• Nie Znaleziono Wyników

Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif: new data concerning the Boreal–Tethyan communication corridor

N/A
N/A
Protected

Academic year: 2022

Share "Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif: new data concerning the Boreal–Tethyan communication corridor"

Copied!
13
0
0

Pełen tekst

(1)

Cal car e ous nannoplankton in the Up per Ju ras sic ma rine de pos its of the Bo he mian Mas sif: new data con cern ing the Boreal–Tethyan com mu ni ca tion cor ri dor

Katarína HOLCOVÁ1, * and Magdalena HOLCOVÁ1

1 Charles Uni ver sity in Prague, In sti tute of Ge ol ogy and Palae on tol ogy, Albertov 6, 128 43 Praha 2, Czech Re pub lic

Holcová, K., Holcová, M., 2016. Cal car e ous nannoplankton in the Up per Ju ras sic ma rine de pos its of the Bo he mian Mas sif:

new data con cern ing the Bo real–Tethyan com mu ni ca tion cor ri dor. Geo log i cal Quar terly, 60 (3): 624–636, doi:

10.7306/gq.1282

Cal car e ous nannoplankton as sem blages from the Ju ras sic rel ict de pos its in the north ern part of the Bo he mian Mas sif are de scribed here for the first time. They are gen er ally of low di ver sity and dom i nated by watznaueriaceans. Some of them are diagenetically af fected, prob a bly due to dolomitisation. Cal car e ous nannoplankton en ables the strati graphi cal range of the North ern Bo he mia Ju ras sic suc ces sion to be ex tended to the Tithonian by ref er ence to the strati graphi cal range of Ju ras sic plat form se quences in Cen tral Po land and the east ern part of the Bo he mian Mas sif. The Oxfordian–Kimmeridgian nannofossil as sem blages in di cate a gen er ally oligotrophic con di tion of the re stricted sea with ep i sodic flu vial in put con tain - ing ter res trial nu tri ents. The char ac ter of the up per part of the wa ter col umn was gen er ally uni form and did not re flect vari abil - ity at the sea-floor ex pressed by lithofacies di ver sity. The palaeoenvironment in ter preted for the fa mous for mer palaeontological lo cal ity “Sternberk Quarry” was char ac ter ized by a higher nu tri ent con tent and more sta ble en vi ron ment.

The Tithonian nannofossil as sem blages con tain warm-wa ter Tethyan taxa which sug gest south-north mi gra tion of nannoplankton due to warm ing dur ing the Jurassic–Cretaceous bound ary in ter val.

Key words: cal car e ous nannoplankton, Late Ju ras sic, North Bo he mian Mas sif, biostratigraphy, palaeo ec ol ogy.

INTRODUCTION

The Ju ras sic ma rine de pos its of the north ern part of the Bo - he mian Mas sif are pre served in a few small out crops as so ci - ated with the Lusatian Fault (Eliáš, 1981). How ever, these relicts may have palaeo geo graphi cal sig nif i cance in re cord ing the com mu ni ca tion cor ri dor be tween Bo real and Sub-Bo real ar - eas and the Tethyan Realm (Atrops et al., 1993; Matyja and Wierzbowski, 1994, 2000).

Though fos sils from these out crops, com pris ing di verse fos - sil as sem blages (ammonites, bel em nites, brachi o pods, bi - valves, sponges, echinoderms, bryo zoans, annelids and fish) are stored in mu seum col lec tions, only the ammonites have been stud ied, mostly in the 19th cen tury (Lenz, 1870; Bruder, 1881, 1882, 1885, 1886).

Us ing these data from the 19th cen tury as well as the re - sults of geo log i cal map ping from the 1960s (Kopecký et al., 1963), the ge ol ogy of the north ern Bo he mia Ju ras sic units was de scribed in syn the ses of the Bo he mian Mas sif (Eliáš, 1981;

Suk et al., 1984; Chlupáè et al., 2002). The new est data have been pub lished by Hrbek (2014) who sug gested an Up per Oxfordian and Lower Kimmeridgian age of the Ju ras sic relicts on the ba sis of aulacostephanid ammonites. The pres ence of

Bo real and Sub-Bo real taxa in the North ern Bo he mian Mas sif prob a bly re flects the equatorwards mi gra tion of cold-wa ter ammonites around the Oxfordian–Kimmeridgian bound ary.

Taxa oc cur ring in North ern Bo he mia show af fin ity to those oc - cur ring in the Pol ish Jura Chain and south ern Ger many which sup ports the pres ence of a sea way be tween these ar eas across the Bo he mian Mas sif (Matyja and Wierzbowski, 1995).

Our study de scribes the first find ing of Ju ras sic cal car e ous nannoplankton in the Bo he mian Mas sif. The aim of the work is to de scribe these nannofossil as sem blages and dis cuss their biostratigraphical, palaeo geo graphi cal and palaeo eco logi cal sig nif i cance.

GEOLOGICAL SETTING

The Ju ras sic strata in North ern Bo he mia are as so ci ated with the Lusatian Fault (Eliáš, 1981). Dur ing the youn ger phase of the Saxonic tec tonic event, the re-ac ti va tion of the Lusatian tec tonic zone thrust the Cadomian, Pa leo zoic and Ju ras sic rocks over the Cre ta ceous ones (Eliáš, 1981). The Late Pa leo - zoic–Me so zoic sed i men tary suc ces sion over lay the Up per Pro - tero zoic and Pa leo zoic meta mor phic rocks and granitoids of Lugicum (Chlupáè and Štorch, 1992). The Mid dle Ju ras sic Brtníky For ma tion built up pre dom i nantly of sandy, fos sil-poor clastic de pos its was formed af ter de po si tion of terrigenous Car - bon if er ous and Perm ian sed i ments and a long hi a tus (Suk et al., 1984). Its sed i men ta tion prob a bly cor re sponds to the Callovian (Bruder, 1881, 1882; Kopecký et al., 1963; Eliáš,

* Corresponding author, e-mail: holcova@natur.cuni.cz Received: December 1, 2015; accepted: January 20, 2016; first published online: March 1, 2016

(2)

1981; Chlupáè et al., 2002). The over ly ing Doubice For ma tion is built up of a car bon ate-siliciclastic suc ces sion that was de pos - ited in a deep shelf en vi ron ment. Based on data from out crops that no lon ger ex ist, a sed i men tary suc ces sion formed of organodetrital lime stones, marly lime stones, cherts, marls, and sandy rocks can be re con structed (Fig. 1; Kopecký et al., 1963;

Eliáš, 1981; Suk et al., 1984; Hrbek, 2014). Un for tu nately, a mod ern de tailed sedimentological anal y sis of the Up per Ju ras - sic fa cies of North ern Bo he mia is not pos si ble be cause of scar - city of out crop. Due to in flu ence of the Lusatian tec tonic zone and Ce no zoic vol ca nism, the Doubice For ma tion was weakly to strongly dolomitised (Eliáš, 1981). Ex ist ing ex po sures ex hibit only strongly dolomitised car bon ate with ex tremely rare macrofossils (Hrbek, 2014; Košïák, pers. comm., 2015). These in clude old quar ries near Doubice clas si fied as a rep re sen ta tive geosite of the Cen tral Eu rope Ju ras sic by Alexandro - wicz (1999).

