• Nie Znaleziono Wyników

Coastal Engineering. Volume I: Introduction

N/A
N/A
Protected

Academic year: 2021

Share "Coastal Engineering. Volume I: Introduction"

Copied!
225
0
0

Pełen tekst

(1)

C O A S T A L E N G I N E E R I N G

Volume I

I N T R O D U C T I O N

C o a s t a l E n g i n e e r i n g Group

D e p a r t m e n t of C i v i l E n g i n e e r i n g

D e l f t U n i v e r s i t y of T e c h n o l o g y

D e l f t , The N e t h e r l a n d s

(2)

Volume I - I n t r o d u c t i o n e d i t e d by W.W. M a s s i e , P.E. Coastal E n g i n e e r i n g Group Department o f C i v i l E n g i n e e r i n g D e l f t U n i v e r s i t y o f Technology DELFT The N e t h e r l a n d s 1976

(3)

" I f you s t a y w i t h a problem l o n g enough you w i l l get t h e answer. I t may not be t h e one you e x p e c t e d , b u t t h e chances are i t w i l l be t h e t r u t h . "

(4)

TABLE OF CONTENTS - VOLUHE I

INTRODUCTION TO COASTAL ENGINEERING

1 . I n t r o d u c t i o n 1 1.1 Purpose 1 1.2 S u b d i v i s i o n s 1 1.3 P e r i o d i c a l L i t e r a t u r e 2 1.4 Reference Books 3 1.5 C o n t r i b u t o r s 4 1.5 M i s c e l l a n e o u s Remarks 5 2 . Overview o f Coastal E n g i n e e r i n g 6 2 . 1 D e f i n i t i o n 6 2.2 Background S t u d i e s 6 2.3 S u b d i v i s i o n s 6 2.4 Harbors 6 2.5 Coastal Morphology 7 2.6 O f f s h o r e E n g i n e e r i n g 8 3. Oceanography 9 3 . 1 I n t r o d u c t i o n 9 3.2 D e s c r i p t i o n o f The Oceans 10 3.3 Wind D r i v e n Ocean C u r r e n t s 11 3.4 Dynamics of Ocean C u r r e n t s 11 3.5 Eckman Wind D r i f t 13 3.6 P h y s i c a l P r o p e r t i e s o f Sea water 16 3.7 D e n s i t y C u r r e n t s 21 4 . B e a u f o r t Wind Scale 22

5. Short Wave Theory 24 5 . 1 I n t r o d u c t i o n 24 5.2 General R e l a t i o n s h i p s 24 5.3 S i m p l i f i c a t i o n s 27 5.4 A p p r o x i m a t i o n s f o r Deep Water 27 5.5 A p p r o x i m a t i o n s f o r Shallow Water 29 5.6 I n t e r m e d i a t e Water Depths 30 5.7 A C r i t i c a l Reexamination 30 5.8 Examples 32

6. Wave Speed and Length Computations 33

6 . 1 I n t r o d u c t i o n 33 6.2 I t e r a t i o n Method 33 6.3 Use of Tables 35 7. E f f e c t s o f Shoal i n g Water 37 7 . 1 I n t r o d u c t i o n 37 7.2 Wave H e i g h t Changes 37 7.3 Example 39 7.4 Review o f Example 41 7.5 Breaking C r i t e r i a 41

(5)

i i 8. Types o f Breakers 43 8 . 1 I n t r o d u c t i o n 43 8.2 Breaker Types 43 8.3 Q u a n t i t a t i v e C l a s s i f i c a t i o n s 44 8 . 4 Reexamination o f Breaking C r i t e r i a 46 9. Wave R e f r a c t i o n and D i f f r a c t i o n 47 9 . 1 I n t r o d u c t i o n 47 9.2 Wave R e f r a c t i o n 47 9.3 Wave D i f f r a c t i o n 50 10. Wave S t a t i s t i c s R e l a t i o n s h i p s 51 10.1 I n t r o d u c t i o n 51 10.2 The Phenomona and I t s C h a r a c t e r i z a t i o n s 51

10.3 D e t e r m i n a t i o n o f Frequency o f Occurrence 55

10.4 Wave Periods 55

1 1 . A p p l i c a t i o n o f Wave S t a t i s t i c s 57

11.1 I n t r o d u c t i o n 57 11.2 Problem Statement and Assumptions 57

11.3 The Numerical Treatment 53

11.4 Example Problem 60 11.5 A Second Type o f Problem 62

11.6 Example 62 1 1 . 7 Ttie, inver3e pi-oUem ^<(^

12. Wave Data 63 1 2 . 1 I n t r o d u c t i o n 63 12.2 E x i s t i n g Data 63 12.3 Measurement Program 63 12.4 Use o f S u b s t i t u t e Data 64 12.5 SMB P r e d i c t i o n Method 64 13. Optimum Design 67 1 3 . 1 I n t r o d u c t i o n 67 13.2 P r o j e c t C r i t e r i a 67 13.3 O p t i m a l i z a t i o n Procedure 67 13.4 I m p l i c i t Assumptions 67 14. H i s t o r y o f Harbor Developments 69 1 4 . 1 I n t r o d u c t i o n 69 14.2 E a r l y H i s t o r y 69 14.3 The I n f l u e n c e o f Dredging 69 14.4 Modern Developments 70 15. Approach Channels 7^ 1 5 . 1 I n t r o d u c t i o n 71 15.2 Problems Encountered 71 15.3 The O p t i m a l i z a t i o n Problem 72

(6)

73 16. Dredging Equipment 1 6 . 1 I n t r o d u c t i o n 16.2 General P r i n c i p l e s 73 16.3 P l a i n S u c t i o n Dredge 73 16.4 C u t t e r S u c t i o n Dredge 78 16.5 T r a i l i n g S u c t i o n Hopper Dredge 16.6 Bucket Dredge 16.7 F u r t h e r Developments 17. Dredging S p o i l Disposal 1 7 . 1 I n t r o d u c t i o n 17.2 Marine Disposal 17.3 Land Disposal 18. Breakwaters 18.1 I n t r o d u c t i o n 18.2 M o r p h o l o g i c a l F u n c t i o n of Breakwaters 18.3 Other C o n s i d e r a t i o n s 19. Seiches 1 9 . 1 D e f i n i t i o n 19.2 Simple Cases 19.3 E f f e c t s of Seiches 19.4 Seiche P r e v e n t i o n 20. T i d a l R i v e r s 2 0 . 1 I n t r o d u c t i o n 20.2 R i v e r Mouths 2 1 . 80 80 83 84 84 84 85 86 86 86 87 89 89 90 90 90 2 0 . 3 R i v e r Channels 91 2 0 . 4 T i d a l C u r r e n t s 92 20.5 R i v e r N a v i g a t i o n 20.6 Example 20.7 Other T i d a l E f f e c t s 98 98 103 104 104 R i v e r T i d e Measurements 2 1 . 1 I n t r o d u c t i o n ^^'^ 21.2 P r e c i s e Problem Statement 21.3 A Simple Method o f S o l u t i o n 21.4 A B e t t e r S o l u t i o n 107 21.5 Example 108 21.6 A Reexamination H I 22. D e n s i t y C u r r e n t s i n R i v e r s 112 2 2 . 1 I n t r o d u c t i o n 22.2 S a l i n i t y V a r i a t i o n s w i t h T i d e 112 22.3 D e n s i t y - S a l i n i t y R e l a t i o n s h i p 116 2 2 . 4 S t a t i c s of S t r a t i f i e d Water Masses 116 22.5 I n t e r n a l Waves 117 22.6 The " S t a t i c " S a l t Wedge 119 22.7 S i l t a t i o n Problems 121 22.8 P o l l u t i o n Problems 124 22.9 Methods t o Combat D e n s i t y C u r r e n t I n f l u e n c e s 124 i n R i v e r s

(7)

i v 2 3 . D e n s i t y C u r r e n t s i n Harbors 2 3 . 1 T i d e Flow i n Harbor i 2 6 2 3 . 2 D e n s i t y C u r r e n t i n Harbor 127 2 3 . 3 S u p e r p o s i t i o n o f C u r r e n t Components 130 2 3 . 4 C u r r e n t s i n F i n i t e Harbors 131 2 3 . 5 The P r a c t i c a l Problem 134 2 3 . 6 Other C u r r e n t I n f l u e n c e s 135 2 3 . 7 Harbor S i l t a t i o n 2 3 7 2 3 . 8 Methods t o Combat D e n s i t y C u r r e n t s i n Harbors 1 4 3

2 3 . 9 Review ^45 2 4 . P o l l u t i o n 2 4 . 1 D e f i n i t i o n ^ 4 7 2 4 . 2 P o l l u t i n g M a t e r i a l s 147 24..,S C o n t r o l Measures 253 2 4 . 4 Proposed D i s p o s a l Systems 150 2 5 . Beach P r o f i l e 2 5 2 2 5 . 1 I n t r o d u c t i o n 2 5 2 2 5 . 2 Beach Dynamic E q u i l i b r i u m 2 5 2 2 5 . 3 Dunes 254 2 5 . 4 I n f l u e n c e o f Storms 2 5 5

2 6 . Sediment T r a n s p o r t Along Coasts 2 5 7

2 6 . 1 D e f i n i t i o n s 257 2 6 . 2 The C.E.R.C. Formula 2 5 7

2 6 . 3 The B i j k e r Formula 2 5 9 2 6 . 4 Sediment T r a n s p o r t Along t h e P r o f i l e 159

2 6 . 5 Computation o f Coastal Changes 2 6 0

2 7 . Mud Coasts i c o Loc 97 1 D h w c - i ^ - , ! . . . • i i j ' o i ^ . u i u c s o i i p i . i u r i 2 6 2 2 7 . 2 P r o p e r t i e s and T r a n s p o r t Process 2 6 2 2 7 . 3 I n f l u e n c e o f R i v e r s 2 6 3 2 7 . 4 Examples 2 6 5 2 7 . 5 The Coast o f Suriname 2 6 5

2 8 . Coastal Formations 2 8 . 1 I n t r o d u c t i o n 2 6 7 2 8 . 2 S p i t 2 8 . 3 B a r r i e r 259 2 8 . 4 Tombolo 2 9 . D e l t a s 2 9 . 1 I n t r o d u c t i o n 273 2 9 . 2 D e l t a s on Q u i e t Coasts 2 7 3 2 9 . 3 D e l t a s w i t h Moderate D i s t r i b u t i n g I n f l u e n c e s 1 7 6 2 9 . 4 D e l t a s w i t h S t r o n d D i s t r i b u t i n g I n f l u e n c e s 2 7 8 2 9 . 5 I n f l u e c e o f Longshore T r a n s p o r t 2 8 0

