th e design is fa cili­

tated as w ill be su b se q u e n tly d evelop ed . W hen the resistors are p lace d in th e base of th e fu rn ace th e y are put in tro u g h s of su ita b le re fra c to ry m aterial and usually, b u t n ot a lw a y s, co vered p a r tly or com ­ pletely w ith b rick or-tile, w h ich form s th e h earth .

s h a p e o f r e s i s t o r s— T h e shape of th e resistors can be ex ceed in gly va ried . T h e y m a y be stra ig h t, U-, S-, T -, or Y -sh a p e d . T h e y m a y be e le ctrica lly connected in series or p arallel, or som e in series and others in parallel. T h e y m a y be p e rm a n e n tly elec­

trically conn ected, or th e y m a y be cap ab le of variou s electrical arran gem en ts b y sw itch in g.

p e r m a n e n t l y e l e c t r i c a l l y c o n n e c t e d r e s i s t o r s

Furnaces w ith these resisto rs are co n stru cte d so that they m ust be o p erate d in one m anner, a t all tim es from the p o in t of v ie w of electrica l arran gem en t.

F i o . I — Se r p e n t i n e Re s i s t o r f o r Mo d e r a t e l y La r g e Fu r n a c e s

In practically all fu rn a ce s of th is class eith er a serpentine 0r U-shaped resisto r m a y be em p lo yed , b u t tw o or more straigh t resistors co n n ected eith er in series or

■n parallel m a y be used in stea d . F ig . I shows th e serpentine resistor w hich h as been e m p lo ye d in m oder­

ately large fu rn aces on ly, it b eing im p ossible to a d ap t this typ e to th é sm aller fu rn ace s. T h e U -shaped

resistor show n in F ig . I I has been em p lo ye d in fu rnaces o f a n y size b u t h as som e lim ita tio n s w hich w ill be con ­ sidered later.

e l e c t r i c a l l o a d— T h ere are sev eral w a ys to d eterm in e th e electrical lo a d fo r a given fu rn ace, b u t th e y all resolve th e m selve s in to one m eth od, w hich is th e o n ly one deem ed su fficien tly p ra ctica l to be g iv en con sid era­

tio n in th is paper. O n ly fu rn a ce s of 200 k ilo w a tts c a p a c ity or less w ill be considered and it m a y be said th a t fu rnaces for h e a t tre a tin g larger th an th is are ex ceed in gly rare. T h e e lectrica l load is th e sum of th ree fa cto rs: (1) th e electrica l e q u iv a le n t o f th e am o u n t of h e a t n ecessary to raise th e m etal to th e requ ired te m p eratu re ; (2) th e electrica l e q u iv a le n t of th e loss of h ea t th ro u gh th e w alls; (3) th e e lectrica l e q u iv a le n t of th e loss of h ea t th ro u gh th e door, in consid eration of th e fa c t th a t th is is a lte rn a te ly opened and closed. Since th e pow er fa cto rs of fu rn a ce s of th is size are from 97 to 99 per cent, th e y can be neg-

Fi g. I I — U - Sh a p e d Re s i s t o r

lected' in th e calcu latio n of th e n ecessary w a tta g e . F ro m th e d a ta in T a b le I th e w a tts n ecessary to op erate a n y p a rticu la r fu rn ace m ay be a p p ro x im ated q u ite clo sely. T h e door loss shows th e w a tts passin g th ro u g h th e door opening if th e door is open all th e tim e. If th e door is open o n ly h alf th e tim e, o n ly h a lf th e a m o u n t giv en in th e ta b le sh ould be ta k e n , and so on in p ro ­ portion. T h e w all upon w hich th e w all loss figures are based is 12 inches th ick , con sistin g of 9 inches of silica b rick and 3 inches of kieselg u h r. B y a ctu a l p ra ctice th is has been fo u n d to be a co n v e n ie n t sta n ­ dard . A s an exam p le of th e m eth od o f calcu latio n , the electrical lo ad for a p a rticu la r fu rn a ce w ill be de­

term ined . A ssum e th e fo llo w in g d a ta for th is illu s­

tr a tiv e case:

1— O utside dim ensions— 4 ft. X 4 ft. X 6 ft. long.

2— P rod u ction — 500 pounds of steel per hour.

3— T em p eratu re— 1700° F.