MATERIAL AND METHODS

The lack of a con tin u ous sec tion of Ju ras sic de pos its in North ern Bo he mia (with the ex cep tion of strongly dolomitised rocks) led us to de velop two in di rect ways of re con struct ing the depositional his tory for the pur poses of nannoplankton in ves ti - ga tion (Fig. 2): (1) rock ma te rial from the for mer Šternberk Quarry near Brtníky is pre served in the col lec tions of the Na - tional Mu seum, Prague (NM–N) and the In sti tute of Ge ol ogy and Palae on tol ogy, Fac ulty of Sci ence, Charles Uni ver sity, Prague (CIGP) (20 sam ples). Though the quarry is equated with the old quarry “Brtníky” in the list of geosites reg is tered by the Czech Geo log i cal Sur vey (http://lokality.ge ol ogy.cz), only strongly dolomitised car bon ates with out macrofossils are ex - posed there now a days (Košïák, pers. comm., 2015). (2) Frag - ments of Ju ras sic rocks from the creek be low “Peškova stráò”

(Pešek’s Hill side) near the vil lage of Kyjov rep re sent the most di verse source of Up per Ju ras sic lithotypes to day (46 sam ples).

Six lithotypes have been dis tin guished among frag ments from “Peškova stráò”: (1) light coarse micritic lime stones (6 frag ments), (2) light fine micritic lime stones (21 frag ments), (3) dark fine lime stones (5 frag ments), (4) light coarse marly lime - stone (8 frag ments), (5) light coarse organodetrital lime stone (5 frag ments), (6) light fine marly lime stone (1 frag ment). These lithotypes could be equated with the Doubice For ma tion, though the time suc ces sion of lithotypes can not be de ter mined and cor re la tion with sec tion de scribed in 19th cen tury (Fig. 1) is im - pos si ble. Un for tu nately, no fine clastic de pos its which could be more suit able for pres er va tion of cal car e ous nannofossils were found ei ther in the mu se ums or in the field.

Nannoplankton was stud ied us ing the sim ple smear slides in nor mal and po lar ized light. Smear slides were pre pared from pow dered sed i ment with out cen tri fug ing, clean ing and con cen - tra tion in or der to re tain the orig i nal sed i ment com po si tion fol - low ing the meth od ol ogy of Casellato (2008). Cal car e ous nannofossils were in ves ti gated us ing a light po lar iz ing mi cro - scope, at 1000´ mag ni fi ca tion. The nannofossil abun dance was ex pressed as the num ber of nannofossils per field of view av er aged for ca. 50 fields of view per sam ple. Be sides the quan ti ta tive mea sure of nannofossil abun dance the semi-quan - ti ta tive scale for Late Ju ras sic nannoplankton was also ap plied (Casellato, 2010): abun dant (A): >10 spec i mens per field of view; com mon (C): 1–10 spec i mens per 1 field of view; few (F):

1 spec i men per 1–10 fields of view; rare (R): 1 spec i men per 11–50 fields of view; bar ren (B): no spec i men was found.

The scan ning elec tron mi cro scope (SEM) was used to study the pres er va tion of the nannofossils. Cal car e ous nannoplankton was con cen trated for SEM study us ing the de - cant ing method with elec tro lyte (35 g of so dium hexametaphosphate, 8 g of so dium car bon ate in 1 l of dis tilled wa ter). Ap prox i mately 1 g of pow dered rock sam ple was shaken with 10 ml of elec tro lyte and, af ter 40 min utes, the liq uid Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif... 625

Fig. 1. Idealized lithological succession of Jurassic deposits from Northern Bohemia (summarized from data of Kopecký et

al., 1963; Eliáš, 1981; Suk et al., 1984; Hrbek, 2014)

(3)

was de canted. This pro cess was re peated five times. Then a sus pen sion was mixed once again and, three min utes af ter mix ing, a drop of liq uid was used for ob ser va tion un der SEM.

For eval u a tion of nannofossil pres er va tion, the clas si fi ca - tion of Roth (1983) was ap plied: (1) E1 – slight etch ing, E2 – mod er ate etch ing, E3 – strong dis so lu tion for clas si fi ca tion of etch ing, and (2) O1 – slight over growth, O2 – mod er ate over - growth, O3 – strong over growth for eval u a tion of over growth.

RESULTS

PRESERVATION OF NANNOFOSSILS

SEM study showed better pres er va tion of nannoplankton in the for mer Šternberk Quarry by com par i son with rock frag ments from “Peškova stráò” (Figs. 3 and 4). Though some spec i mens have ser rate out lines (e.g., Fig. 3E, T, AC, BL, ML, BM, BQ) as well as bro ken cen tral ar eas (Fig. 3AX), most nannofossils from Šternberk Quarry shows in tact out lines and struc tures in the cen - tral area, there fore pres er va tion can be clas si fied as cat e gory E1 – slight etch ing (Roth, 1983). Strongly diagenetically in flu enced as sem blages com posed only of dis so lu tion-re sis tant large Watznaueria with ser rate out lines (e.g., Fig. 4A, B, G, H) were found in rock frag ments from “Peškova stráò”. They are clas si - fied as cat e gory E3 – strong dis so lu tion (Roth, 1983). Even the nannofossils from the best pre served, di verse as sem blages showed dis so lu tion when stud ied by SEM (Fig. 4AO–AV), their pres er va tion cor re spond ing with cat e gory E2 (mod er ate etch - ing). Fig ure 5 shows that there is no cor re la tion be tween lithological type and nannoplankton pres er va tion. In par tic u lar, the ex pected cor re la tion of well-pre served nannofossils with fine and marly lithotypes in con trast to badly-pre served nannoplan - kton with coarse car bon ates has not been ob served.

ABUNDANCE OF NANNOFOSSILS

All sam ples from Šternberk Quarry and most sam ples from rock frag ments from “Peškova stráò” (88%) con tain cal car e ous nannoplankton. Av er age nannofossil abun dances in in di vid ual sam ples vary from 0 to 56 spec i mens/field of view in frag ments from “Peškova stráò” and from 0.5 to 9.2 spec i mens/field of view in Šternberk Quarry sam ples (Fig. 6A, B).

No cor re la tion be tween the six rec og nized lithotypes and cal car e ous nannoplakton abun dance has been ob served (Fig. 6B). The Kruskall-Wallis test (Palentological Soft ware PAST; Ham mer et al., 2001) con firmed the hy poth e sis about no sta tis ti cally sig nif i cant dif fer ences in nannofossil abun dances in in di vid ual lithotypes (p <0.001).

Ad di tion ally, the nannofossil abun dances were clas si fied us ing Casellato’s semiquantitative abun dance scheme (Casellato, 2010) de fined for Late Ju ras sic nannofossils (Fig. 6C). Vi sual eval u a tion of the his to gram sug gests the high - est abun dances for dark fine lime stones and light coarse marly lime stones. How ever, the eval u a tion is not fully re li able due to the small num bers of sam ples from some lithotypes (mainly fine marly lime stones).

DIVERSITY OF NANNOFOSSIL ASSEMBLAGES

In to tal, nine teen spe cies were de ter mined, with num ber of spe cies in in di vid ual sam ples vary ing from two to eight.

Watznaueria spp. pre dom i nate in all as sem blages while the ra tio be tween W. communis, W. barnesiae, W. fossacincta and W. bri - tan nica var ies. Cyclagelosphaera margerelii, and watzna uerias are abun dant. The rel a tive abun dances of small Watznaueria spp., large Watznaueria manivitiae and Cycla gelosphaera deflandrei dif fer be tween in di vid ual sam ples, sug gest ing they are com mon, while other spe cies are rare (Ap pen dix 1*).