(8)

3 0 . Shore P r o t e c t i o n

3 0 . 1 I n t r o d u c t i o n 182 30.2 Eroding and A c c r e t i n g Shores 182

3 0 . 3 J e t t i e s 183 30.4 G r o i n s 183 30.5 Detached Breakwaters 185 30.6 Seawalls 186 30.7 A Remaining Problem 186 3 0 . 8 Sand By-Passing 186

3 1 . Coastal M o r p h o l o g i s t s ' Ten Commandments 187

3 2 . O f f s h o r e E n g i n e e r i n g 188 3 2 . 1 D i s c i p l i n e s I n v o l v e d 188 32.2 Types of O f f s h o r e S t r u c t u r e s 188 3 2 . 3 Uses of O f f s h o r e S t r u c t u r e s 193 32.4 C i v i l E n g i n e e r i n g Aspects 196 32.5 Other Problems 199 Symbols and N o t a t i o n 200 References 208

(9)

v i LIST OF TABLES Table T i t l e Page number 1.1 C o n t r i b u t i n g S t a f f 4 3 . 1 Polynomial C o e f f i c i e n t s f o r c o e f f i c i e n t s 18 3.2 C o e f f i c i e n t s f o r c o m p u t a t i o n 18 3.3 °t f u n c t i o n o f t e m p e r a t u r e and s a l i n i t y 20 4 . 1 B e a u f o r t v/ind f o r c e s c a l e 23

5.1 Deep and s h a l l o w water d e f i n i t i o n s 31

.6.1 Wave l e n g t h i t e r a t i o n 34 6.2 F u n c t i o n s o f h/X^ 36 7 . 1 Wave s h o a l i n g c o m p u t a t i o n 40 8 . 1 Breaker c l a s s i f i c a t i o n s 46 9 . 1 Wave r e f r a c t i o n c o m p u t a t i o n 49 1 0 . 1 R a y l e i g h d i s t r i b u t i o n data 53 1 1 . 1 P r o b a b i l i t y of exceedance c o m p u t a t i o n 61 1 6 . 1 C u t t e r s u c t i o n dredge p r o d u c t i o n 78 16.2 Bucket dredge p r o d u c t i o n 83 2 0 . 1 T i d e and c u r r e n t a t Rotterdam 93 20.2 T i d e and c u r r e n t f o r Western Schelde 96

2 0 . 3 I n t e g r a t i o n c o m p u t a t i o n 101

2 1 . 1 Example t i d e data 105 21.2 Example t i d e data 108

2 2 . 1 C u r r e n t and s a l i n i t y a t Rotterdam 112

22.2 R i v e r m i x i n g c r i t e r i a 114 2 2 . 3 Suspended load a t Rotterdam 123

(10)

T a b l e number 2 3 . 1 23.2 2 3 . 3 2 3 . 4 23.5 2 4 . 1 2 7 . 1 3 1 . 1 Symbols T i t l e Page Harbor l e v e l and f i l l i n g c u r r e n t 126 D e n s i t y c u r r e n t a t Pvotterdam 129 S e d i m e n t a t i o n summary 140 S e d i m e n t a t i o n summary 143 T i d e data f o r Hook of H o l l a n d 145 C o n c e n t r a t i o n s of heavy metals 149 P r o p e r t i e s o f s l i n g mud 163 Ten commandments 187 Roman l e t t e r s 200 Greek l e t t e r s 203 S p e c i a l symbols 204 S u b s c r i p t s 205 F u n c t i o n s 205 Dimensions and u n i t s 207

(11)

LIST OF FIGURES

F i g u r e T i t l e Page number

3-1 Depth d i s t r i b u t i o n o f Oceans 1 0

5 . 1 H y p e r b o l i c f u n c t i o n s 27 5.2 O r b i t a l motion i n deep water 28

5.3 O r b i t a l motion i n s h a l l o w water 30 8 - 1 S p i l l i n g breaker 4 3 8.2 P l u n g i n g breaker 4 4 8 . 3 Surging breaker 4 4 9- 1 Wave r e f r a c t i o n p a t t e r n 48 9.2 Wave d i f f r a c t i o n p a t t e r n 5 0 1 0 . 1 I r r e g u l a r wave p r o f i l e 51 10.2 R a y l e i g h d i s t r i b u t i o n graph 5 4

1 0 - 3 Long term wave h e i g h t d i s t r i b u t i o n 56

1 2 . 1 Fetch - d u r a t i o n r e l a t i o n s h i p 65

14.1 Ship camel 7 0

1 6 . 1 S u c t i o n dredge 7 4 16.2 Barge l o a d i n g s u c t i o n dredge 7 5

1 6 . 3 Dredge pump parameters 7 5 16.4 Barge u n l o a d i n g dredge 7 7 16.5 C u t t e r s u c t i o n dredge 7 9 16.6 T r a i l i n g s u c t i o n hopper dredge 81 16.7 Bucket dredge 82 1 8 . 1 Columbia R i v e r e n t r a n c e 87 1 9 . 1 Standing v/ave i n c l o s e d b a s i n 88 19.2 Seiche i n harbor b a s i n 88 1 9 . 3 F i f t h harmonic s e i c h e 89 2 0 . 1 Schelde R i v e r a t Antwerp 9 1 2 0 . 2 Schelde R i v e r near Hansweert 9 2

2 0 . 3 C u r r e n t a t Rotterdam 9 3 2 0 . 4 I d e a l i z e d t i d e l e v e l and c u r r e n t curves 9 4 2 0 . 5 T i d e data a t Rotterdam 9 5 2 0 . 6 T i d e l e v e l s i n Western Schelde 9 7 2 0 . 7 Example r i v e r p r o f i l e and t i d e 9 9 2 0 . 8 Ship p o s i t i o n - t i m e c u r v e s 1 0 2

(12)

F i g u r e number T i t l e Page 2 1 . 1 R i v e r pTan 1'04 21.2 Uinoorrected t i d e curves 105 21.3 'Dornected t i d e curves 106 2 1 . 4 Example t i d e data 109 21.5 V - t curves H O 21.6 G r a p h i c a l s o l u t i o n 110 2 2 . 1 C u r r e n t and s a l i n i t y a t Rotterdam 113 22.2 Pressure on v e r t i c a l i n t e r f a c e 117 22.3 I n t e r n a l wave 119 22.4 " S t a t i c " s a l t wedge 120 22.5 Suspended load a t Rotterdam 123

2 3 . 1 Harbor l e v e l and f i l l i n g c u r r e n t 127 2 3 . 2 Dry bed c u r v e 128 23.3 Harbor s a l i n i t y and d e n s i t y c u r r e n t 129 23.4 Harbor e n t r a n c e v e l o c i t y p r o f i l e s 130 23.5 D e n s i t y c u r r e n t progress 131 23.6 D e n s i t y c u r r e n t i n harbor 133 23.7 Harbor example sketch 138 2 3 . 8 Summary of a l l t i d a l data f o r Rotterdam 146

2 4 . 1 Lead c o n c e n t r a t i o n s 149

2 5 . 1 Beach p r o f i l e 153 25.2 Flow i n t h e breaker zone 154

25.3 Plan of Scheveningen 154 2 5 . 4 Dunes a l o n g Oregon c o a s t 155 25.5 Beach changes i n a storm 156

2 6 . 1 S i n g l e l i n e s c h e m a t i z a t i o n 150 26.2 Two l i n e schematimation 161

2 7 . 1 P r o p e r t i e s o f s l i n g mud 164 27.2 Features o f mud shoals 166

2 8 . 1 Beach near Budva, Y u g o s l a v i a 168 28.2 Block I s l a n d s p i t , U.S.A. 168 28.3 Wadden I s l a n d s , N e t h e r l a n d s 169 28.4 B a r r i e r c o a s t , U.S.A. 170 28.5 B a r r i e r e n c l o s i n g l a k e , U.S.A. 171 28.5 N a t u r a l t o m b o l o , U.S.A. 171 28.7 A r t i f i c i a l t o m b o l o , U.S.A. 172

(13)

X F i g u r e T i t l e pgge number 29-1 D e l t a development w i t h o u t waves 1 7 4 2 9 ' 2 Lyéna d e l t a , U.S.S.R. 1 7 5 29-3 M i s s i s s i p p i d e l t a d e t a i l U.S.A. 1 7 5 29-4 M i s s i s s i p p l i d e l t a U.S.A. 1 7 5 29-5 D e l t a w i t h moderate v;ave a t t a c k 1 7 5 29.6 N i l e d e l t a d e t a i l , Egypt 1 7 7 29-7 Niger d e l t a , N i g e r i a 1 7 3 2 9 . 8 Amazon d e l t a , B r a z i l 1 7 9 29.9 Coos Bay, U.S.A. IQQ 29- 10 N e t h a r t s Bay, U.S.A. i g ^

30- 1 Outer Cape Cod, U.S.A. 1 3 2 •^0-2 A c c r e t i o n by Brouwersdam, N e t h e r l a n d s 183

30.3 G r o i n s along coast IQ^^ 30.4 G r o i n s a l o n g c o a s t 3 0 . 5 G r o i n s t r u c t u r e examples 1 3 5 3 2 . 1 Sketch of ANDOC g r a v i t y s t r u c t u r e 189 -^2.2 Models o f j a c k e t c o n s t r u c t i o n s 1 9 0 32.3 F l o a t i n g j a c k - u p p l a t f o r m igi 32.4 Crane s h i p a t work 1 9 2 32.5 Model o f s e m i - s u b m e r s i b l e p l a t f o r m 192 32.6 F l o a t i n g o i l s t o r a g e buoy 1 9 3 32.7 L i g h t tower Goeree 1 9 4 32.8 E k o f i s k o i l s t o r a g e tank 1 9 5 32.9 P r o d u c t i o n p l a t f o r m i n storm 1 9 7

(14)

1 . INTRODUCTION W.W. Massie

1 . 1 . Purpose

T h i s s e t o f l e c t u r e notes i s w r i t t e n p r i m a r i l y t o s u p p l e -ment the c l a s s e s conducted by P r o f . E.W. B i j k e r which a r e held

i n D e l f t , both a t the U n i v e r s i t y o f Technology and a t the I n t e r -n a t i o -n a l Course i -n H y d r a u l i c E -n g i -n e e r i -n g . The l e c t u r e t i m e w i l l be used p r i m a r i l y t o d i s c u s s and a m p l i f y these notes and answer q u e s t i o n s .