4— D oor— 2 sq. ft., open 40 per cen t of th e tim e.

T h is fu rn ace h a d a to ta l o u tside area of 128 sq. ft.

T h e ta b le show’s a w all loss of 0.060 w a tt per sq. ft., m akin g a to ta l loss o f 7.68 k .w . fo r th e w alls, top and base. T h e door loss w^ould be 10.0 k. w. if th e door w ere open all th e tim e, b u t it b ein g open b u t 40 per cen t of th e tim e, th e loss is 4.0 k. w. A s 0.0881 k. w. is requ ired to raise 1 lb. of steel to 1700° F . from 60° F . in 1 hr., 500 lbs. per hr. w ou ld requ ire 44-05 k. w.

(6)

536 T H E J O U R N A L O F I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y V o l . 6, No. 7

Ta b l e I

W all lo ss (a)

T em p era tu re K ilo w a tts in k . w . D o o r

o f op era tio n to raise per sq . ft. lo s s (6)

1 lb. per hr. o u tsid e in k . w.

0 F. 0 C. from 6 0 ° F . surface per sq . ft.

1000 5 3 8 ' 0 .0 3 6 6 0 .0 3 5 0 .6

1100 594 0 .0 4 6 0 0 .0 3 9 0 . 9

1200 649 0 .0 5 2 7 0 .0 4 2 1 .3

1300 704 0 .0 5 9 7 0 .0 4 6 1 .7

1400 760 0 .0 6 6 8 0 .0 4 9 2 .3

1500 815 0 .0 7 3 3 0 .0 5 3 3 . 0

1550 843 0 .0 7 6 5 0 .0 5 5 3 . 5

1600 8 70 0 .0 7 9 6 0 .0 5 6 3 . 9

1650 898 0 .0 8 4 0 0 .0 5 8 4 .5

1700 9 26 0 .0 8 8 1 0 .0 6 0 5 . 0

1750 9 54 0 .0 9 2 6 0 .0 6 2 5 . 6

1800 9 82 0 .0 9 7 0 0 .0 6 4 6 . 3

1850 1010 0 .0 9 9 4 0 .0 6 5 7 .1

24 0 0 1316 0 .12 2 0 .0 8 5 20.0

(а) B a sed on w all 12 in c h e s th ick (9 in c h e s of silica + 3 in ch es o f k ieselg u h r).

(б) D o o r open all th e tim e .

T h u s it w ill be seen th a t th is fu rn a ce w ill require 55.7 k. w. for op eratio n. N o fa cto r of s a fe ty need be a p p lied to th is figure if th e con d itio n s selected are a t th e m axim u m . On th e c o n tra ry , if th ese are norm al o p eratin g con d itio n s a fa cto r of s a fe ty sh ould be ap p lied acco rd in g to th e p o ssibilities of greate r de­

m ands b ein g m ade on th e fu rn ace.

A fte r ca lcu la tin g th e n u m ber of k ilo w a tts n ecessary fo r op eratio n , th e le n gth of th e resistor is a p p ro x i­

m ated in order to determ in e th e v o lta g e . W ith g ra n u la r g ra p h ite 1 exp erience h as show n th a t th e m ost s a tis fa c to ry v o lta g e is e q u iv a le n t to 1V2 v o lts per inch le n gth of th e resistor. F ro m th is v o lta g e and th e w a tta g e as co m p u ted a b o ve, th e n um ber of am peres m a y be easily determ in ed.

e. m. f. r e q u i r e m e n t s— T h e e lectrica l resistance of a resisto r in a fu rn a ce can n o t be su fficien tly clo sely p red icted to w a rra n t ca lc u la tin g th e size of th e resis­

to r w ith a v e r y g re a t degree of c e rta in ty . O f n ecessity, th erefore, th e e x a ct v o lta g e w h ich w ill b e requ ired fo r a fu rn ace to ta k e a certain n u m ber of k ilo w a tts can be d eterm in ed o n ly a p p ro x im a te ly . A p rovision fo r o b ta in in g v a rio u s v o lta g e s is, th erefo re, n ecessary, an d a tran sfo rm er w ith several ta p s is o rd in a rily em ­ p lo y e d for th is purpose. H o w ever, it is p e rfe ctly possible to p ro v id e a v a ria b le v o lta g e gen e ra to r for th e sam e purpose. Since th e precise p ro d u ctio n of steel for a g iv en fu rn a ce can n o t be v e r y clo sely as­

certain ed . and since, in m ost cases, d ifferen t prod u ction s are desired a t d ifferen t tim es, it is a b so lu te ly n eces­

sa ry th a t p ro vision be m ade fo r alterin g th e k ilo w a tt in p u t a t w ill of th e o p erato r.