Us ing the re sults of clus ter anal y ses (Ward’s method; cor re - la tion co ef fi cient = 0.9253) sup ported by re sults of non-met ric mul ti di men sional scal ing (n-MMDS; stress = 0.096) seven as - sem blages were dis tin guished (Fig. 7A, B):

Fig. 2. Location of samples studied Geological situation from www.geology.cz

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1282

(4)

Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif... 627

Fig. 3. Calcareous nannoplankton from the former Šternberk Quarry

A–T – mor pho log i cal vari abil ity of Watznaueria bri tan nica (Stradner, 1963) Reinhardt, 1964; U, W – Watznaueria fossacincta (Black, 1971) Bown in Bown & Coo per, 1989; X, Y – Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Niel sen, 1968; Z–AO – Watznaueria communis Reinhardt, 1964; AP–AW – small in de ter min able coccoliths; AX – Watznaueriaceae with bro ken cen tral area; AY – strongly diagenetically af fected spec i men (in de ter min able); AZ–BC – Assipetra sp.; BD, BE – small Watznaueria fossacincta (Black, 1971) Bown in Bown & Coo per, 1989; BF–BQ – Cyclagelosphaera margerelii Noël, 1965; BR – Retecapsa escaigii (Noël, 1965) Young & Bown 2014; BS, BT – Axopodorhabdus cylindratus (Noël, 1965) Wind and Wise in Wise and Wind, 1977; BU, BV – Lotharingius sigillatus (Stradner, 1961); BW – Helenea chiastia Wors ley, 1971; BX–CC – Watznaueria bri tan nica (Stradner, 1963) Reinhardt, 1964; CD, CE – Cyclagelosphaera margerelii Noël, 1965; CF – Retecapsa octofenestrata (Bralower in Bralower et al., 1989) Bown in Bown & Coo per, 1998;

CG – cor roded Watznaueria bri tan nica, 2. Retecapsa octofenestrata, 3. small Watznaueriaceae; CH – Cyclagelosphaera sp.; CI: 1 – Watznaueria bri tan nica (Stradner, 1963) Reinhardt, 1964, 2 – Watznaueria sp.; A–BW – op ti cal mi cro scope, po lar ized light, black scale bar (5 µm); BX–CI – scan ning elec tron mi cro scope, length of scale bar 1 µm

(5)

Fig. 4. Calcareous nannoplankton from rock fragments from “Peškova stráò” (Pešek’s Hillside) near the village of Kyjov A–K – as sem blage with large nannofossils mainly W. communis: A–E, J – Watznaueria communis Reinhardt, 1964, F – Cyclagelosphaera argoensis Bown, 1992, G – Cyclagelosphaera deflandrei (Manivit, 1966) Roth, 1973, H, I – large Watznaueria barnesiae (Black in Black &

Barnes, 1959) Perch-Niel sen, 1968, K – small Watznaueria sp.; L–Y – as sem blage with Watznaueria spp. and Cyclagelosphaera margerelii:

L–O – Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Niel sen, 1968, P – Watznaueria fossacincta (Black, 1971) Bown in Bown & Coo per, 1989, Q–Y – Cyclagelosphaera margerelii Noël, 1965; Z–AN – as sem blage dom i nated by W. barnesiae and W.

fossacincta: Z, AB–AJ, AL, AM – Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Niel sen, 1968, AA, AK, AN – Watznaueria fossacincta (Black, 1971) Bown in Bown & Coo per, 1989; AO–BL – di verse as sem blage: AO, BK – Watznaueria bri tan nica (Stradner, 1963) Reinhardt, 1964, AP – Watznaueria communis Reinhardt, 1964, AR, AS – Watznaueria biporta Bukry, 1969, AT, BG, BJ – Cyclagelosphaera margerelii Noël, 1965, AV – Biscutum constans (Górka, 1957) Black in Black and Barnes, 1959, AW–AZ – Nannoconus sp., BA – Biscutum sp., BB–BD – Diazomatolithus lehmanii Noël, 1965, BF, BH – Watznaueria sp., BI – Retecapsa octofenestrata (Bralower in Bralower et al., 1989) Bown in Bown & Coo per, 1998, BL – Orthopithonella sp.; A–P, R–BH, BK – op ti cal mi cro scope, po lar ized light with the ex cep tion of AW, AY (nor mal light), black scale bar (5 µm); BI, BJ, BL – scan ning elec tron mi cro scope; length of scale bar 1 µm

(6)

1. An as sem blage dom i nated by W. bri tan nica char ac ter - izes sam ples from Šternberk Quarry. It is one of the high est di ver sity in the ma te rial stud ied and con tains the best pre served nannofossils;

2. Sim i lar to as sem blage (1) but of lower di ver sity. W. bri - tan nica is ac com pa nied al most solely by W. barnesiae and W. fossacincta. The as sem blage was re corded only from Šternberk Quarry;

3. A di verse as sem blage com posed of well-pre served nannofossils oc curs in rock frag ments from “Peškova stráò”;

4. An as sem blage dom i nated by W. barnesiae and W.

fossacincta con tains 4–5 spe cies. The nannofossils are mod er ately pre served. This type of as sem blage is char - ac ter is tic of rock frag ments from “Peškova stráò”;

5. An as sem blage with Watznaueria spp. and Cyclagelosphaera margerelii con tains about 5 spe cies and the nannofossils are mod er ately pre served. The as - sem blage was re corded from both Šternberk Quarry and “Peškova stráò”;

6. An as sem blage con tains mod er ately to badly pre served nannofossils dom i nated by W. communis. It reaches lower di ver sity (3–4 spe cies) and oc curs in “Peškova stráò”;

Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif... 629

Fig. 5. Nannoplankton preservation in fragments from

“Peškova stráò” (Pešek’s Hillside) in relation to lithotypes The etching description of (Roth, 1983) was used;

A – absolute abundances, B – relative abundances

Fig. 6. Relation between nannofossil abundance and lithotype A – his to gram of nannofossil abun dances ex pressed as num ber of nannofossils in vi sual field of mi cro scope av er aged for ca. 50 fields;

B – lower abun dances are fig ured in de tail and abun dances from Šternberk Quarry and rock frag ments are com pared; C – dis tri bu tion of nannofossil abun dances in in di vid ual lithotypes us ing quan ti ta tive val ues of abun dances and ra tios of sam ples with and with out cal car - e ous nannoplankton; D, E – dis tri bu tion of nannofossil abun dances in in di vid ual lithotypes us ing the semiquantitative abun dance scale of Casellato (2010), num bers of sam ples are ex pressed as ab so lute val ues (D), and rel a tively as per cent ages (E)

(7)

Fig. 7. Calcareous nannoplankton assemblages defined from cluster analyses (Ward method, A) and non-metric multidimensional scaling (D), relative abundances of dominant taxa in assemblages (B),

diversity of individual assemblages (C) and their distribution in lithotypes (F);

statistical reliability of the non-metric multidimensional scaling is expressed by a Shepard plot (E)

(8)

7. The worst pres er va tion of nannofossils and the low est di ver sity char ac ter ize two sam ples with only large nannofossils from “Peškova stráò” (Fig. 7).

The dis tri bu tion of as sem blages in in di vid ual lithotypes shows no cor re la tion be tween the lithotype and type of as sem - blage (Fig. 7F).

INTERPRETATION AND DISCUSSION

BIOSTRATIGRAPHY

The strati graphi cal ranges of the spe cies de ter mined are sum ma rized in Ap pen dix 1 and Fig ure 8, us ing mainly data from

Young et al. (2014) and Gradstein et al. (2012). Since there was no con tin u ous sec tion sam pled, the strati graphic suc ces sion of the sam ples is un known. There fore, the max i mum biostratigraphical range was de ter mined for each in di vid ual sam ple (Ap pen dix 1) and the du ra tion of the ma rine Ju ras sic sed i men ta tion in North ern Bo he mia were syn the sized from these data (Fig. 8).

Three in ter vals of the max i mum pos si ble time of Ju ras sic sed i men ta tion were de ter mined from cal car e ous nannoplankton ranges. How ever, the real time of ma rine in cur - sion might have been shorter.