Some can p r o b a b l y l e a r n much from these books w i t h o u t having a t t e n d e d the c l a s s e s a t a l l . Questions are o f t e n posed w i t h i n the t e x t ; a l l are intended t o s t i m u l a t e t h o u g h t and v e r i f y u n -d e r s t a n -d i n g . 1 . 2 . S u b d i v i s i o n s The e n t i r e m a t e r i a l o f c o a s t a l e n g i n e e r i n g presented by P r o f . B i j k e r a t t h e D e l f t U n i v e r s i t y of Technology i s c u r r e n t l y d i v i d e d i n t o t h r e e c o u r s e s : a . I n t r o d u c t i o n t o Coastal E n g i n e e r i n g - r e q u i r e d f o r a l l h y d r a u l i c e n g i n e e r i n g s t u d e n t s .

b. T o p i c s i n Coastal E n g i n e e r i n g a more advanced t r e a t ment o f c e r t a i n s p e c i f i c more s p e c i a l i z e d t o p i c s , r e -q u i r e d f o r a l l c o a s t a l e n g i n e e r i n g s t u d e n t s .

c. Breakwater Design - t r e a t s t h a t p a r t i c u l a r ^ s p e c i a l i z e d t o p i c .

This s u b d i v i s i o n has been r e t a i n e d i n the p r e p a r a t i o n o f t h e s e books; the m a t e r i a l i s d i v i d e d i n t o t h r e e s e p a r a t e v o l -umes, w i t h each volume prepared f o r one o f t h e t h r e e courses 1 i s t e d above.*

Another s u b d i v i s i o n i s a l s o p o s s i b l e ; i t i s o f t e n handy t o s u b d i v i d e the m a t e r i a l o f c o a s t a l e n g i n e e r i n g i n t o t h r e e broad areas a c c o r d i n g t o t h e types o f problems whi:ch a r e t r e a t e d . These t h r e e broad c a t e g o r i e s a r e H a r b o r s , M o r p h o l o g y , and O f f s h o r e and a r e d i s c u s s e d f u r t h e r i n chapter 2 . T h i s d i v i s i o n has been r e t a i n e d i n t h e f i r s t two volumes of t h i s book. W i t h i n each of t h e s e volumes m a t e r i a l has been grouped i n each of t h e s e c a t e -g o r i e s . T h i s s u b d i v i s i o n i s not a p p a r e n t i n volume I I I s i n c e breakwaters f a l l a l m o s t e x c l u s i v e l y i n t o t h e harbor c a t e g o r y .

A f o u r t h c a t e g o r y o f i n f o r m a t i o n has been added i n these notes t o r e v i e w necessary background t h e o r y n o r m a l l y p r e s e n t e d i n o t h e r c o u r s e s ; t h i s i s done f o r c o m p l e t e n e s s . Many can s k i p over t h i s c a t e g o r y c o m p l e t e l y , o t h e r s w i l l f i n d i t u s e f u l . The u n d e r s t a n d i n g o f t h i s background i s , however, o f v i t a l i m -p o r t a n c e f o r t h e t r u e c o a s t a l e n g i n e e r i n g t o -p i c s which are

X I t has l a t e r been decided t o s e p a r a t e the o f f s h o r e e n g i -n e e r i -n g i -n a s e p a r a t e volume. Thus, t h i s appears as volume I V .

(15)

2 b u i l t upon t h i s f o u n d a t i o n .

1 . 3 . P e r i o d i c a l l i t e r a t u r e .

S p e c i f i c l i t e r a t u r e r e f e r e n c e s have been i n c l u d e d a t the end o f each o f the f o u r volumes. These a r e indeed r e f e r e n c e s ; they p r o v i d e background i n s t e a d o f h i g h l i g h t i n g the most r e c e n t developments. P e r i o d i c a l l i t e r a t u r e p r o v i d e s the best means o f keeping up t o d a t e . Such l i t e r a t u r e can be grouped i n t o f i v e s o r t s , each i s d e s c r i b e d a b i t below.

General

E n g i n e e r i n g p e r i o d i c a l l i t e r a t u r e o f t h i s s o r t covers a broad spectrum o f t o p i c s w i t h i n e n g i n e e r i n g and, as s u c h , o c c a s i o n a l l y c o n t a i n s something o f d i r e c t i n t e r e s t t o c o a s t a l e n g i -n e e r s , eve-n though such a r t i c l e s o f t e -n l a c k s p e c i f i c t e c h -n i c a l d e t a i l . Examples o f such p e r i o d i c a l s a r e :

a . E n g i n e e r i n g New Record, p u b l i s h e d v/eekly by McGraw H i l l P u b l i c a t i o n s , New York, U.S.A.

b. De I n g e n i e u r , p u b l i s h e d weekly by t h e Royal S o c i e t y of Engineers ( K o n i n k l i j k I n s t i t u u t van I n g e n i e u r s ) , The Hague, The N e t h e r l a n d s

c . C i v i l E n g i n e e r i n g , p u b l i s h e d m o n t h l y by t h e American So-c i e t y o f C i v i l E n g i n e e r s , New York, U.S.A.

General S p e c i f i c

This group o f j o u r n a l s p r o v i d e general i n f o r m a t i o n about a s p e c i f i c t o p i c a r e a . These u s u a l l y c o n t a i n i n f o r m a t i o n o f d i r e c t i n t e r e s t but s p e c i f i c t e c h n i c a l d e t a i l s are u s u a l l y s t i l l l a c k i n g . Examples o f t h i s s o r t o f l i t e r a t u r e a r e :

a . Ocean I n d u s t r y , p u b l i s h e d m o n t h l y by the G u l f P u b l i s h i n g C o . , Houston, Texas, U.S.A.

b. The Dock and Harbor A u t h o r i t y , p u b l i s h e d m o n t h l y by Foxlow P u b l i c a t i o n s , L t d . , London.

T e c h n i c a l S p e c i f i c

This group o f p u b l i c a t i o n s p r o v i d e , i n g e n e r a l , most o f t h e s p e c i f i c t e c h n i c a l d e t a i l s o f a problem and i t s s o l u t i o n , and a r e o f t e n found i n t h e r e f e r e n c e s l i s t e d i n a r t i c l e s found i n the above s o r t s o f p e r i o d i c a l s . Examples o f t e c h n i c a l s p e c i f i c l i t e r a t u r e a r e :

a . J o u r n a l o f t h e Waterways, H a r b o r s , and Coastal E n g i n e e r i n g D i v i s i o n , p u b l i s h e d q u a r t e r l y by t h e American S o c i e t y o f C i v i l E n g i n e e r s , New York, U.S.A.

b. Shore and Beach, p u b l i s h e d s e m i a n n u a l l y by American Shore and Beach P r e s e r v a t i o n A s s o c i a t i o n , M i a m i , F l o r i d a , U.S.A. c . Coastal E n g i n e e r i n g i n J a p a n , p u b l i s h e d a n n u a l l y by Japan

(16)

Strange Technical

These j o u r n a l s p r o v i d e t h e same t y p e o f i n f o r m a t i o n as t h e p r e -v i o u s s o r t of j o u r n a l s , but are i n t e n d e d f o r an e n t i r e l y d i f f e r e n t s p e c i a l t y g r o u p . I t t a k e s a b i t o f i n g e n u i t y on t h e p a r t of t h e

i n v e s t i g a t o r t o d i s c o v e r r e l a t e d t o p i c areas and p a t i e n c e t o seek through i t s l i t e r a t u r e on the small chance t h a t i t c o n t a i n s somet h i n g u s e f u l . O f somet e n somet h i s s e a r c h i n g can be avoided by u s i n g an a b -s t r a c t index - -see below. The example-s l i -s t e d below -serve o n l y t o i l l u s t r a t e t h a t u s e f u l i n f o r m a t i o n can be f o u n d i n t h i s s o r t o f j o u r n a l .

a . An a r t i c l e on wave f o r c e s : Journal o f t h e E n g i n e e r i n g Mecha-n i c s D i v i s i o Mecha-n , p u b l i s h e d by t h e AmericaMecha-n S o c i e t y o f C i v i l E n g i n e e r s , New York, U.S.A.

b. An a r t i c l e on wave a c t i o n i n h a r b o r s : J o u r n a l o f the Acous-t i c a l S o c i e Acous-t y o f A m e r i c a , New York, U.S.A.

A b s t r a c t s

A b s t r a c t s , indexed i n some way, serve t o p r o v i d e easy access and q u i c k r e f e r e n c e t o the v a s t domain o f l i t e r a t u r e . A b s t r a c t s , o f t h e m s e l v e s , do not p r o v i d e any new i n f o r m a t i o n ; the s i m p l y c o n -dense and index e x i s t i n g a r t i c l e s . Among the e x c e l l e n t a b s t r a c t and i n d e x i n g s e r v i c e s a r e :

a. Documentation D a t a , p u b l i s h e d by the D e l f t H y d r a u l i c s Labo-r a t o Labo-r y , D e l f t , The N e t h e Labo-r l a n d s

b. E n g i n e e r i n g I n d e x , p u b l i s h e d by the E n g i n e e r i n g S o c i e t i e s L i b r a r y , New York, U.S.A.

Both o f t h e s e s e r v i c e s are a v a i l a b l e i n the Main L i b r a r y o f t h e D e l f t U n i v e r s i t y o f Technology. The E n g i n e e r i n g Index a b s t r a c t s can be examined v i a a d i s p l a y t e r m i n a l t h e r e , even though t h i s t y p e o f work i s e x p e n s i v e . I n a d d i t i o n a f i l e o f t h e Documentation Data

i s m a i n t a i n e d i n t h e L a b o r a t o r y o f F l u i d Mechanics o f t h e C i v i l E n g i n e e r i n g Department.

1 . 4 . Reference Books.

A few general r e f e r e n c e books o f s p e c i f i c i n t e r e s t t o c o a s t a l engineers a r e l i s t e d h e r e . Each o f these w i l l t e l l something but u s u a l l y n o t e v e r y t h i n g about a wide spectrum o f c o a s t a l e n g i n e e r i n g t o p i c s .

a . Per Bruun ( 1 9 7 3 ) : P o r t E n g i n e e r i n g : G u l f P u b l i s h i n g Company, Houston, Texas, U.S.A.

b. A r t h u r T. Ippen ( 1 9 6 6 ) : Estuary and C o a s t l i n e Hydrodyna-m i c s : M c G r a w - H i l l , New York.

c. H. Lamb ( 1 9 6 3 ) : Hydrodynamics ( 6 t h e d i t i o n ) : Cambridge U n i v . P r e s s ,

d . Muir Wood, A.M. (1963) Coastal H y d r a u l i c s : M a c m i l l a n and Co. L t d . , London, England.

e. Robert L. Wiegel ( 1 9 6 4 ) : Oceanographioal E n g i n e e r i n g : Pren-t i c e - H a l l , I n c . , Englewood C l i f f s N . J . , U.S.A.