T h e usual an d sa tis fa c to ry m eth od of m eeting these req u irem e n ts ap p ears to be th e em p lo ym e n t of a tra n s ­ form er w ith 10 to 15 tap s. U s u a lly 13 is a sa tis fa cto ry n u m ber, h a v in g a ran ge of v o lta g e s on th e seco n d ary from a m inim um e q u iv a le n t to one v o lt per inch len gth of th e resisto r to a m axim u m e q u iv a le n t to tw o vo lts per inch len gth of th e resisto r. T h e v a rio u s ta p s on th e tran sfo rm ers used in m ost in stan ces h a v e g iv en vo lta g e s w h ich are in a rith m e tica l progression, b u t it is th e opinion of th e w riter th a t a progression of v o lt ­ ages in u n equ al ste p s is b est su ited fo r th e w ork. F o r th e purpose o f m a k in g p ro vision for th e u n ce rta in ty o f th e resistan ce of th e resistor, th e v o lta g e s w ould lo g ic a lly be chosen in a rith m e tica l progression. F o r purposes of regu latio n , h o w e ver, since th e k illo w a tt in-

1 A rtificial gra p h ite av era g in g V i-in c h m esh, b u t co n ta in in g n o fine pow der.

p u t increases as th e sq u are of th e vo ltag e , it would ap p ear, fro m th is po in t of v ie w , th a t th e vo ltage steps sh o u ld be gra d u ate d to b est m eet th is condition.

T h e tw o con d itio n s m u st be m et, an d th e most satis­

fa c to ry arran gem en t is to m ake th e steps in such pro­

gression th a t th e difference of th e k ilo w a tt inp ut on ad­

ja c e n t ta p s in th e high er v o lta g e s w ill n o t be .so very m uch larger th a n on th e a d ja c e n t ta p s on the lower v o ltag e s. A cco rd in g ly , a s a tis fa c to ry range of po­

te n tia ls on a tran sfo rm er w ith 13 ta p s would have vo lta g e s e q u iv a le n t to th e fo llo w in g, per inch length of th e resisto r: 1.00, 1.10 , 1.20, 1.29, 1.38, 1.47, 1.56, 1.64, 1.72, 1.80, 1.87, 1.94, 2.00.

e l e c t r i c a l r e g u l a t i o n w i t h o u t t r a n s f o r m e r

A m e th o d 1 for o b ta in in g th is regu latio n and ad­

ju s tm e n t w ith o u t th e use of a tran sfo rm er has been d evised in th e w rite r’s la b o r a to ry v e r y la rg e ly through th e .work of M r. R ic h a rd S. B ick n e ll. In th is type of fu rn ace several resisto rs are em p lo ye d , w hich are not p e rm a n e n tly e le c trica lly con n ected, and w hich b y means of su ita b le sw itch es m a y be co n n ected in various w a y s w hile th e fu rn a ce is in op eratio n . T h e y may be arran ged in series, in p arallel or in a n y combinations n ecessary to effect th e desired regu latio n . In other w ords, th is is regu la tio n b y a lterin g th e resistance of th e resistor as co n tra ste d w ith th e aforementioned m eth od w here regu la tio n w as effected b y altering the v o lta g e im pressed upon th e resistor. A s will be show n su b seq u en tly th is ty p e of regu la tio n is particularly a d a p te d to fu rn aces h a v in g 10 sq. ft. of hearth area or o ver. A n exam p le of a fu rn a ce cap ab le of such regu la tio n is sho w n in F ig . I I I . W ith these four re­

sistors in th is p a rticu la r fu rn a ce it is possible to ob­

ta in n o inches in le n g th of resistor, or equivalent of sam e, in th e circu it a t one tim e, and 220 inches in le n gth of resistor a t anoth er. A large n um ber of inter­

m ed iate len gth s of resisto r b etw e en th is maximum an d m inim um figure m a y also b e p lace d in operation.