1. Most sam ples con tain only long-range taxa rang ing from the NJ9 to NJ12 zones through the top of the Ju ras sic or the Lower Cre ta ceous. Spo rad i cally oc cur ring spe cies with their last oc cur rence in the NJ15 Zone (Lotharingius sigillatus;

Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif... 631

Fig. 8. Maximum biostratigraphical ranges of the Northern Bohemia Jurassic deposits based on calcareous nannoplankton

(9)

Schizosphaerella sp.) in di cate that the depositional his tory must have started be fore the NJ15 Zone if these spe cies are not re worked.

Within this in ter val is pos si ble to in clude the range of de ter - mined ammonite zones of Cardioceras cordatum to Ataxioceras hypselocyclum (Hrbek, 2014), which can be cor re - lated with nannoplankton zones from the up per part of NJT13a to the mid dle part of NJT14 (Tethyan zonation) or from NJ14 to the mid dle part of NJ15b (Bo real zonation; Gradstein et al., 2012). Un for tu nately, the high-lat i tude and frag ile ge nus Stephanolithion, sig nif i cant for biostratigraphical cor re la tion in this in ter val, is miss ing. The rea sons could be palaeogeographic and palaeo eco logi cal (lack of suit able palaeoenvironment in the North Bo he mian Ba sin or along the con nect ing sea ways) and/or taphonomic (de struc tion or dis so - lu tion of frag ile nannofossils).

2. Co-oc cur rence of Diazomatolithus lehmanii and Axopodorhabdus cylindratus in rock frag ments from “Peškova stráò” in di cates a Tithonian age. How ever, nei ther of the spe - cies is an im por tant biostratigraphic marker, there fore this cor - re la tion might not be en tirely re li able.

3. Sam ples with Helenea chiastia and nannoconids in di cate a mid-Tithonian age (Casellato, 2010; Gradstein, 2012).

The strati graphi cal ranges (2) and (3) have ex tended the age of Ju ras sic de pos its in the North ern Bo he mia as de ter mined from ammonites (Hrbek, 2014). Isochronous de pos its are known from autochthonous Ju ras sic se quences in the east ern part of the Bo he mian Mas sif (Adámek, 2005) and cen tral Po land (Kutek and Zeiss, 1997; GaŸdzicka, 1998; Kin et al., 2013). This sug - gests that the North ern Bo he mia could have rep re sented a com - mu ni ca tion cor ri dor be tween Bo real and Sub-Bo real ar eas and the Tethyan Realm up un til the lat est Ju ras sic.

PALAEOECOLOGY

The pre vail ing ge nus Watznaueria seems to be ubiq ui tous and dom i nant dur ing the mid-Ju ras sic–Late Cre ta ceous, es pe - cially within the low and mid dle palaeolatitudes in dif fer ent ar - eas of the Tethys Ocean, as well as e.g. in the Cen tral At lan tic and on the Rus sian Plat form (Street and Bown, 2000;

Bornemann et al., 2003; Lees et al., 2004, 2006; Giraurd et al., 2006; Ustinova, 2009; Kêdzierski, 2012; Colombié et al., 2014).

The ge nus is con sid ered to be a cos mo pol i tan form, dis so lu - tion-re sis tant, in di cat ing more oligotrophic sur face wa ter nu tri - ent lev els (e.g., Roth and Krumbach, 1986; Premoli-Silva et al., 1989; Wil liams and Bralower, 1995; Pittet and Mattioli, 2002;

Bornemann et al., 2003). In con trast, Lees et al. (2004, 2006) ex plained the high abun dance of low-di ver sity as sem blages dom i nated by watznaueriaceans as a re sponse to nu tri ent-rich en vi ron ments from which non-watznaueriacean taxa were eco - log i cally ex cluded. In any case, watznaueriaceans rep re sent a eurytopic life strat egy with wide palaeo eco logi cal tol er ance, and all pre vail ing spe cies – W. bri tan nica, W. barnesiae/fossacincta and Cyclosphaera margerelii could live in un sta ble en vi ron - ments (Lees et al., 2004, 2006; Columbié et al., 2014).

Though seven cal car e ous nannoplankton as sem blages were dis tin guished in North ern Bo he mia (Fig. 7), the spe cies com po si tion char ac ter iz ing these as sem blages is very sim i lar and no nannoplankton changes known from the Late Ju ras sic have been clearly re corded here. These changes may re flect nu tri ent os cil la tions, for ex am ple in in crease of mark ers of high nu tri ent lev els such as Biscutum constans, Discorhabdus ignotus and Zeugrhabdotus erec tus in the Early Tithonian (e.g., Premoli-Silva et al., 1989; Coccioni et al., 1992; Erba et al., 1992; Bornemann et al., 2003). Sim i larly in the Volgian

(=Tithonian) se quence of the Rus sian Plat form, a suc ces sion of Watznaueria barnesiae–W. fossacincta acme, fol lowed by a W.

bri tan nica–W. communis acme Zeugrhabdotus erec tus and Biscutum constans acme have been in ter preted as a tran si tion from a warmer, oligotrophic set ting to a cooler, eutrophic one (Kessels et al., 2003). On the other hand, in crease in rel a tive abun dance of Schizosphaerella punctulata re corded in the lat - est Oxfordian–ear li est Kimmeridgian of SW Ger many was cor - re lated with a shift from hu mid con di tions in the ear li est Late Oxfordian to a drier and warmer cli mate in the ear li est Kimmeridgian (Bartolini et al., 2003). Sim i larly the ‘Nannofossil Cal ci fi ca tion Event’ (NCE) with mass oc cur rences of strongly cal ci fied taxa Conusphaera mexicana, Polycostella beckmannii, Nannoconus spp., Watznaueria cf. manivitae rec - og nized in the mid-Tithonian was caused by aridification, oligotrophic sur face wa ter con di tions and lower at mo spheric pCO2 (Bornemann et al., 2003).

The ab sence of these events in North ern Bo he mia may be ex plained by both diagenetic al ter ation of as sem blages in which only dis so lu tion-re sis tant Watznaueria were pre served (Roth and Krumbach, 1986; Bornemann et al., 2003) or pri mar ily by spe cific palaeo eco logi cal con di tions. Dis so lu tion may have played a role in low-di ver sity as sem blages com posed mainly of large, badly pre served heterococcolithus (as sem blages dom i - nated by W. bri tan nica and as sem blages of large coccoliths;

Fig. 7). Other as sem blages more prob a bly re flect the ex is tence of spe cific but sta ble con di tions dur ing the Late Ju ras sic in North Bo he mia. For de tailed in ter pre ta tion of palaeo eco logi cal vari abil ity in the North ern Bo he mia Ju ras sic sea, the ra tio be - tween (1) Watznaueria bri tan nica – (2) the W. fossacincta/W.

barnesiae group – (3) large W. manavitiae and (4) Cyclagelo - sphaera margerelii were used. Vari a tion in this ra tio de fines the six as sem blages (Fig. 7).

1. The as sem blage dom i nated by W. bri tan nica is the most di verse in North ern Bo he mia and con tains the best pre served nannofossils. This, to gether with the high est abun dances of small watznaueriaceans (14%), in di cates low to no diagenetical al ter na tion of as sem blages. There fore the as sem blage may be eas ily used for palaeo eco logi cal in ter pre ta tion. The palaeo eco - logi cal pref er ences of W. bri tan nica were sug gested by many au thors, as fol lows Lees et al. (2004) de scribed ad ap ta tion of the spe cies to high nu tri ent con cen tra tions; Giraud et al. (2006) showed that the en vi ron men tal pref er ences of W. bri tan nica vary with morphometrical vari ance: in creas ing sizes are as so ci - ated with a low er ing of the trophic level and warm cli ma tic con di - tions; this was also sug gested by Olivier et al. (2004) who noted that small W. bri tan nica pre ferred high mesotrophic en vi ron - ments, whereas large W. bri tan nica were oligotrophic; Carcel et al. (2010) also de scribed a dom i nance of the small est morphotype of W. bri tan nica in higher trophic con di tions. In North ern Bo he mia, me dium-sized spec i mens (5.5–6.5 µm) pre - vailed, which could cor re spond with low mesotrophic con di - tions. Such con di tions pos si bly rep re sent the high est trophic level in the study area. More over, this in ter pre ta tion is sup - ported by high abun dances of other small watznaueriaceans.