(17)

4 1.5. C o n t r i b u t o r s

These books a r e prepared by the e n t i r e s t a f f o f the Coastal E n g i n e e r i n g Group o f the D e l f t U n i v e r s i t y o f Technology. The p r i -mary a u t h o r s o f each s e c t i o n are l i s t e d a t the b e g i n n i n g . Many o t h e r s o f t h e s t a f f reviewed each s e c t i o n ; f i n a l e d i t i n g and a s s a n b l y was t h e r e s p o n s i b i l i t y of W.W. M a s s i e . Table 1 . 1 . l i s t s t h e e n t i r e c o n t r i b u t i n g s t a f f f o r t h i s volume i n a l p h a b e t i c a l o r d e r .

Table 1 . 1 . C o n t r i b u t o r s t o t h i s volume

I r . E. A l l e r s m a , C h i e f E n g i n e e r , Hydrodynamics and Morphology B r a n c h , D e l f t H y d r a u l i c s L a b o r a t o r y , D e l f t .

P r o f . Or. I r . E.W. B i j k e r , P r o f e s s o r o f Coastal E n g i n e e r i n g , D e l f t U n i v e r s i t y o f Technology, D e l f t .

I r . C . J . P . van Boven, D i r e c t o r Harcon I n c . , The Hague.

I r . J . B r a k e l , Research E n g i n e e r , A d r i a a n V o l k e r , I n c . , Rotterdam. I r . J . J . van D i j k , Senior S c i e n t i f i c O f f i c e r , D e l f t

U n i v e r s i t y o f T e c h n o l o g y , D e l f t .

I r . L. E. van Loo, Senior S c i e n t i f i c O f f i c e r , D e l f t U n i v e r s i t y o f T e c h n o l o g y , D e l f t

W.W. M a s s i e , M.Sc, P . E . , Senior S c i e n t i f i c O f f i c e r , D e l f t U n i v e r s i t y o f Technology, D e l f t .

I r . J . de Nekker, C h i e f Engineer f o r H a r b o r s , Department o f P u b l i c Works, Rotterdam.

I r . A. Paape, D i r e c t o r o f D e l f t Branch, D e l f t H y d r a u l i c s L a b o r a t o r y , D e l f t .

(18)

1 . 6 . M i s c e l l a n e o u s Remarks

The s p e l l i n g used i n t h i s s e t o f books i s American r a t h e r than E n g l i s h .

A s i n c e r e a t t e m p t has been made t o use c o n s i s t e n t , unambiguous n o t a t i o n . Symbols are d e f i n e d when f i r s t i n t r o d u c e d i n each c h a p t e r and a comprehensive l i s t o f symbols i s p r o v i d e d a t the end o f each volume.

L i t e r a t u r e i s c i t e d i n t h e t e x t by a u t h o r and y e a r d a t e . A com-p l e t e l i s t o f r e f e r e n c e s used i s i n c l u d e d a t t h e end o f each book.

F i g u r e s shown are drawn t o s c a l e whenever p o s s i b l e . D i s t o r t e d f i g u r e s w i l l be s p e c i f i c a l l y p o i n t e d o u t . Many f i g u r e s i n these books are reproduced a t 80°^ o f t h e i r o r i g i n a l s i z e . T h e i r o r i g i n a l dimensions can thus be r e c o n s t i t u t e d by measuring w i t h a 1 : 1250 s c a l e .

Many t e c h n i c a l terms used i n these notes a r e l i s t e d i n a sepa-r a t e g l o s s a sepa-r y g i v i n g d e f i n i t i o n s and Dutch t sepa-r a n s l a t i o n s .

Since the E n g l i s h system o f u n i t s i s s t i l l i n common use i n the marine i n d u s t r y several t a b l e s o f u n i t s c o n v e r s i o n f a c t o r s are

(19)

6

2. OVERVIEW OF COASTAL ENGINEERING E.WV Bi.jker

2 . 1 . D e f i n i t i o n

Coastal e n g i n e e r i n g i s the c o l l e c t i v e term encompassing most o f the e n g i n e e r i n g a c t i v i t i e s r e l a t e d t o works along t h e c o a s t s . In r e c e n t y e a r s , c o a s t a l engineers have o f t e n been i n v o l v e d i n e n g i n e e r i n g o f s t r u c t u r e s t o be placed o f f s h o r e as w e l l . I t i s t h e i r p r i m a r y t a s k t o a p p l y t e c h n i c a l knowledge t o t h e c o n s t r u c -t i o n o f v a r i o u s works a l o n g coas-ts and o f f s h o r e . U s u a l l y , designs are needed f o r works f o r which o n l y i n c o m p l e t e t h e o r e t i c a l models a r e a v a i l a b l e , thus a fundamental knowledge o f t h e phenomona i n -v o l -v e d i s r e q u i r e d as w e l l . O f t e n , c o a s t a l e n g i n e e r s must extend the f i e l d o f t e c h n i c a l knowledg.e.

An a d d i t i o n a l c o m p l i c a t i m g f e a t u r e o f coastaT e n g i n e e r i n g i s t h a t many o f the independent v a r i a b l e s i n v o l v e d a r e o f a s t o c h a s t i c n a t u r e . S t a t i s t i c a l computations form the basis f o r t h e o p timum design t e c h n i q u e s a p p l i e d t o many c o a s t a l e n g i n e e r i n g p r o -blems,

2 . 2 . Background s t u d i e s .

Among t h e fundamental problems f a c i n g t h e c o a s t a l e n g i n e e r a r e the water movements along a c o a s t , the i n t e r a c t i o n s between moving water and l o o s e beach and sea bed m a t e r i a l s , and t h e hydrodynamic f o r c e s e x e r t e d by waves and c u r r e n t s on v a r i o u s c o n s t r u c t i o n s . These a r e s i m p l y examples f o r t h e fundamental phenomona; o t h e r s w i l l become a p p a r e n t l a t e r . The i n v e s t i g a t i o n o f these phenomona forms the b a s i s f o r c o a s t a l e n g i n e e r i n g r e s e a r c h .

2 . 3 . S u b d i v i s i o n s

Coastal e n g i n e e r i n g has a l r e a d y been s u b d i v i d e d i n t o main d i -v i s i o n s i n t h e general i n t r o d u c t i o n . Here we s h a l l summarize t h e t e c h n i c a l c o n t e n t of each o f these d i v i s i o n s .

2 . 4 . Harbors

Harbors have developed a l o n g w i t h man's d e s i r e t o move goods by s h i p . I t i s i m p o r t a n t t o d e v e l o p harbors i n such a way t h a t t h e y a r e both c o n v e n i e n t and economical f r o m a l l p o i n t s o f v i e w . T h i s must o b v i o u s l y r e s u l t i n a compromise. These a s p e c t s a r e t r e a t e d p r i -m a r i l y i n volu-me I I . The c o o p e r a t i o n o f naval a r c h i t e c t s and -m a r i n e r s i s o f t e n v e r y h e l p f u l when c o n s i d e r i n g t h i s o p t i m i z a t i o n p r o b l e m .

Many harbor e n t r a n c e s a r e p r o t e c t e d by some form o f b r e a k w a t e r ; t h e d e s i g n o f these s t r u c t u r e s i s t h e main t o p i c o f volume I I I o f t h e s e n o t e s .

(20)

Since many harbors a r e s i t u a t e d i n r i v e r mouths or n a t u r a l e s t u a r i e s , t h e f o r m a t i o n of shoals and channels i n t i d a l r i v e r s i s o f -t e n imcluded i&l-t;n o o a s -t a l e n g i n e e r i n g . O b v i o u s l y , -t h i s a s p e c -t i s a l s o c l o s e l y r e l a t e d t o r i v e r e n g i i n e e r i n g . S p e c i a l a t t e n t i o n i s paid t o t h e i n f l i u e n c e o f ' d e n s i t y c u r r e n t s and t i m e dependent s a l i n i t y v a r i a t i o n s on t h e behavior o f s i l t i n h a r b o r s . ' D e n s i t y c u r r e n t s a r e a p

-proached f r o m a v e r y p r a c t i c a l v i e w p o i n t i n these n o t e s ; fundamental t h e o r y i s handled \n o t h e r books and c o u r s e s . The behavior o f s i l t i n harbors and r i v e r mouths can be o f extreme importance s i n c e t h i s mud can o f t e n dominate t h e d r e d g i n g problems of the harbor and can o c c a s i o n a l l y even dominate t h e c o a s t a l morphology over a c o n s i d e r a b l e d i s t a n c e as w e l l . Harbor d e s i g n problems a r e o f t e n c l o s e l y l i n k e d t o c o a s t a l m o r p h o l o g i c a l problems. I n d e e d , i t i s o f t e n i m p o s s i b l e t o separate these problems. Among t h e more s i g n i f i c a n t m o r p h o l o g i c a l problems d i r e c t l y r e l a t e d t o harbors are t h e s i l t a t i o n o f approach channels and t h e i n f l u e n c e of breakwaters on the c o a s t a l p r o c e s s e s . 2 . 5 . Coastal Morphology

Coastal morphology i s t h e s t u d y of the i n t e r a c t i o n o f waves and c u r r e n t s w i t h the c o a s t . Most o f t e n t h i s c o a s t w i l l be formed f r o m sandy m a t e r i a l ; t h e s e o f t e n respond t h e most r a p i d l y t o the

i n f l u e n c e o f the waves and c u r r e n t . Rocky c o a s t s u s u a l l y respond v e r y s l o w l y t o these i n f l u e n c e s and as such a r e more o f concern t o the g e o l o g i s t than t o the c o a s t a l e n g i n e e r . Why do c o a s t s c o n -s i -s t i n g o f mud a l -s o re-spond r e l a t i v e l y -s l o w l y t o the a c t i o n o f waves and c u r r e n t s ? T h i s i s answered i n c h a p t e r 27 on Mud C o a s t s .

L u c k i l y , t h e most common c o a s t a l m a t e r i a l i s sand. We a r e l u c k y because i t can be moved r a t h e r e a s i l y by d r e d g i n g and the changes which occur on sand c o a s t s can be r e a s o n a b l y a c c u r a t e l y p r e d i c t e d u s i n g mathematical m o d e l s . These models are b r i e f l y d e s c r i b e d i n t h i s v o l u m e ; more complete i n f o r m a t i o n i s g i v e n i n volume I I .