T h is p a rticu la r fu rn a ce is designed to operate on 220 v o lts an d it w ill be re a d ily seen th a t th e maximum v o lta g e o b ta in a b le per inch of resistor is tw o volts and th e m inim um is one v o lt. A q u ite surprisingly large n u m ber of in term e d iate len gth s of resistor are o b ta in e d b y e m p lo yin g th e fo u r T -sh ap ed resistors, as show n. T h e len gth of th e resistor is, of course, m erely an o th er w a y of s ta tin g th e resistance of the fu rn ace . T h ese T -sh a p e d resistors h a v e each three u n eq u a l legs. R e sisto rs A and D are sim ilar and B and C are sim ilar, b u t A an d B h a ve corresponding legs of differen t len gth s. T h e resistance of the fur­

nace resistors fo r a n u m ber of in term ed iate steps is m ade b y co n n ectin g tw o legs in p arallel in instances w hen a lo w resistan ce is desired. W hen a high re­

sistan ce is w a n te d th e resisto rs are run in series the cu rren t passin g th ro u g h th e lo n gest legs only. By p ro p e rly p ro p o rtio n in g th e legs, it w ill be seen that th e n u m ber of in te rm e d iate step s fo r purpose of regula­

tio n m a y be m ade as large as desired.

I t is, of course, possible to com bin e these tw o methods o f reg u la tio n , n am ely b y v o lta g e and resistance, having a fe w step s on th e tran sfo rm er and h avin g one or a

1 P a te n te d .

(7)

July, 1914 T H E J O U R N A L O F I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y 537

¡ ¡ ■ ■ I B

few resistors cap ab le of b eing arran ged eith er in series or parallel. A fu rn ace so re g u la te d is sho w n in plan in Fig. I V and th e m eth od is q u ite su ita b le for sm all furnaces of fro m 4 to xo sq. ft. h ea r h area. T h e construction of th e resisto r as sho w n in v e rtic a l section would be qu ite sim ilar to th a t in F ig . I I I .

W ID T H A N D D E P T H O F R E S I S T O R T h is discussion

applies to b o th ty p e s of fu rn a ce s w here th e tw o m ethods of regulation are e m p lo ye d , i. e., eith er a lte rin g the voltage or th e resistan ce. I t has b een fo u n d th a t a resistor p lace d b en eath th e h earth can be com posed of two la y e rs of m aterials to a d v a n ta g e , th e upp er of granular g ra p h ite and th e low er of som e m aterial

of lower electrica l c o n d u c tiv ity th a n g ra p h ite , such as charcoal. T h e low er la y e r ta k e s a sm aller p a rt of the curren t th a n does th e u p p er la y e r of grap h ite, thus placing th e m ajo r p a rt of th e h e a t lib e rated quite near to th e to p of th e resistor. T h is m ethod seems to p ro te ct th e p a rt of th e lin in g upon w hich the resistor rests. I t p ro te cts it su fficien tly w ell n o t on ly to warrant its use, b u t to m ake its use a b so lu te ly necessary in th e case o f fu rn a ce s o p eratin g close to or above 1800° F . A resisto r con sistin g of h a lf ch ar­

coal m oderately ta m p e d b y h an d and h a lf gra p h ite gently tam p ed in is v e r y sa tis fa c to ry . T h e resistance of an inch cube co n sistin g in th e u p p er h a lf of g ran u lar graphite (pieces 3/zn to l/s in.) and th e lo w er h a lf of hard

^ood charcoal p u t in acco rd in g to th e m eth od de­

scribed above is a p p ro x im a te ly 0.125 ohm a t 1700° F . Thus the area of th e cross-section o f th e resistor m a y be easily d eterm in ed a fte r th e cu rren t n ecessary h as

been co m p u ted for th e n orm al ru n n in g con d itio n of 1V2 v o lts per inch len gth of resistor.