The W. bri tan nica as sem blage has been re corded only in sam - ples from the for mer Šternberk Quarry which might sug gest that this fa mous palaeontological lo cal ity yields de pos its rep re sen t - ing the higher nu tri ent palaeoconditions.

2. A low-di ver sity as sem blage with abun dant W. bri tan nica ac com pa nied by W. barnesiae and W. fossacincta, to gether with the ab sence of small watznaueriaceans, sug gests that it is a diagenetically af fected as sem blage (1). Both as sem blages oc cur only in the for mer Šternberk Quarry.

3. An as sem blage dom i nated by W. barnesiae and W.

fossacincta as end-mem bers of a mor pho log i cal con tin uum

(10)

(Lees et al., 2004, 2006; Bornemann and Mutterlose, 2006) is char ac ter is tic of rock frag ments from “Peškova stráò”. The as - sem blage reached mod er ate di ver sity (4–5 spe cies) and nannofossils are rarely well or, more com monly, mod er ately pre served. Ac cord ing to Roth and Krumbach (1986), W.

barnesiae-dom i nated as sem blages are in di ca tors of dis so lu tion which could cor re spond with low di ver sity and mod er ate pres er - va tion of nannofossils in North ern Bo he mia. On the other hand, the pres ence of small coccoliths li a ble to dis so lu tion rather sup - ports an orig i nal com po si tion of as sem blages. Mutterlose (1989) and Mutterlose and Wise (1990) re corded high abun - dances of W. barnesiae in re stricted, shal low-wa ter set tings. W.

barnesiae seems to have been an eco log i cally ro bust form that could tol er ate a wide range of ex treme biotopes and was one of the pi o neer spe cies to set tle in new biotopes (Mutterlose, 1991). W. barnesiae is gen er ally in ter preted as in dic a tive of oligotrophy (Erba, 1992; Erba et al., 1992; Wil liams and Bralower, 1995; Pittet and Mattioli, 2002; Herrle, 2003;

Bornemann et al., 2003; Mutterlose et al., 2005) and the abun - dances of W. barnesiae are in “phase op po si tion” with eutrophic taxa such as Z. erec tus and B. constans (Erba et al., 1992;

Herrle, 2003). In con trast, Lees et al. (2004) con cluded that W.

fossacincta/barnesiae oc cu pied a more eutrophic po si tion than W. bri tan nica, al though later the same au thors stated that W.

fossacincta/barnesiae as sem blages in di cate slightly less nu tri - ents by com par i son with W. bri tan nica as sem blages (Lees et al., 2006).

To sum ma rize these in con sis ten cies, the as sem blage (2) type rep re sents a gen er ally oligotrophic en vi ron ment with sea - sonal and/or interannual os cil la tions of eco log i cal pa ram e ters in clud ing nu tri ents and sa lin ity. The in flu ence of diagenetic ef - fects can not be ex cluded.

4. A Watznaueria spp.–Cyclagelosphaera margerelii-only as sem blage oc curs both in frag ments from “Peškova stráò” as well as from Šternberk Quarry. C. margerelii be came dom i nant in neritic and/or re stricted en vi ron ments (Bown, 2005; Giraud et al., 2005; Carcel et al., 2010). Busson et al. (1992, 1993) have de scribed as sem blages com posed es sen tially of C. margerelii and W. bri tan nica in a Late Ju ras sic re stricted-la goon en vi ron - ment, pos si bly re ceiv ing fresh-wa ter in fluxes. Monospecific as - sem blages formed of C. margerelii char ac ter ize Kimmeridgian strata de pos ited in a la goonal en vi ron ment with sig nif i cant sa - lin ity vari a tions (Tribovillard et al., 1992). Street and Bown (2000) and Bown et al. (2004) ar gued that C. margerelii was a neritic taxon. Lees et al. (2006) con sid ered C. margerelii to be the most ex tremely r-se lected spe cies, ex ploit ing un usual con - di tions. Gen er ally, this as sem blage may rep re sent an un sta ble mar ginal en vi ron ment, e.g. with sa lin ity os cil la tions.

5. A di verse as sem blage com posed of well-pre served nannofossils oc curs in rock frag ments from “Peškova stráò”.

Be sides watznaueriaceans (ex clud ing W. bri tan nica), Diazomatolithus lehmanii, large Cyclagelosphaera deflandrei and Nannoconus sp. may ap pear here but only in low abun - dances, while small watznaueriaceans are com mon. As sem - blages can be cor re lated with the Tithonian, and may rep re sent a slight in flu ence of Tithonian events, both in crease of nu tri ents (oc cur rence of the high-nu tri ent marker Diazomatolithus lehmanii: Roth, 1981; Roth and Bowdler, 1981; Roth and Krumbach, 1986; Premoli-Silva et al., 1989; Coccioni et al., 1992; Erba, 1992; Wil liams and Bralower, 1995; Mattioli and Pittet, 2004) and a ‘Nannofossil Cal ci fi ca tion Event’ (oc cur - rence of Nannoconus sp.).

6. As sem blages dom i nated by W. communis and an as - sem blage only with large nannofossils con tains the worst-pre - served nannofossil spec i mens and reached the low est di ver - sity. Both these as sem blages are taphonomically af fected and do not pro vide palaeo eco logi cal in for ma tion.

PALAEOGEOGRAPHY

Pro vin cial ism of Late Ju ras sic cal car e ous nannofossils is well known and has been clearly doc u mented (Coo per, 1989;

Mutterlose and Kessels, 2000; Street and Bown, 2000). How - ever, the Bathonian–Kimmeridgian in ter val is char ac ter ized by the dom i nance of the ge nus Watznaueria in both Bo real and Tethyan prov inces (Busson et al., 1992; Bown and Coo per, 1998; Pittet and Mattioli, 2002; Olivier et al., 2004; Lees, 2004, 2006, Tremolada et al., 2006) as well as in North ern Bo he mia.

Only a few in di vid u als re cord di rec tions of nannoplankton mi - gra tions through the North ern Bo he mian cor ri dor.

Gen er ally, Tethyan taxa mi grated to the Bo real prov ince when sea ways, sea-level and sur face tem per a tures be came suit able (Mutterlose, 1989; Mutterlosse et al., 2005) and vice-versa: the cold-wa ter Bo real taxa may have pen e trated to Tethys dur ing cool ing ep i sodes, while warm-wa ter nannoplankton mi grated to the north dur ing warm pe ri ods.

There fore, palaeotemperature trends are de ci sive for di rec tion of mi gra tion. For re con struc tion of palaeotemperature trends in the Late Ju ras sic a co in ci dence of the bulk O-iso tope curve (Weissert and Erba, 2004) with trends re con structed with palynological in for ma tion from north ern Eu rope by Abbink et al.

(2001) was used. They de scribed the mid-Oxfordian warm ing con trast ing with the cool Early and Late Oxfordian and Early Kimmeridgian fol low ing by a long-term warm ing trend last ing from the Kimmeridgian into the ear li est Cre ta ceous. More over, Tremolada et al. (2006) de scribed a cool ing ep i sode at the Callovian–Oxfordian bound ary.

The North ern Bo he mian Oxfordian–Kimmeridgian as sem - blages are low-di ver sity and con tain only watznaueriaceans.