I t should be c l e a r t h a t one must f i r s t u n d e r s t a n d the m o t i o n o f water (wave a c t i o n and o t h e r c u r r e n t s ) a l o n g a coast b e f o r e he can p r e d i c t m o r p h o l o g i c a l changes. I n d e e d , many concepts from hyd r a u l i c s are neehydehyd; some o f t h e more s p e c i a l i z e hyd t o p i c s a r e r e -viewed i n t h e i m m e d i a t e l y f o i l o w i n g , c h a p t e r s .

The e f f e c t o f waves and c u r r e n t s on beaches i s s t i l l n o t com-p l e t e l y u n d e r s t o o d . Longshore and on and o f f s h o r e t r a n s com-p o r t o f sand i s an i m p o r t a n t t o p i c o f c o a s t a l e n g i n e e r i n g r e s e a r c h . Re-s u l t Re-s of t h i Re-s r e Re-s e a r c h are c o n t i n u a l l y being uRe-sed t o improve t h e mathematical models used t o p r e d i c t c o a s t l i n e changes.

Since not a l l n a t u r a l c o a s t a l changes are d e s i r a b l e , c o a s t a l defense works can a l s o be needed. Defense works are used t o r e t a r d t h e n a t u r a l c o a s t a l processes o r , sometimes, s i m p l y t o n e u t r a l i z e

(21)

8

t h e i r e f f e c t s . For example, g r o i n s can be c o n s t r u c t e d p e r p e n d i c u -l a r or p a r a -l -l e -l t o a c o a s t t o r e t a r d e r o s i o n . Another a -l t e r n a t i v e i s t o a r t i f i c i a l l y move sand from areas o f a c c r e t i o n t o areas o f e r o s i o n . Coastal defense works w i l l be c o n s i d e r e d l a t e r i n t h i s volume.

Not o n l y harbor breakwaters and approach channels d i s t u r b t h e c o a s t a l m o r p h o l o g y ; n a t u r a l r i v e r s and e s t u a r i e s do t h i s as w e l l . T h i s i s a l s o discussed i n d e t a i l l a t e r i n t h i s volume.

2 . 6 . O f f s h o r e E n g i n e e r i n g

U n t i l r e c e n t l y , h a r b o r s and c o a s t a l morphology formed t h e main t o p i c s a s s o c i a t e d w i t h " c o n v e n t i o n a l " c o a s t a l e n g i n e e r i n g . I n r e -c e n t t i m e s man's i n t e r e s t i n w o r k i n g a t sea has i n -c r e a s e d r a p i d l y . The o f f s h o r e branch i s d e v e l o p i n g r a p i d l y as c o a s t a l e n g i n e e r s who have worked a l o n g r e l a t i v e l y s h a l l o w c o a s t l i n e s have been asked t o s o l v e c o m p l e t e l y new problems i n t h e deep sea. I n d e e d , t h e f o l l o -wing c h a p t e r on oceanography i s i n c l u d e d because o f an i n c r e a s i n g need t o understand t h e processes which take p l a c e i n t h e deeper ocean w a t e r s . The p r i m a r y s t i m u l u s f o r o f f s h o r e e n g i n e e r i n g has come from the p e t r o l e u m companies.

The term " o f f s h o r e e n g i n e e r i n g " i s u s e d , h e r e , t o r e f e r t o e n g i n e e r i n g f o r works which have no d i r e c t c o n n e c t i o n t o t h e m a i n -l a n d . Some peop-le a -l s o r e f e r t o t h i s t o p i c as "ocean e n g i n e e r i n g " b u t t h e whole s t u d y area i s t o o young t o have developed a u n i f o r m t e r m i n o l o g y . Confusion o f t e r m i n o l o g y i s bound t o r e s u l t ; f o r example, some marine e n g i n e e r s d e s i g n o f f s h o r e works w h i l e o t h e r s d e s i g n power p l a n t s f o r s h i p s !

Ships underway do not have a c o n n e c t i o n t o the m a i n l a n d , but a r e s t i l l excluded f r o m o f f s h o r e e n g i n e e r i n g ; these a r e l e f t f o r the naval a r c h i t e c t s . On t h e o t h e r hand, p o s s i b l e impact l o a d s upon o f f s h o r e s t r u c t u r e s caused by s h i p s can be v e r y i m p o r t a n t t o u s .

The o f f s h o r e engineer draws on the s p e c i a l i z e d knowledge o f o t h e r f i e l d s . M i n i n g e n g i n e e r i n g . Mechanical e n g i n e e r i n g , and Naval a r c h i t e c t u r e can a l l c o n t r i b u t e t o o f f s h o r e e n g i n e e r i n g a l o n g w i t h C i v i l e n g i n e e r i n g . Here i n D e l f t , these departments a r e now cooper a t i n g c l o s e l y on an i n t e cooper d i s c i p l i n a cooper y pcooperogcooperam o f o f f s h o cooper e e n g i -n e e r i -n g .

(22)

3 . OCEANOGRAPHY W.W. Massie

3 . 1 . I n t r o d u c t i o n

Oceanography i s s t u d y of t h e oceans. Man has s t u d i e d t h e oceans f o r c e n t u r i e s . Count L.F. M a r s i g l i w r o t e one o f t h e f i r s t books on t h e s u b j e c t , p u b l i s h e d i n 1725. A Dutch t r a n s l a t i o n o f t h i s book was prepared i n 1786 by Boerhaave; a copy e x i s t s i n the L i b r a r y o f Leiden U n i v e r s i t y .

M.F. Maury, a U n i t e d S t a t e s Naval O f f i c e r , w r o t e t h e f i r s t "mo-d e r n " oceanography book i n 1855 w h i l e he was S u p e r i n t e n "mo-d e n t o f the Naval Hydrographic O f f i c e . Many of h i s o b s e r v a t i o n s - compiled f r o m s h i p s l o g s - a r e e x c e l l e n t ; a l l are i n t e r e s t i n g l y e x p l a i n e d , even though he had no knowledge o f g e o p h y s i c s .

The f i r s t s y s t e m a t i c , s p e c i f i c s t u d y o f the oceans was c a r r i e d o u t by t h e H.M.S. C h a l l e n g e r . The s h i p s a i l e d from P o r t s m o u t h , England on 21 December 1872 and i n 3 | y e a r s s a i l e d more than 100,000 km p r o -d u c i n g a 50 volume r e p o r t . This was a l s o the f i r s t r e p o r t t o s u b -d i v i -d e oceanography i n t o i t s f o u r modern major f i e l d s : b i o l o g i c a l , c h e m i c a l , g e o l o g i c a l , and p h y s i c a l .

What i s t h e importance o f oceanography t o t h e c o a s t a l engineer? T h i s w i l l be h i g h l i g h t e d i n the f o l l o w i n g more d e t a i l e d d e s c r i p t i o n s o f each f i e l d .

B i o l o g i c a l Oceanography

B i o l o g i c a l Oceanography concerns i t s e l f w i t h l i v i n g m a t t e r i n the seas. Coastal e n g i n e e r s a r e seldom d i r e c t l y i n v o l v e d w i t h b i o l o g i -c a l p r o b l e m s , but b i o l o g i -c a l f a -c t o r s -can p l a y i m p o r t a n t i n d i r e -c t r o l e s . Marine f o u l i n g o f s t r u c t u r e s and e n v i r o n m e n t a l impact s t u d i e s can be i m p o r t a n t , f o r example.

Chemical Oceanography

The c h e m i s t r y o f sea water i s o b v i o u s l y of g r e a t importance t o t h e marine b i o l o g i s t s but i t i s becoming more i m p o r t a n t t o e n g i n e e r s c o n c e r n i n g w i t h s t r u c t u r e s i n t h e sea as w e l l . M a t e r i a l s used i n c o n s t r u c t i o n i n the oceans can behave i n what seem l i k e s t r a n g e ways when exposed to sea w a t e r under a c o n s i d e r a b l e p r e s s u r e ( d e p t h ) ; Concrete t e c h n o l o g i s t s w o r r y about c o n c r e t e i n water depths o f a few hundred m e t e r s . S p e c i a l c o r r o s i o n and f r a c t u r e problems develop w i t h s t e e l a t somewhat g r e a t e r d e p t h s .

(23)

10 G e o l o g i c a l Oceanography

The g e o l o g i s t s who f i n d c o m m e r c i a l l y v a l u a b l e m i n e r a l s on the bottom o f and lundar t h e sea a r e i n d i r e c t l y r e s p o n s i b l e f o r p r o v i d i n g j o b s f o r mainy'Coastal e n g i n e e r s . While c o a s t a l e n g i n e e r s a r e not 'expected t o be g e o l o g i s t s , t h e m s e l v e s , t h e y can c e r t a i n l y g e t p r e l i m i -inary i n f o r m a t i o n about p o s s i b l e f o u n d a t i o n problems f o r a proposed

o f f s h o r e s t r u c t u r e from marine g e o l o g i s t s .

Physical Oceanography

Physical oceanographers a r e most l i k e t h e c o a s t a l e n g i n e e r s . Both w o r r y about waves, t i d e s and hydrodynamic problems i n g e n e r a l . The concern w i t h waves i s i n t e r e s t i n g , i f n o t s e r i o u s . The oceanogra-phers u s u a l l y c o n s i d e r waves t o be a necessary n u s i a n c e ; c o a s t a l e n g i n e e r s , on t h e o t h e r hand, d e r i v e t h e i r most c h a l l e n g i n g problems from them. As o f f s h o r e work progresses i n t o s t i l l deeper w a t e r , c o a -s t a l e n g i n e e r -s mu-st a l -s o begin t o t h i n k about a t o p i c which h a -s , i n t h e p a s t , been r e s t r i c t e d t o p h y s i c a l oceanography: t h e l o c a t i o n and s t r e n g t h o f major ocean c u r r e n t s .

3 . 2 . D e s c r i p t i o n o f the Oceans

A b r i e f r e v i e w o f t h e p h y s i c a l f e a t u r e s of t h e oceans w i l l be h e l p f u l f o r our u n d e r s t a n d i n g o f t h e dynamic processes which occur i n the ocean.

F i g u r e 3 . 1 . shows t h e d e p t h d i s t r i b u t i o n o f t h e oceans. The mean d e p t h i s about 3800 m. and the volume o f t h e oceans i s about 1370 X 10 m . By c o n t r a s t , the N o r t h Sea has a mean d e p t h o f 94 m and a w a t e r volume of 0.054 x 10^^ m'^ - p r e t t y i n s i g n i f i c a n t !