s h a p e o f r e s i s t o r— T h e w id th and d ep th of th e resistor sh ould be such th a t as m uch h e a t as possible is lib e ra ted in th e desired d irectio n . F o r resistors in th e h earth th is directio n is, of course, u p w a rd . A c ­ cordin g to th e th e o ry , th erefore, th e lo g ical shape of resistors of th is sort w ou ld be as w ide as possible and q u ite shallow . T h is section, h o w ever, is n ot a t all feasib le for sev eral reasons. T h e resisto r burns a w a y m ore ra p id ly w hen it is w ide and it is m ore difficult to spread th e g ra p h ite on a w ide resisto r w hen it is replenished. W id e resistors require m ore lin in g and th e expense of th e linin g is a re la tiv e ly im p o rta n t item in th e cost. W hen w ide resistors are m ade to run a t rig h t angles th e cu rren t has a te n d e n cy to flow across th e in terio r corner in m uch h igh er in te n sity th a n a t th e exterior corner. Som etim es carbo n or g ra p h ite b lo ck s h a ve been p laced in th e resisto r at th e corners for th e purpose of red u cin g th is lo cal effect.

T h is, how ever, is n o t a v e r y go od rem ed y, as th e h e a t

Fi g. I V — Fu r n a c e Re g u l a t e d b y Vo l t a g e a n d Re s i s t a n c e— Su i t­ a b l e f o r 4 t o 1 0 Sq. Ft. He a r t h Ar e a

lib e ra te d in a n y e v e n t is n ot so g rea t p e r u n it area of th e resistor in th e corner as in oth er p a rts of th e fu rn ace . T h e cross-section of th e resisto rs h ad, th erefore, b e tte r be m ade a b o u t square, or w ider th a n th e d ep th b y a sm all am o u n t. If p ossible th e resisto rs should n ot be narro w er th an th e ir d ep th , b u t it is im p ossible to o b serve th is req u irem e n t in all cases.

R e sistors less th a n 2V2 in. w ide sh ould n ot be used.

T h e y should be n o t less th a n 6 in. deep and p re fe ra b ly a b o u t 7 in., ex ce p t for resistors o v er 10 inches w ide w hich can be m ade 8 in. deep, th o u gh m ore th a n th is is lik e ly to cause excessive h ea tin g in th e base of th e fu rnace.

M A X IM U M L I M I T A T I O N I N S IZ E O F R E S I S T O R S T h e designer fre q u e n tly has th e o p p o rtu n ity of e m p lo yin g one large resistor or tw o sm aller ones to do th e sam e w ork. S m all resistors less th a n 3 in. w id e should be avo id ed becau se sligh t va ria tio n s in sh ape h a v e a m ore m arked effe ct on th e ir resistance th a n in th e case of th e large resistors. I t is m uch b e tte r as a rule to em ­ p lo y a sh o rt resistor 4 or 5 in. w ide th a n a corresp on d ­ in g ly lon ger one 2l / i or 3 in. w ide. On th e oth er h an d , larg e resistors are also to be a vo id ed . Since th e

f o r m e r— Ad a p t e d f o r 1 0 Sq. Ar e a

(8)

th e rm a l c o n d u c tiv ity of g ra p h ite is rath e r low it is e v id e n t t h a t large resistors are m uch m ore lik e ly to becom e e x cessiv ely h eate d in th e ir cen ters th a n sm all ones. R e sisto rs 6 to 9 in. w ide are to be used w h erever possible, and for resisto rs of th is ty p e 12 inch es w ide and 8 inches deep are a b o u t th e m axim u m dim ensions for fu rn a ce s used for h e a tin g steel. T h is is q u ite too large, h o w e ver, for a n y h e a t-tre a tin g w o rk, b u t it is m en tion ed m erely to g iv e an a p p ro xim atio n o f th e m axim u m lim ita tio n of th is ty p e of fu rn ace. A 12 b y 8 in. resistor w ou ld c a rry 1000 am peres and a n u m ­ b er of th em cou ld be arran ged in a fu rn a ce so as to lib e ra te 16 k . w. per sq., ft. of h earth . T h is is e q u iv a ­ le n t to a p ro d u ctio n of a b o u t n o lbs. of steel h eate d to 1700 ° F . per hr. per sq. ft. of h earth u nder th e usual cond itio ns. T h is p ro d u ctio n is n o t o n ly m ore th a n is u su a lly desired, b u t is fa r too m uch for go od w ork.