The high-lat i tude ge nus Stephanolithion is lack ing and as sem - blages re flect an un sta ble, mar ginal en vi ron ment with out mark - ers of mi gra tion di rec tion. How ever, Hrbek (2014) de scribed an equatorward mi gra tion of cold-wa ter ammonites close to the Oxfordian–Kimmeridgian bound ary which may re flect Oxford - ian–Kim meridgian cool ing.

Ep i sodic mi gra tions of the Tethyan ge nus Nannoconus into the Bo real Realm known from the Valanginian, Hauterivian and mid-Aptian were used to re con struct global changes in tem per - a ture and sea-level (Mutterlosse et al., 2005). The oc cur rence of Tethyan taxa in the Tithonian sam ples in North ern Bo he mia in di cates a south-north di rec tion of mi gra tion in agree ment with warm ing to wards the Ju ras sic–Cre ta ceous bound ary.

CONCLUSIONS

1. Cal car e ous nannoplankton was found in Ju ras sic relicts in North ern Bo he mia. The cal car e ous nannoplankton as sem - blages stud ied are gen er ally of low di ver sity, dom i nated by watznaueriaceans and some of them are diagenetically af fected.

2. The de gree of diagenetic al ter na tion does not cor re spond with lithotypes rec og nize so far and prob a bly cor re sponds with the de gree of dolomitisation in duced by Ce no zoic tec tonic ac - tiv ity in the Lusatian tec tonic zone and by Ce no zoic vol ca nism.

There fore, strongly dolomitised Ju ras sic strata are not prom is - ing for fur ther nannoplankton stud ies.

3. The first time of Ju ras sic ma rine in cur sion to the North ern Bo he mia can not be ex actly dated by cal car e ous nannoplankton, and can be better de ter mined by ammonites. How ever, cal car e - ous nannoplankton al lows de ter mi na tion of the du ra tion of the North Bo he mian sea cor ri dor to the Tithonian.

4. The Oxfordian–Kimmeridgian as sem blages dom i nated by Watznaueria fossacincta/barnesiae com mu nity show a rather oligotrophic con di tion of a re stricted sea. How ever, ep i - Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif... 633

(11)

sodic in sta bil ity trig gered prob a bly by sea sonal and/or interannual fresh wa ter in put may have taken place. Gen er ally, the palaeoenvironment of the su per fi cial wa ter was uni form and did not re flect vari abil ity at the sea-floor ex pressed by lithofacies vari ance.

5. Spe cific as sem blages dom i nated by Watznaueria bri tan - nica char ac ter ize the for mer palaeontological lo cal ity

“Šternberk Quarry” and in di cate higher nu tri ent con tents and a more sta ble en vi ron ment. The de gree of diagenetic al ter na tion is low in this case.

6. The Tithonian as sem blages ex hibit high di ver sity and con - tain warm-wa ter Tethyan taxa. This sug gests mi gra tion of Tethyan

taxa to the Bo real-Subboreal Prov ince, prob a bly due to tem per a - ture in crease to wards the Ju ras sic–Cre ta ceous bound ary.

Ac knowl edge ments. We thank J. Hrbek, M. Košïák, A. Svobodová (Charles Uni ver sity in Prague) and J. Sklenáø (Na tional Mu seum Prague), for use ful dis cus sions and sug ges - tions dur ing the prep a ra tion of this manu script, J. Hrbek and M. Košïák, for their help with field col lec tions and J. Sklenáø for sam pling in the Na tional Mu seum in Prague col lec tion. The con struc tive re views of E. Halásová and M. Kêdzierski sub stan - tially im proved the manu script. The au thors greatly ap pre ci ate the work of the ed i tor T. Peryt on the fi nal form of the manu - script. The study was sup ported by the pro ject PRVOUK P44.

REFERENCES

Abbink, O., Targarona, J., Brinkhuis, H., Visscher, H., 2001. Late Ju ras sic to ear li est Cre ta ceous paleoclimatic evo lu tion of the south ern North Sea. Global and Plan e tary Change, 30:

231–256.

Adámek, J., 2005. The Ju ras sic floor of the Bo he mian Mas sif in Moravia – ge ol ogy and paleogeography. Bul le tin of Geosciences, 80: 291–305.

Alexandrowicz, Z., 1999. Rep re sen ta tive geosites of Cen tral Eu - rope. Pol ish Geo log i cal In sti tute Spe cial Pa pers, 2: 9–14.

Atrops, F., Enay, R., Meléndez, G., 1993. Joint meet ing of the Oxfordian and Kimmeridgian work ing groups, War saw, Po land, Sep tem ber 7–12, 1992. Acta Geologica Polonica, 43: 157–168.

Bartolini, A., Pittet, B., Mattioli, E., Hunziker, J.C., 2003. Shal - low-plat form palaeoenvironmental con di tions re corded in deep-shelf sed i ments: C and O sta ble iso topes in Up per Ju ras - sic sec tions of south ern Ger many (Oxfordian–Kimmeridgian).

Sed i men tary Ge ol ogy, 160: 107–130.

Bornemann, A., Mutterlose, J., 2006. Size anal y ses of the coccolith spe cies Biscutum constans and Watznaueria barnesiae from the Late Albian “Niveau Breistroffer” (SE France): tax o nomic and paleoecological im pli ca tions. Geobios, 39: 599–615.

Bornemann, A., Aschwer, U., Mutterlose, J., 2003. The im pact of cal car e ous nannofossils on the pe lagic car bon ate ac cu mu la tion across the Ju ras sic-Cre ta ceous bound ary. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 199: 187–228.

Bown, P.R., 2005. Se lec tive cal car e ous nannoplankton survivorship at the Cre ta ceous–Ter tiary bound ary. Ge ol ogy, 33:

653–656.

Bown, P.R., Coo per, M.K.E., 1998. Ju ras sic. In: Cal car e ous Nannofossil Biostratigraphy (ed. P.R. Bown): 34–85. Brit ish Micropalaeontological So ci ety Se ries, Kluwer Ac a demic Press, Dordrecht.

Bown, P.R., Lees, J.A., Young, J.R., 2004. Cal car e ous nannoplankton evo lu tion and di ver sity through time. In:

Coccolithophores. From Mo lec u lar Pro cesses to Global Im pact (eds. H.R. Thierstein and J.R. Young): 481–508. Springer, Berlin.

Bruder, G., 1881. Zur Kenntniss der Juraablagerung von Stern berg bei Zeidler in Böhmen, mit 2 Tafeln. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, 83: 43–47.

Bruder, G., 1882. Neue Beitrage zur Kenntniss der Jura - ablagerungen im nördlichen Böhmen mit 3 Tafeln. Sitzungs - berichte der Kaiserlichen Akadademie der Wissenschaften, 85:

442–449.

Bruder, G., 1885. Die Fauna der Juraablagerung von Hohnstein in Sachsen, 1-6. K.K. Hofund Staatsdruckerei, Wien.

Bruder, G., 1886. Neue Beitrage zur Kenntniss der Jura - ablagerungen im nördlichen Böhmen II., mit 1 Tafel und 1 Holzschnitt. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, 93: 193–216.

Busson, G., Noel, D., Cornée, A., 1992. Les coccolithes en boutons de manchette et la genese des calcaires lithographiques du Jurassique superieur. Re vue de Paleobiologie, 11: 255–271.

Busson, G., Noel, D., Contini, D., Mangin, A.-M., Corne.e, A., Hantzpergue, P., 1993. Omnipresence de coccolithes dans des calcaires lagunaires du Jurassique moyen et superieur de France. Bul le tin du Cen tre de Recherches Elf Ex plo ra tion Pro - duc tion Aquitaine, 17: 291–301.