The s h a l l o w e s t 200 m o f t h e ocean (7.6% o f t h e t o t a l a r e a ) i s c a l l e d t h e c o n t i n e n t a l s h e l f . Only r e c e n t l y have c o a s t a l e n g i n e e r s been asked t o v e n t u r e beyond t h e s h e l f t o the c o n t i n e n t a l s l o p e s ; hence, t h e need t o know a b i t more about oceanography, now. Shelves border most o f the c o n t i n e n t a l c o a s t s and range i n w i d t h up t o about 1200

km.

cunnuLative percent of ocean area 0 20 40 60 80 100 F i g u r e 3.1 DEPTH DISTRIBUTION OF THE OCEANS data f r o m : Sverdrup etal 1942

(24)

The w i d e s t c o n t i n e n t a l s h e l f i s i n t h e A r c t i c Ocean, n o r t h of S i b e r i a ; h a r d l y any s h e l f i s p r e s e n t a l o n g the west coast o f t h e Americas ( e a s t c o a s t o f the P a c i f i c Ocean).

The oceans a r e f u r t h e r d i v i d e d i n t o a s e r i e s of i n t e r c o n n e c t e d basins i n which most o f the i n t e r e s t i n g p h y s i c a l oceanographic a c -t i v i -t y -takes p l a c e . These basins are 3 -t o 5 km deep w i -t h o c c a s i o n a l deeper or s h a l l o w e r s p o t s .

Most of t h e i n t e r e s t i n g : a c t i v i t y i n t h e oceans takes: place i n t h e u p p e r 1 t o 2 km.. Deeper than t h i s , the. oceans, a r e ' o f r a t h e r u n i -f o r m s a l i n i t y ( 3 5 t o - see s e c t i o n : 3 . 6 ) and t e m p e r a t u r e -f s " - 4 ° C ) . A l s o , c u r r e n t s i n t h i s deep zone a r e v e r y weak - o f t e n assumed t o be z e r o . C u r r e n t s i n t h e upper l a y e r s are discussed i n t h e n e x t s e c t i o n s , w h i l e the p h y s i c a l p r o p e r t i e s o f sea water a r e t r e a t e d s e -p a r a t e l y i n s e c t i o n 3 . 6 .

3 . 3 . Wind-Driven Ocean C u r r e n t s

The major d r i v i n g f o r c e f o r ocean c u r r e n t s r e s u l t s from t h e wind f o r c e s on t h e ocean s u r f a c e . The t r a d e winds and the p r e v a i l i n g wes-t e r l i e s r e s u l wes-t i n a g e n e r a l l y weswes-tward ocean c u r r e n wes-t a wes-t low l a wes-t i wes-t u d e s and an eastward c u r r e n t a t h i g h l a t i t u d e s . T h i s m a n i f e s t s i t s e l f i n t h e N o r t h A t l a n t i c i n t h e f o l l o w i n g c u r r e n t p a t t e r n :

The N o r t h E q u a t o r i a l C u r r e n t f l o w s westward from the Cape Verde I s l a n d s t o t h e Caribbean Sea. A p o r t i o n e n t e r s t h i s sea and a p o r -t i o n -t u r n s n o r -t h w e s -t eas-t o f -t h e Caribbean I s l a n d s ( A n -t i l 1 e s C u r r e n -t ) and j o i n s the F l o r i d a C u r r e n t . Water f l o w s o u t o f t h e Caribbean be-tween F l o r i d a and Cuba i n t h e F l o r i d a C u r r e n t . The F l o r i d a C u r r e n t

( o f t e n c a l l e d the G u l f Stream) c o n t i n u e s n o r t h along N o r t h America

. rt r O M n _ j . j j . . . j _ .A .14 4 . , . v . « . o V.H a n H c n v ^ o a r l c n i i t f n r

-ZO aOOUt t o n. I d t i u u u t ; w j i c i c i i- u u i l u . . . • - •

ming the N o r t h A t l a n t i c C u r r e n t . A branch o f t h i s t u r n s s o u t h , a l o n g Portugal t o f o r m t h e Canary C u r r e n t and c l o s e the c i r c u i t .

S i m i l a r c u r r e n t p a t t e r n s can be f o u n d i n the South A t l a n t i c and t h e o t h e r oceans. These major e a s t w e s t c u r r e n t s correspond i n l a t i -tude t o the p r e v a i l i n g w i n d s . The n o r t h - s o u t h c u r r e n t s g u a r a n t e e c o n t i n u i t y and c o n s e r v a t i o n of mass.

How do the winds generate these major e a s t - w e s t c u r r e n t s ? T h i s i s answered l a t e r i n t h i s c h a p t e r b u t f i r s t , the dynamic e q u i l i b r i u m o f a f l o w i n g ocean c u r r e n t w i l l be examined.

3 . 4 . Dynamics o f Ocean C u r r e n t s

The f a m i l i a r balance o f g r a v i t y and f r i c t i o n f o r c e s which leads t o the w e l l - k n o w n Chézy Equation which i s used t o d e s c r i b e r i v e r f l o w s does n o t work i n de deep oceans. Since t h e oceans are so deep and t h e v e l o c i t i e s a r e n o r m a l l y small ( l e s s t h a n 1 m / s ) , f r i c t i o n f o r c e s become r e l a t i v e l y u n i m p o r t a n t . On t h e o t h e r hand, s i n c e the

(25)

12

ocean c u r r e n t s extend over g r e a t d i s t a n c e s on the s u r f a c e o f a r o -t a -t i n g e a r -t h , a n o -t h e r i n f l u e n c e , -t h e C o r i o l i s F o r c e ^ , does become i m p o r t a n t .

Consider a c u r r e n t moving w i t h c o n s t a n t speed a l o n g a " s t r a i g h t " p a t h . ( " S t r a i g h t " means t h a t i t f o l l o w s a g r e a t c i r c l e p a t h . )

The C o r i o l i s a c c e l e r a t i o n a c t i n g on a u n i t mass o f t h i s water i s :

a^ = 2 s i n (f. V where: a^ = t h e C o r i o l i s a c c e l e r a t i o n il = t h e a n g u l a r v e l o c i t y o f the e a r t h = 0.729 x lO'^/s . V = t h e c u r r e n t v e l o c i t y , and iji = the l a t i t u d e

F u r t h e r , t h i s a c c e l e r a t i o n ( o r f o r c e per u n i t mass) a c t s toward the r i g h t f a c i n g i n t h e f l o w d i r e c t i o n i n the n o r t h e r n hemisphere. (The d i r e c t i o n i s o p p o s i t e south o f t h e e q u a t o r ) . I f t h i s c u r r e n t i s moving i n a " s t r a i g h t " l i n e , then t h e r e s u l -t a n -t a c c e l e r a -t i o n p e r p e n d i c u l a r -t o -t h e c u r r e n -t d i r e c -t i o n mus-t be z e r o . The C o r i o l i s a c c e l e r a t i o n i s balanced by a p r e s s u r e g r a d i e n t . T h i s i s a h o r i z o n t a l g r a d i e n t a l s o p e r p e n d i c u l a r t o the c u r r e n t d i -r e c t i o n and c o u n t e -r a c t i n g the C o -r i o l i s a c c e l e -r a t i o n . E q u i l i b -r i u m o f these two components y i e l d s :

i U = 2 n s i n ,^ V ( 3 . 0 2 ) where: P i s t h e water d e n s i t y , and 8 £ i s the p r e s s u r e g r a d i e n t normal t o t h e c u r r e n t . 3 n D e n s i t y d i f f e r e n c e s a r e n o t s u f f i c i e n t t o cause t h i s p r e s s u r e g r a d i e n t , b u t a water s u r f a c e s l o p e c a n , and does p r o v i d e t h e e q u i l i b -r i u m . Thus, t h e -r e a -r e d i f f e -r e n c e s i n mean sea l e v e l between p o i n t s on the ocean s u r f a c e .

T h i s i s demonstrated by computing t h e mean sea l e v e l d i f f e r e n c e a c r o s s t h e S t r a i t o f F l o r i d a ( a c r o s s the F l o r i d a C u r r e n t ) . This i s l o c a t e d a t l a t i t u d e 26° N . , the c u r r e n t i s about 1.0 m / s . , and t h e s t r a i t i s about 80 km w i d e .

A good r e v i e w o f C o r i o l i s a c c e l e r a t i o n s can be found i n c h a p t e r 2 o f Housner and Hudson ( 1 9 5 9 ) .

T h i s a n g u l a r v e l o c i t y i s t h e a b s o l u t e a n g u l a r v e l o c i t y based upon the s i d e r i a l day.

(26)

( 2 ) ( 0 . 7 2 9 X 1 0 " ^ ) ( s i n 2 6 ° ) ( 1 . 0 ) 6 . 4 X 10 p sec In 80 km t h e r e i s an e l e v a t i o n d i f f e r e n c e o f : . A Z = ^ - ^ ^ ^ ° ^ X 80 X 10^ = 52. X 1 0 ' ^ m. 9 . 8 1

This agrees r e a s o n a b l y w e l l w i t h an observed 45 cm v a l u e .

The c u r r e n t s j u s t d e s c r i b e d are conmonly c a l l e d g e o s t r o p h i c c u r r e n t s .

Another i n t e r e s t i n g , ( b u t l e s s i m p o r t a n t from an oceanographic v i e w p o i n t ) r e s u l t can be o b t a i n e d i f we do a l l o w our c u r r e n t t o t u r n and l e t the h o r i z o n t a l p r e s s u r e g r a d i e n t be z e r o . In t h i s c a s e , t h e C o r i o l i s a c c e l e r a t i o n i s balanced by the c e n t r i p e t a l a c c e l e r a t i o n . 2 p s i n .j. V ( 3 . 0 3 ) 2 n s i n •!> ( 3 . 0 4 ) where r i s t h e r a d i u s o f c u r v a t u r e .