E xp erie n ce h as sho w n th a t a m axim u m p ro d u ctio n of a b o u t 50 lbs. per hr. per sq. ft. of h earth a t 1700° F.

is all th a t can be exp ected in electric h e a t-tre a tin g fu r­

naces.

p r o d u c t i o n o p s t e e l T h e te m p e ratu re and th e p ro d u ctio n of steel from an electric fu rn ace are m u tu a lly d ep en den t. T h e h e a t lib e ra ted in th e resisto r, if n o t ta k e n up b y th e m etal, w ill occasion a rise in te m ­ p e ratu re o f th e fu rn ace . T h e larger th e electrical c a p a c ity per u n it area of h earth , th e g rea te r th e effect on th e te m p e ra tu re b y a lteratio n in .the pro d u ctio n . I t is fo r th is reason th a t p ro d u ctio n s o ver 50 lbs.

per hr. per sq. ft. o f h earth sh ould be a vo id ed . W ith m o d erate cap acities of 4 or 5 k. w. per sq. ft. of h earth area (e q u iva le n t to a p ro d u ctio n o f 30 to 35 lbs. of steel per hr. to 1700° F .) va riatio n s in p ro d u ctio n h a v e b u t v e r y little effe ct on th e te m p eratu re . T h e h e a t c a p a c ity of th e resistor linin g and b ric k w o rk in fu rnaces of th is size is am p ly able to com p ensate for ch an ges in p ro d u ctio n , so th a t th e te m p e ratu re re­

m ains p r a c tic a lly th e sam e. A fu rn ace designed for a norm al ru n n in g lo a d of 4 k. w. per sq. ft. of h earth (w ith 1 V s v o lts per inch len gth of th e resisto r) will p ro v e v e r y sa tisfa cto ry . T h e u n ifo rm ity of te m p e ra ­ tu re on th e h earth in fu rn a ce s em p lo yin g th e T -sh a p ed resistors show n in F ig . I l l is q u ite rem ark ab le, b u t ev en w ith th e U -sh ap ed or serpentin e resisto r a te m ­ p e ra tu re v a ria tio n of less th a n i o ° F ., in a n y p o in t of th e h earth from th e desired te m p eratu re , is to be ex p ected .

e n a m e l i n g f u r n a c e s fa ll q u ite in th e sam e c a te g o ry w ith th e h e a t-tre a tin g fu rn aces. A lth o u g h th e y are larger in size th e y are n o t co rresp o n d in gly large in electrica l c a p a c ity . F o r en am elin g fu rn aces resistors sh o u ld b e p laced on th e sides, b u t a b o u t th ree -q u arte rs o f th e k ilo w a tt in p u t sh o u ld be lib e ra te d in th e base. R e sisto rs w hen p lace d alo ng th e sides of a m uffle of an en am elin g fu rn a ce sh ould be sm all, 10 to 20 sq. in. in sectio n and sh o u ld consist e n tire ly of g rap h ite.

T h e lin in g o f su ch a resisto r is u su a lly designed so as to fo rm a p a rt o f th e in terio r w all of th e muffle.

E L E C T R I C F U R N A C E S F O R T E M P E R A T U R E S A B O V E l8 o o ° F .

W ith resp e ct to th e class of fu rn aces op eratin g o v er 1S000 F ., th e w riter k n o w s o f no exam p le in in d u stria l w o rk, ex ce p t on a sm all scale, w h ich has S38 T H E J O U R N A L O F I N D U S T R I A L

p ro ven s a tisfa cto ry . A n u m ber h a v e b een constructed and trie d for v a rio u s len gth s of tim e , b u t a durable fu rn ace , certain of op eratio n , is y e t to be produced.

M o st of th e exp erim en ts w hich h a v e b een conducted h a v e e m p lo ye d fu rn a ce s w ith a single resistor about h alf g ra p h ite and h a lf ch arco al, as m en tion ed above.

T h ese resistors h a v e been m ade a b o u t a fo o t and a h a lf w ide and p lace d in a tro u g h of a m ixtu re of re­

fracto ries, th e b asis of w hich is firesand. T h e metal to be h e a te d w as p la ce d d ire ctly a b o v e th e resistor, b u t n o t to u ch in g it. T h e m etal w as steel bars for fo rgin g and h eate d to a b o u t 24000 F . In order to effe ct a p ro d u ctio n sim ilar to th a t of an oil-fired forge fu rn a ce of th e sam e size, th e te m p eratu re of the resisto r h ad to be a b o v e 2900 0 F . F o r th is tempera­

tu re it seem s im possible to co n s tru ct a fu rn ace which w ill h a v e a v e r y lo n g life. In th e course o f a few weeks th e lin in g or th e b rick s w ill h a v e fluxed to some de­

gree and reb u ild in g w ill be fo u n d n ecessary. A lining of su b s ta n tia lly pure silicon carbid e b rick m igh t stand up u nder th e se con d itio n s, b u t it is questionable if a re fra c to ry a n y poorer th a n th is w ould be satisfactory.