Carcel, D., Colombie, C., Giraud, F., Courtinat, B., 2010. Tec tonic and eustatic con trol on mixed siliciclastic-car bon ate plat form dur ing the Late Oxfordian-Kimmeridgian (La Ro chelle plat form, west ern France). Sed i men tary Ge ol ogy, 223: 334–359.

Casellato, C.E., 2008. Causes and con se quences of cal car e ous nannoplankton evo lu tion in the Late Ju ras sic: im pli ca tions for biogeochronology, biocalcification and ocean chem is try. Ph.D.

the sis. Universit´ degli Studi di Milano.

Casellato, C.E., 2010. Cal car e ous nannofossil biostratigraphy of Up per Callovian-Lower Berriasian suc ces sions from South ern Alps, North It aly. Rivista Italiana di Palaeontologia e Stratigrafia, 116: 357–404.

Chlupáè, I., Štorch, P., 1992. Regionálnì geologické dìlení Èeského masívu na území Èeské republiky (in Czech). Èasopis pro Mineralogii a Geologii, 37: 258–275.

Chlupáè, I., Brzobohatý, R., Kovanda, J., Stráník, Z., 2002. Geo - log i cal his tory of Czech Re pub lic (in Czech). Ac a de mia, Prague.

Coccioni, R., Erba, E., Premoli-Silva, I., 1992. Barremian-Aptian cal car e ous plank ton biostratigraphy from the Gorgo a Cerbara sec tion (Marche, Cen tral It aly) and im pli ca tions for plank ton evo lu tion. Cre ta ceous Re search, 13: 517–537.

Colombié, C., Giraud, F., Schnyder, J., Götz, A., Boussaha, M., Aurell, M., Bádenas, B., 2014. Tim ing of sea level, tec ton ics and cli mate events dur ing the up per most Oxfordian (Planula Zone) on the Ibe rian ramp (north east Spain). Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 412: 17–31.

Coo per, M.K.E., 1989. Nannofossil pro vin cial ism in the Late Ju ras - sic-Early Cre ta ceous (Kimmeridgian to Valanginian) pe riod. In:

Nannofossils and their Ap pli ca tions (eds. J.A. Crux and S.E.

Van Heck): 223-246. Chichester.

Eliáš, M., 1981. Fa cies and paleogeography of the Ju ras sic of the Bo he mian Mas sif. Sborník geologických vìd. Øada G, Geologie, 35: 75–144.

(12)

Erba, E., 1992. Cal car e ous nannofossil dis tri bu tion in pe lagic rhyth - mic sed i ments (Aptian–Albian Piobbico Core, Cen tral It aly).

Rivista Italiana di Palaeontologia e Stratigrafia, 97: 455–484.

Erba, E., Castradori, D., Guasti, G., Ripepe, M., 1992. Cal car e ous nannofossil and Milankovitch cy cles: the ex am ple of the Albian Gault Clay For ma tion (south ern Eng land). Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 93: 47–69.

GaŸdzicka, E., 1998. Up per Ju ras sic. In: Paleogeographical At las of the Epicontinental Perm ian and Me so zoic in Po land (eds. R.

Dadlez, S. Marek and J. Pokorski). Pañstw. Inst. Geol.

Warszawa.

Giraud, F., Courtinat, B., Gar cia, J.-P., Baudin, F., Guillocheau, F., Dromart, G., Atrops, F., Collete, C., 2005. Palynofacies and cal car e ous nannofossils in the Up per Kimmeridgian, south east - ern Paris ba sin (France). Bul le tin Société Géologique de France, 176: 457–466.

Giraud, F., Pittet, B., Mattioli, E., Audouin, V., 2006.

Paleoenvironmental con trols on the mor phol ogy and abun - dance of the coccolith Watznaueria bri tan nica (Late Ju ras sic, south ern Ger many). Ma rine Micropaleontology, 60: 205–225.

Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., 2012. The Geo logic Time Scale 2012, 2. Vol ume Set. Elsevier, New York.

Ham mer, ., Harper, D.A.T., Ryan, P.D., 2001. PAST:

Paleontological Sta tis tics Soft ware Pack age for Ed u ca tion and Data Anal y sis. Palaeontologica Electronica, 4: 1–9.

Herrle, J.O., 2003. Re con struct ing nutricline dy nam ics of mid-Cre - ta ceous oceans: Ev i dence from cal car e ous nannofossils from the Niveau Paquier black shale (SE France). Ma rine Micropaleontology, 47: 307–321.

Hrbek, J., 2014. The sys tem at ics and paleobiogeographic sig nif i - cance of Sub-Bo real and Bo real ammonites (Aulacostephanidae and Cardioceratidae) from the Up per Ju - ras sic of the Bo he mian Mas sif. Geologica Carpathica, 65:

375–386.

Kêdzierski, M., 2012. Cal car e ous nannofossils from the Bathonian (Mid dle Ju ras sic) ore-bear ing clays at Gnaszyn as palaeoenvironmental in di ca tor, Kraków-Silesia Homocline, Po - land. Acta Geologica Polonica, 62: 421–437.

Kessels, K., Mutterlose, J., Ruffell, A., 2003. Cal car e ous nannofossils from late Ju ras sic sed i ments of the Volga Ba sin (Rus sian Plat form): ev i dence for pro duc tiv ity con trolled black shale de po si tion. In ter na tional Jour nal of Earth Sci ences, 92:

743–757.

Kin, A., Gruszczyñski, M., Martill, D., Mar shall, J.D., B³a¿ejowski, B., 2013. Palaeoenvironment and taphonomy of a Late Ju ras sic (Late Tithonian) Lagerstätte from cen tral Po land.

Lethaia, 46: 71–81.

Kopecký, L., Bùžek, È., Dvoøák, J., Fejfar, O., Gabrielová-Boøková, N., Hirschmann, G., Chaloupský, J., Jetel, J., Kai ser, T., Líbalová, J., Louèek, D., Øeháková, Z., Sattran, V., Soukup, J., Svoboda, J., Štemprok, M., Škvor, V., Václ, J. 1963. Ex pla na tions of the geo log i cal map 1:200,000 Dìèín (in Czech). Úst. Úst. Geol., Èeskoslovenská akademie vìd, Prague.

Kutek, J., Zeiss, A., 1997. The high est Kimmeridgian and Lower Volgian in Cen tral Po land; their ammonites and biostratigraphy.

Acta Geologica Polonica, 47: 107–198.

Lees, J.A., Bown, P.R., Young, J.R., Rid ing, J.B., 2004. Ev i dence for an nual re cords of phytoplankton pro duc tiv ity in the Kimmeridge Clay For ma tion coccolith stone bands (Up per Ju - ras sic Dorset, UK). Ma rine Micropaleontology, 52: 29–49.

Lees, J.A., Bown, P.R., Young, J.R., 2006. Photic zone palaeoenvironments of the Kimmeridge Clay For ma tion (Up per Ju ras sic, UK) sug gested by cal car e ous nannoplankton palaeo - ec ol ogy; causes and con se quence of ma rine or ganic car bon burial through time. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 235: 110–134.

Lenz, O., 1870. Über das Auftreten jurassischer Gebilde in Böhmen.

Zeitschrift für Naturwissenschaften, 35: 337.

Mattioli, E., Pittet, B., 2004. Spa tial and tem po ral dis tri bu tion of cal - car e ous nannofossils along a prox i mal-dis tal transect in the Umbria-Marche ba sin (Lower Ju ras sic; It aly). Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 205: 295–316.

Matyja, B.A., Wierzbowski, A., 1994. On cor re la tion of Submediterranean and Bo real ammonite zonations of the Mid - dle and Up per Oxfordian: new data from cen tral Po land.