C u r r e n t s o f t h i s s o r t cause l i t t l e more than minor d i s t u r b a n c e s i n oceanographic measurements; however, t h e y can become a nusiance e l s e w h e r e . Such c u r r e n t s caused c o n s i d e r a b l e problems i n a s e n s i t i v e h y d r a u l i c model a t a l a b i n the U.S. some y e a r s ago. P e r f e c t l y q u i e t water w i t h o u t t u r b u l e n c e was r e q u i r e d i n a c i r c u l a r tank about 4 m

i n d i a m e t e r . A f t e r f i l l i n g t h e t a n k and l e t t i n g i t stand o v e r n i g h t , the i n v e s t i g a t o r found a slow c i r c u l a t i o n c u r r e n t i n the tank t h e next m o r n i n g . Since the l a b was l o c a t e d a t l a t i t u d e 45° N, t h i s c u r -r e n t was 0.2 mm/s ,

These c u r r e n t s j u s t d e s c r i b e d a r e independent o f d e p t h ; they a r e c o n s t a n t over t h e e n t i r e d e p t h , s i n c e f r i c t i o n has been i g n o r e d . This c o n t r a d i c t s t h e e a r l i e r o b s e r v a t i o n t h a t t h e r e i s l i t t l e a c t i -v i t y i n the ocean deeper than 1 t o 2 km. A c t u a l l y , t h e r e i s no r e a l con

t r a d i c t i o n h e r e , s i n c e we have n o t y e t d i s c u s s e d the cause o f t h e g e o s t r o p h i c c u r r e n t s , t h e w i n d , w h i c h , o f c o u r s e , a c t s over t h e s u r -f a c e o -f t h e oceans.

3 . 5 . Eckman Mind D r i f t

Hansen (1902) r e p o r t e d o b s e r v a t i o n s o f t h e d r i f t o f sea i c e i n t h e N o r t h P o l a r Sea. He found t h a t the i c e d r i f t e d not i n t h e wind d i r e c t i o n , b u t a t an a n g l e o f 20° t o 40° f r o m the w i n d . He e x p l a i n e d t h i s as r e s u l t i n g from the C o r i o l i s e f f e c t and f u r t h e r s p e c u l a t e d t h a t the c u r r e n t i n s u c c e s s i v e l y deeper ocean l a y e r s , d r i v e n by shear s t r e s s e s f r o m l a y e r s above, must d e v i a t e even more t o the r i g h t .

(27)

14

Eckman i n v e s t i g a t e d t h i s m a t h e m a t i c a l l y on t h e s u g g e s t i o n o f Nansen. His r e s u l t s , p u b l i s h e d a l s o i n 1902, w i l l n o t be d e r i v e d h e r e . We s h a l l concern o u r s e l v e s o n l y w i t h t h e basic s t a r t i n g p o i n t and the r e s u l t . His work was done f o r an i n f i n i t e ocean ( a l s o i n f i n i t e l y deep) w i t h a wind o f c o n s t a n t speed and d i r e c t i o n over the e n t i r e s u r f a c e . The ocean s u r f a c e remains h o r i i z o n t a i l i t h e oniliy d r i v i n g f o r c e comes f r o m the wind shear s t r e s s . . Tn; t h e steady s t a t e , , (no a c c e l e r a t i o n ) t h i s r e s u l t s i n : ; — — 2 " = + 2 f! s i n ,j) V ( 3 . 0 5 ) ^7 - J - = - 2 Sl s i n <(i u ( 3 . 0 6 ) J 3 Z where:

u i s the v e l o c i t y component along a h o r i z o n t a l x a x i s V i s t h e v e l o c i t y component along a h o r i z o n t a l y a x i s

z i s the v e r t i c a l c o o r d i n a t e measured f r o m the ocean s u r f a c e (+ u p ) , and

i s t h e v e r t i c a l eddy v i s c o s i t y c o e f f i c i e n t .

The f u r t h e r mathematics i s g i v e n by Neumann and Pierson ( 1 9 6 6 ) . When t h e y assume t h a t t h e wind blows o n l y i n t h e y d i r e c t i o n , the shear s t r e s s a t t h e water s u r f a c e i s : dv Z u Z ^ J . u / ; and a c t s a l o n g t h e y a x i s . This a l l r e s u l t s i n t h e f o l l o w i n g : u = V^e ^ cos ( 4 5 ° + z ) ( 3 . 0 8 ) TJ.; •' z V = V^e " s i n ( 4 5 " + ^ z ) ( 3 . 0 9 )

which g i v e t h e v e l o c i t y components a t any d e p t h , once V ^ , t h e v e l o -c i t y a t the s u r f a -c e , and D are known.

( 3 . 1 0 )

IT T V 2Dp n s i n (j)

(28)

Eckman c a l l s D t h e " d e p t h of f r i c t i o n a l i n f l u e n c e " ; t h e d e p t h o v e r which t h e t u r b u l e n t eddy v i s c o s i t y i s i m p o r t a n t . A t t h i s d e p t h t h e v e l o c i t y i s about 1/23 o f i t s v a l u e a t t h e s u r f a c e , and i s d i -r e c t e d im t h e 'Oipposite . d i -r e c t i o n , . TMs i s i n keeping w i t h t h e hypo-t h e s i s o f Nansen imenhypo-t*o.ned e a r l i e r . D i s .normally abouhypo-t 50 m e hypo-t e r s , b u t i n c r e a s e s v e r y r a p i d l y t o » a t the e q u a t o r .

S u b s t i t u t i o n o f z = 0 i n t o 3.08 and 3.09 y i e l d s a t o t a l v e l o c i t y o f magnitude V d i r e c t e d 45° t o t h e r i g h t ( i n t h e n o r t h e r n hemisphere) o f the wind d i r e c t i o n .

The d e t a i l s o f the c u r r e n t p r o f i l e i n t h r e e dimensions can be examined more c o n v e n i e n t l y by i n t r o d u c i n g p o l a r c o o r d i n a t e s .

V = e ^ ' ( 3 - 1 2 )

e = 4 5 ° + 'Jz ( 3 . 1 3 )

I n d e e d , the v e l o c i t y , V , decreases e x p o n e n t i a l l y w i t h d e p t h and the a n g l e between t h e wind and c u r r e n t d i r e c t i o n i n c r e a s e s l i n e a r l y w i t h d e p t h i n a c l o c k w i s e d i r e c t i o n . The magnitude and d i r e c t i o n o f the r e s u l t a n t t r a n s p o r t o f ocean water i s found by i n t e g r a t i n g 3.08 and 3.09 from z = -<» t o z = 0.

^x = ^ V 3 D ( 3 . 1 4 )

0 ( 3 . 1 5 )

where q^ and q^ are volume f l o w r a t e s per u n i t o f ocean w i d t h . The r e s u l t a n t t r a n s p o r t i s p e r p e n d i c u l a r i n the wind d i r e c t i o n !

This i n f o r m a t i o n does n o t seem t o o u s e f u l t o us as c o a s t a l e n g i -n e e r s . However, by a l l o w i -n g t h e ocea-n t o have a c o a s t , a s u r f a c e s l o p e , and a f i n i t e d e p t h i t i s p o s s i b l e t o begin t o a t t a c k t h e problem o f p r e d i c t i n g storm surges near c o a s t s . Such p r e d i c t i o n can be v e r y i m p o r t a n t e s p e c i a l l y i n l i g h t o f t h e d e v a s t a t i o n t h a t such surges can cause.

Eckman (1905) c o n s i d e r e d the problem o f an enclosed sea o f f i n i t e , c o n s t a n t d e p t h . An i m p o r t a n t r e s u l t i s :

^ This i s indeed s t i l l o n l y a b e g i n n i n g . I n f l u e n c e s of t h e b a r o m e t r i c p r e s s u r e changes and o f complex bottom bathymetry a r e s t i l l b e i n g n e g l e c t e d .

(29)

16

V/her e:

e = t h e water s u r f a c e s l o p e h = the d e p t h , and

A = a c o e f f i c i e n t

Values o f A v a r y between 1.0 f o r v e r y deep water (h » TT J l ^2

jp n s i n (J)-"

and 1.5 f o r s h a l l o w water or where C o r i o l i s i n f l u e n c e s a r e n e g l e c t e d . A c c o r d i n g t o Neumann and Pierson (1966) C o r i o l i s f o r c e s can be n e g l e c -t e d i n wind s e -t - u p problems and -the d i r e c -t i o n of -t h e maximum s u r f a c e g r a d i e n t does not d e v i a t e more than 10° f r o m the wind d i r e c t i o n .

I f , however, the depth o f the body o f water v a r i e s (as i t g e n e r a l l y does) and the i n f l u e n c e o f the storm surge i t s e l f on t h e d e p t h i s i n -c l u d e d then we a r e f o r -c e d t o -carry o u t a b r u t e f o r -c e i n t e g r a t i o n o f :

d z ' ET

where z ' i s now the d e p t h measured f r o m the a c t u a l water s u r f a c e .

Han

The s o l u t i o n t o t h i s i s beyond the scope o f t h e s e l e c t u r e n o t e s , sen (1956) and H a r r i s (1963) o u t l i n e an approach t o the problem.

3 . 6 . P r o p e r t i e s o f Sea Mater

The most i m p o r t a n t p r o p e r t y o f sea water f r o m a c o a s t a l e n g i n e e r i n g p o i n t o f v i e w i s i t s d e n s i t y . I t s d e n s i t y i s a f u n c t i o n o f t h r e e

v a r i a b l e s : s a l i n i t y , t e m p e r a t u r e , and p r e s s u r e . Of t h e s e , t h e p r e s s u r e i n f l u e n c e i s l e a s t i m p o r t a n t and we can n e g l e c t i t u n l e s s we a r e wor-k i n g a t depths more t h a n , s a y , 500 m.

In c o n t r a s t t o pure w a t e r , most sea water w i l l c o n t i n u o u s l y i n -crease i n d e n s i t y as i t c o o l s u n t i l i t reaches i t s f r e e z i n g tempera-t u r e . Mostempera-t sea watempera-ter has a s a l i n i tempera-t y v a r y i n g betempera-tween 34 and 36%o ( p a r t s per thousand by w e i g h t ) . Some s m a l l e r i s o l a t e d seas can have s i g n i f i c a n t v a r i a t i o n s , however. The B a l t i c Sea, f o r example, sometimes has a s a l i n i t y as low as 7%o. The Red Sea, on t h e o t h e r h a n d , has as much as 4 1 % s a l i n i t y .