T h e electrod es, to o , are d ifficu lt to h old in p lace without c o s tly su p p o rts w h ich m igh t h a v e to be water-cooled.

T h ese fu rn aces h a v e b een used for h eatin g metals for fo rgin g and h a v e show n in som e instan ces good econ om y. A cu rren t con su m p tion of 370 k. w. hrs.

per 2240 lbs. of m etal on a 100 k . w . fu rn a ce was noted.

In general, th e ty p e of c o n stru ctio n on th e se furnaces w as sim ilar to th a t sho w n in F ig . II , ex ce p t th a t the U -sh aped resistor w as s u b s titu te d b y a single straight one ru n n in g from one end of th e h ea rth to the other.

F o r w ork a t fo rgin g te m p eratu re s a fu rn ace employ­

in g a g ra p h ite resisto r does n o t seem cap ab le of be­

com in g a co m m ercial r e a lity unless a v e ry unique lin in g can be d eveloped .

E L E C T R I C F O R G E F U R N A C E O F T H E A R C T Y P E

T h e w riter h as g iv e n con sid erable th o u g h t to this im p o rta n t field of electric fu rn aces for fo rgin g and has d ev elo p e d a fu rn a ce w hich app ears to elim inate most of th e d ifficu lties en cou ntered . T h is fu rn ace is as y e t o n ly in th e exp erim e n tal sta ge , a lth o u gh it appears to offer a ttr a c tiv e com m ercial possibilities. It is of th e arc ty p e and th u s im m e d ia te ly m any of the d ifficu lties in h eren t to th e resisto r fu rn ace disappear.

A s th e re is no resistor th e re is, of course, no resistor linin g. T h e m etal is p lace d on th e h earth and is h ea te d d ire ctly b y th e arcs, th e bases of w hich play a fe w inches a b o v e th e m etal to be heated , thus ob­

ta in in g a h ig h th e rm a l efficien cy. T h e arcs are de­

flected b y m eans of an a u x ilia ry electro d e w hich spreads th e flam e of th e arcs so as to d istrib u te th e heat com­

p a r a tiv e ly e v e n ly and also serves to p ro te ct the roof of th e fu rn ace . T h e roof, if b u ilt of silicon carbide b rick , w ill h a v e a lon g life. A s th e electrical equip­

m en t is p lace d a b o v e th e h earth it is easily accessible and m a y be rem o ved b y a crane so th a t a new top can be p lace d on th e fu rn a ce in a v e ry few minutes.

A s arcs of a fe w k ilo w a tts are difficult to operate, it w o u ld p ro b a b ly be n ecessary to b u ild a fu rnace capable o f a v e r y su b sta n tia l p ro d u ctio n . T h e w riter hopes A N D E N G I N E E R I N G C H E M I S T R Y V o l . 6, No. 7

Cytaty

Powiązane dokumenty

There are many chemical and physical phases of this problem which are of undoubted importance, such as oxygen, carbon dioxide, ozone, temperature, humidity, air

included propane in the illuminants as ordinarily determined b y absorption in fuming sulfuric acid because propane dissolves to a certain extent in the

yet.. The shutting out of German competition in the sulfate of ammonia trade has brought prosperity to the Scotch industry. T h e results have been so encouraging

This report giv;s more detailed data of the zinc industry than has previously been reviewed (see T his J ournal for previous 2 months). The most interesting parts

cially those containing non-amino nitrogen. These results were obtained by the esterification method and show how the different proteins vary in the nature and

Eminent authorities on the subject are agreed that the higher the volatile contents of a fuel, the more it is liable to smoke. The percentage of volatile

The explanation of results obtained with all the liquids described lies in the law of partial pressures: In the cases where water was taken with an immiscible

The contact mass at the Old Hickory Powder Plant, like that used in the majority of contact process sulfuric acid plants in the U nited States during