Geobios, 27: 351–358.

Matyja, B.A., Wierzbowski, A., 1995. Biogeographic dif fer en ti a tion of the Oxfordian and Early Kimmeridgian ammonite fau nas of Eu rope, and its strati graphic con se quences. Acta Geologica Polonica, 45: 1–8.

Matyja, B.A., Wierzbowski, A., 2000. Bi o log i cal re sponse of ammonites to chang ing en vi ron men tal con di tions: an ex am ple of Bo real Amoeboceras in va sions into Submediterranean Prov - ince dur ing Late Oxfordian. Acta Geologica Polonica, 50:

45–54.

Mutterlose, J., 1989. Tem per a ture-con trolled mi gra tion of cal car e - ous nannofloras in the north-west Eu ro pean Aptian. In:

Nannofossils and their Ap pli ca tions (eds. J.A. Cruxand and S.C.

Van Heck): 122–142. Chichester (Ellis Horwood).

Mutterlose, J., 1991. Das Verteilungs und Migrationsmuter des kalkigen Nannoplanktons in der borealen Unterkreide (Valangin-Apt). Paläontographica, B 221: 27–152.

Mutterlose, J., Kessels, K., 2000. Early Cre ta ceous cal car e ous nannofossils from High lat i tudes: im pli ca tions for paleobiogeography and paleoclimate. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 160: 347–372.

Mutterlose, J., Wise, S.W. jr., 1990. Lower Cre ta ceous nannofossil biostratigraphy of ODP LEG 113 Holes 692B and 693A, con ti - nen tal slope off east Antarctica, Weddell Sea. Pro ceed ings of the Ocean Drill ing Pro gram, Sci en tific Re sults, 113: 325–351.

Mutterlose, J., Bornemann, A., Herrle, J.O., 2005. Me so zoic cal - car e ous nannofossils – state of the art. Paläontologische Zeitschrift, 79: 113–133.

Olivier, N., Pittet, B., Mattioli, E., 2004. Palaeoenvironmental con - trol on spongemicrobialite reefs and con tem po ra ne ous deep-shelf marl–lime stone de po si tion (Late Oxfordian, south - ern Ger many). Palaeo ge ogra phy, Palaeoclimatology, Palaeo - ec ol ogy, 212: 233–263.

Pittet, B., Mattioli, E., 2002. The car bon ate sig nal and cal car e ous nannofossil dis tri bu tion in an Up per Ju ras sic sec tion (Balingen–Tieringen, Late Oxfordian, and south ern Ger many).

Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 179:

71–96.

Premoli-Silva, I., Erba, E., Tornaghi, M.E., 1989.

Paleoenvironmental sig nals and changes in sur face wa ter fer til - ity in mid Cre ta ceous Corg-rich pe lagic fa cies of the Fucoidi Marls (Cen tral It aly). Geobios Memoire Spe cial, 11: 225–236.

Roth, P.H., 1981. Mid Cre ta ceous cal car e ous nannoplankton from the Cen tral Pa cific: im pli ca tions for paleoceanography. Ini tial Re ports Deep Sea Drill ing Pro ject, 62: 471–489.

Roth, P.H., 1983. Jurrassic and Lower Cre ta ceous cal car e ous nannofossil in the West ern North At lan tic (534): biostratigraphy, presenvation, and some ob ser va tion on biogeography and paleoceanography. Ini tial Re ports Deep Sea Drill ing Pro ject, 76:

587–621.

Roth, P.H., Bowdler, J.L., 1981. Mid dle Cre ta ceous cal car e ous nannoplankton biogeography and graphy of the At lan tic Ocean.

SEPM Spe cial Pub li ca tion, 32: 517–546.

Roth, P.H., Krumbach, K.R., 1986. Mid dle Cre ta ceous cal car e ous nannofossil biogeography and pres er va tion in the At lan tic and In dian oceans: im pli ca tions for palaeoceanography. Ma rine Micropalaeontology, 10: 235–266.

Street, C., Bown, P.R., 2000. Palaeobiogeography of Early Cre ta - ceous (Berriasian-Barremian) cal car e ous nannoplankton. Ma - rine Micropalaeontology, 39: 265–291.

Suk, M., 1984. Geo log i cal his tory of the ter ri tory of the Czech So - cial ist Re pub lic. Geo log i cal Sur vey, Prague.

Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif... 635

(13)

Tremolada, F., Bornemann, A., Bralower, T.J., Koeberl, C., van de Schootbrugge, B., 2006. Paleoceanographic changes across the Ju ras sic/Cre ta ceous bound ary: the cal car e ous phytoplankton re sponse. Earth and Plan e tary Sci ence Let ters, 241: 361–371.

Tribovillard, N.P., Gorin, G., Belin, S., Hopfgartner, G., Pichon, R., 1992. Or ganic-rich biolaminated fa cies from a Kimmeridgian la goonal en vi ron ment in the French South ern Jura Moun tains. A way of es ti mat ing ac cu mu la tion rate vari a tions. Palaeo ge ogra - phy, Palaeoclimatology, Palaeo ec ol ogy, 99: 163–177.

Ustinova, M.A., 2009. The dis tri bu tion of cal car e ous nannofossils and foraminifers in the Callovian, Oxfordian, and Volgian de pos -

its in the south west of Mos cow. Stra tig ra phy and Geo log i cal Cor re la tion, 17: 204–217.

Weissert, H., Erba, E., 2004. Vol ca nism, CO2 and palaeoclimate: a Late Ju ras sic–Early Cre ta ceous car bon and ox y gen iso tope re - cord. Jour nal of the Geo log i cal So ci ety, 161: 695–702.

Wil liams, J.R., Bralower, T.J., 1995. Nannofossil as sem blages, fine frac tion sta ble iso topes, and the paleoceanography of the Valanginian-Barremian (Early Cre ta ceous) North Sea Ba sin.

Paleoceanography, 10: 815–839.

Young, J.R., Bown, P.R., Lees, J.A., eds., 2014. Nannotax3 website. In ter na tional Nannoplankton As so ci a tion. 21 Apr.

2014. URL: http://ina.tmsoc.org/Nannotax3/

Cytaty

Powiązane dokumenty

Con - se quently, the Syndesmya beds in the Babczyn 2 bore hole rep - re sent the up per part of the Hanzawaia crassiseptata Zone, Elphidium angulatum and Anomalinoides dividens

2 – Paratype (MZ VIII Bra–1686), adult dorsal valve with the left brachial cavity changed by parasitic (ascothoracid?) infestation, 2a – general view of the valve

Due to radiolarian pro vin cial ism the cor re la tion of radio larian biozones be tween the Bo real (north of Eur asia and Amer ica) and Sub-Bo real Pa cific and Tethyan

Min eral relicts ca pa ble of dem on strat ing a higher pres sure event are scarce in the supracrustal rocks of the dome, mainly be cause they be came more thor oughly equil i

Sand stones have been com monly dolomitized (which Fig. Geo graphic lo ca tion of the area un der study with po si tions of eval u ated bore holes and cross-sec tion.. Sedimentologic

Theropod tracks from Zapniów mine and clay-pit near Przysucha, Przysucha Ore-bear ing For ma tion (Up per Hettangian), north ern mar gin of the Holy Cross Moun tains, Po land (pho

U,pper Maastnichtian species of Prediscospho.. ACTA GEOLOGICA POLONICA, VO L.. ACTA GEOLOGICA POLONICA, VOL.. ACTA GEOLOGICA P OLOXICA, VOL.. ACTA GEOLOGlCA POLO ICA,

Foot prints dis cov ered in a new tracksite of Błaziny re sem ble large theropod ichnite of Megalosauripus sensu Lockley et al., 1998 and sauropod tracks of Brontopodus Farlow et al.,