U n f o r t u n a t e l y , the dependence o f d e n s i t y , p , on s a l i n i t y ^ S , and t e m p e r a t u r e , T , i s n o t s i m p l e . F i s h e r , W i l l i a m s , and D i a l (1970) pu-b l i s h e d an e m p e r i c a l l y d e r i v e d e q u a t i o n f o r the s p e c i f i c v o l u m e , v , o f water as a f u n c t i o n o f s a l i n i t y , t e m p e r a t u r e , and p r e s s u r e . T h e i r e q u a t i o n i s : K^S \ + KgS + p ( 3 . 1 8 )

(30)

i n w h i c h : Kj^ i s a t e m p e r a t u r e dependent c o e f f i c i e n t having u n i t s o f 3 cm , K., i s a t e m p e r a t u r e dependent c o e f f i c i e n t w i t h u n i t s — ^ ^ fo i s a t e m p e r a t u r e dependent c o e f f i c i e n t w i t h u n i t s o f 3 bars cm > g i s a t e m p e r a t u r e dependent c o e f f i c i e n t w i t h u n i t s o f b a r s , p i s t h e a b s o l u t e p r e s s u r e i n b a r s , S i s t h e s a l i n i t y i n to 3 V i s t h e s p e c i f i c volume i n ^ ü l - , and 9 3 v ^ i s a t e m p e r a t u r e dependent c o e f f i c i e n t having u n i t s o f g

The f i v e c o e f f i c i e n t s , K3>' K4 and v ^ a r e r e l a t e d t o t h e tem-p e r a t u r e , T i n degrees C e l c i u s , by tem-polynomial e q u a t i o n s o f f o r m :

E a . T^ C ï . 1 9 )

i = 0

The c o e f f i c i e n t s , a,., f o r these p o l y n o m i a l s a r e g i v e n i n t a b l e 3 . 1 , Equation 3.18 i s v a l i d f o r t h e f o l l o w i n g r a n g e s : - 2 ° < T < 100° C; 0 < p' < 1000 b a r s ; 0 < S < 50to A l l o f t h i s makes e q u a t i o n 3.18 a c t u a l l y r a t h e r cumbersome i n use. T h e r e f o r e , Table 3.2 l i s t s v a l u e s o f c o e f f i c i e n t s f o r e q u a t i o n 3.18 e v a l u a t e d f o r v a r i o u s temperatures u s i n g t a b l e 3 . 1 and e q u a t i o n 3 . 1 9 .

The water d e n s i t y i n ^ can be determined from the s p e c i f i c m volume o f e q u a t i o n 3.18 as f o l l o w s : P = 7 X 10^ ( 3 . 2 0 ) i n which p i s t h e d e n s i t y i n kg/m^. ^ 1 bar i s 10 dynes/cm or a p r e s s u r e o f 10 N/m ; a b o u t 0.987 atmosphere.

(31)

18

TABLE 3 . 1 Polynomial C o e f f i c i e n t s a . , f o r K p Kg, K^, and V

COEFFICIENT AW lUiNITS h h h s 3 3 cm /bars> /bars cm \ 0 2..'679xT{!)"'* 10.874 1788.316 5918.499 0.6980547 1 2 . 0 2 x 1 0 ' ^ - 4 . 1 3 8 4 x 1 0 " ^ 21.55053 58.05267 - 7 . 4 3 5 6 2 6 x 1 0 " ^ 2 - 6 . 0 x 1 0 " ^ -0.4695911 -1.1253317 3.704258x10"^ 3 3 . 0 9 6 3 6 3 x l 0 " 3 6.6123869xl0"3 6.315724x10"^ 4 - 7 . 3 4 1 1 8 2 x 1 0 " ^ -1.4661625x10"^ 9.829576x10"^ 5 -1.197269x10"-^' 6 1.005461x10"-^' 7 5.437898x10"^' 8 1.69946x10"^'' 9 - 2 . 2 9 5 0 6 3 x 1 0 " ^ ' TABLE 3.2 C o e f f i c i e n t s f o r Eqn. 3.18 f o r v a r i o u s t e m p e r a t u r e s

COEFFICIENT AND UNITS

T ^1 Kg ^4 v 00 :'^c) 3 /cm ' W o o ) ^barsx •o/oo^ / b a r s cm^, ^ g ' ( b a r s ) ( — ) ^ g ' 0 2.6790x10' -4 10.87400 1788.315 5918.499 0.6980547 2 2.7192x10' -4 10.79123 1829.563 6030.155 0.6967108 4 2.7588x10' -4 10.70846 1867.201 6133,124 0.6956351 6 2.7930x10' -4 10.62570 1901.373 6227,712 0.6948023 8 2.3368x10' -4 10,54293 1932.222 6314.225 0.6941902 10 2.8750x10' -4 10.46016 1959.885 6392.958 0.5937790 12 2.9128x10' -4 10,37739 1984.500 6454.205 0.6935516 14 2.9500x10' -4 10.29462 2006.198 5528.253 0.6934924 16 2.9868x10' -4 10.21186 2025.111 6585.380 0.6935878 18 3.0232x10' -4 10.12909 2041.355 6635,864 0.6938257 20 3.0590x10' -4 - 10.04632 2055.085 6679,793 0.6941953 22 3.0944x10' -4 9.96355 2066,395 5717.971 0.6946869 24 3.1292x10' -4 9.88078 2075.413 5750.117 0.6952918 26 3.1636x10' -4 9.79802 2082.253 5775.553 0.6960021 28 3.1976x10' -4 9.71525 2087.030 5797.857 0.6968106 30 3.2310x10' -4 9.53248 2089.855 6813.939 0.5977110 32 3.2640x10' -4 9.54971 2090.836 5825.146 0.6986973 34 3.2964x10' -4 9.46694 2090.075 5831.707 0.6997638 36 3.3284x10' -4 9.38418 2087.679 6833.847 0.7009055 38 3.3600x10" -4 9.30141 2083.743 6831.785 0.7021179 40 3.3910x10" -4 9.21864 2078.365 6825.734 0.7033962

(32)

Since t i i e d e n s i t y o f s a l t water i s u s u a l l y a b i t more than 1 0 0 0 k g / m ^ , Oceanographers o f t e n s u b t r a c t 1 0 0 0 f r o m the d e n s i t y v a l u e s and denote the v a l u e by sigma. I f t h i s i s done f o r a t m o s p h e r i c p r e s -s u r e , then a -s u b -s c r i p t t i -s u -s u a l l y added. Thu-s:

a = p - 1000 ('3.21);

i n whiiichi p. iis evalluated! a t atmospheric pres^suire.

Values o f as a. f u n c t i o n o f s a l i k i i t y and t e m p e r a t u r e a r e l i s -ted! im t a W e 3 v 3 - . , These tateTes were; computed usfngi e q u a t i o n 3 . 1 8

w i t h : p" = l i . 0 1 3 ! 3 ' b a r s = 1 atmosphere-..

Since t h e e q u a t i o n s (.and t h e , i r r e s u l t i n g t a b l e s ) a r e a b i t cumbersome i n u s e , t h e D e l f t " Hydrauiüües L a b o r a t o r y uses a s i m p l e r r e l a t i o n s h i p . In- t h e notatiiani a l r e a d y u s e d ,

a:^ = 0.75 S ( 3 . 2 2 )

Equation 3 . 2 2 n e g l e c t s i n f l u e n c e s of t e m p e r a t u r e and p r e s s u r e and i s t h e r e f o r e more l i m i t e d i n use than e q u a t i o n 3 . 1 8 . I n p r a c t i c e , c i v i l engineers w i l l sometimes f i n d e q u a t i o n 3 . 2 2 t o be s u f -f i c i e n t -f o r problems i n which d e n s i t y d i -f -f e r e n c e s r e s u l t e x c l u s i v e l y f r o m s a l i n i t y d i f f e r e n c e s and t h e water t e m p e r a t u r e i s n o t extreme.

With t h i s i n f o r m a t i o n on d e n s i t y we can r e t u r n b r i e f l y t o t h e d e s c r i p t i o n o f t h e oceans, t h e m s e l v e s . U s u a l l y , both s a l i n i t y and t e m p e r a t u r e decrease w i t h i n c r e a s i n g depth i n the ocean. E v a p o r a t i o n i s r e s p o n s i b l e f o r the h i g h e r s a l i n i t y o f t h e s u r f a c e l a y e r ; how can t h i s f l o a t on l e s s s a l i n e deeper water? The t e m p e r a t u r e d i f f e -rences a r e s u f f i c i e n t t o m a i n t a i n a d e n s i t y p r o f i l e which i n c r e a s e s w i t h d e p t h .

D e n s i t y v a r i a t i o n s caused by d i f f e r e n c e s i n s a l i n i t y and temp e r a t u r e can be used i n i n g e n i o u s ways such as to d r i v e a s a l t f o u n -t a i n , made i n -the f o l l o w i n g way:

We t a k e a l o n g ( 1 km) p i p e and extend i t v e r t i c a l l y down f r o m t h e ocean s u r f a c e . N e x t , we a t t a c h a pump and s l o w l y draw up t h e deep w a t e r . We do t h i s s l o w l y so t h a t t h e water r i s i n g i n t h e pipe can be warmed by t h e s u r r o u n d i n g ocean. A f t e r deep water reaches t h e s u r f a c e we remove the pump and f i n d t h a t the water c o n t i n u e s t o f l o w . Why does i t f l o w ? No, i t i s not p e r p e t u a l m o t i o n ; t h e process stops as soon as t h e upper 1 km l a y e r o f the ocean has become m i x e d .

C u r r e n t s caused by d e n s i t y d i f f e r e n c e s are d i s c u s s e d i n the n e x t s e c t i o n and a g a i n , i n d e t a i l , i n c h a p t e r 2 2 .

Cytaty

Powiązane dokumenty

jak bowiem wynika z założeń projektu, pokrzywdzony, który uprzednio nie korzystał z uprawnień oskarżyciela posiłkowego, ma mieć możliwość oświadczenia, w terminie 14 dni

Należałoby zwrócić uwagę na piękno (w swoim rodzaju) języka, na bezpośredniość odczuwania — mimo barokowej dekla­ macji. — Podniesiona w przedmowie

Będą jeszcze drugie przypisy, które są ozna­ czo n e cyfram i arabskimi; te przeznaczone są jedynie dla Jego Ekscelencji i dla jeg o

Kolekcję zdjęć nazwano Albumem Karla Höckera, ponieważ Höcker, SS‑Ober‑ sturmführer, od maja 1944 roku adiutant komendanta KL Auschwitz Richarda Baera, częściej niż inni

Niedająca się łatwo połączyć mnogość literackich opisów wykonywania muzyki w obozowej przestrzeni bierze się – jak można się domyślać – z wielu różnorodnych

A nie je st przecież rzeczą obo­ ję tn ą dla odpow iedzialności danej osoby, czy jej zachow anie się zostanie u znane za działan ie spraw cy, podżegacza czy

Książka Michała Zięby, która jest wynikiem badań autora nad edycjami dzieł Mickiewicza, Słowackiego i Krasińskiego, wpisuje się w krąg tych zagadnień.. Autor wybrał jednak

Wstępną charakterystykę przeprowadzono na podstawie pomiarów przepuszczalności względnej, a jej trafność zweryfikowano poprzez ich korelację z kolejno wykonanymi: analizą