• Nie Znaleziono Wyników

Geochemical and fractal analysis of enclaves in the Dehe-Bala intrusion, (Northwestern Iran): a new concept to the interpretation of crust–mantle interaction process

N/A
N/A
Protected

Academic year: 2022

Share "Geochemical and fractal analysis of enclaves in the Dehe-Bala intrusion, (Northwestern Iran): a new concept to the interpretation of crust–mantle interaction process"

Copied!
17
0
0

Pełen tekst

(1)

Geo chem i cal and fractal anal y sis of en claves in the Dehe-Bala in tru sion, (North west ern Iran): a new con cept in the in ter pre ta tion

of the crust–man tle in ter ac tion pro cess

Zeynab GHARAMOHAMMADI1, Ali KANANIAN1, * and Mohsen ELIASSI1

1 School of Ge ol ogy, Col lege of Sci ence, Uni ver sity of Teh ran, Teh ran, Iran

Gharamohammadi, Z., Kananian, A., Eliassi, M., 2019. Geo chem i cal and fractal anal y sis of en claves in the Dehe-Bala in tru - sion, (North west ern Iran): a new con cept in the in ter pre ta tion of the crust–man tle in ter ac tion pro cess. Geo log i cal Quar terly, 63 (3): 505–521, doi: 10.7306/gq.1481

As so ci ate ed i tor: Wojciech Granoszewski

The Dehe-Bala in tru sion is one of the re mark able in tru sions of granodiorite rocks with I-type af fin ity and abun dant mafic microgranular en claves (MMEs) in the Buin Zahra area, Qazvin, Iran. The MMEs, com posed of diorite and quartz-monzodiorites, are hap haz ardly wide spread in the granodiorites. The Dehe-Bala Granodiorites (DBG) usu ally are char ac ter ized by high con tents of SiO2 (64.2–66.9), Na2O (3–3.23), K2O (3.49–4), Mg# 4.84 and Th/Ta ra tio (»7.9). In com - par i son to the DBG, the MMEs can be dis tin guished by their lower value of SiO2 (52.8–58.2), K2O (1.4–3.8) and higher Mg#

(0.4–0.46). All these char ac ter is tics show a dif fer ent com po si tion of the DBG and MMEs, more im por tantly, can ar gue in fa - vor of a magma mix ing/min gling or i gin in the DBG. The en rich ment in to tal REEs and HFSEs in the MMEs clearly re flects a marked diffusional pro cess from the fel sic to mafic magma that could have been achieved by chem i cal ex change dur ing the magma mix ing/min gling pro cess. The fractal di men sions (Dbox) of MMEs dif fer from 1.14 to 1.29 with the high est fre quency at 1.29. The tex tural het er o ge ne ity and geo chem i cal fea tures com bined with high Dbox val ues in the MMEs com pared with the DBG show lower de grees of mix ing/min gling be tween man tle-de rived mafic and lower crust-de rived fel sic mag mas.

Key words: Dehe-Bala Granodiorites (DBG), mafic microgranular en claves (MMEs), magma mix ing, fractal di men sion of en - claves.

INTRODUCTION

I- and S-type gran ites have been widely rec og nized all over the world (Chappell and White, 1974). S-type gra nitic melts, which form un der fluid-pres ent con di tions, are rheologically dif - fer ent from I-type gran ites (Cas tro, 2013). It is cru cial to know the sources of I-type gran ites, due to the sig nif i cant role of con ti - nen tal crust in magma gen er a tion. Fur ther more, these melts are gen er ally formed be cause of par tial melt ing un der fluid-ab - sent con di tions; how ever, more mafic gran ites (calc-al ka line granodiorites) can not con sist of pure par tial melt of crustal rocks (Clem ens and Stevens, 2012).

From an other point of view, the pres ence of dis equi lib rium tex tures and mafic microgranular en claves (MMEs) in calc-al - ka line plutons is strong ev i dence of small-scale dif fu sion.

MMEs seems to con trol compositional het er o ge ne ity in ig ne ous sys tems fol low ing magma mix ing (Perugini et al., 2003). There are var i ous mod els and hy poth e ses ad dress ing the geo chem i -

cal di ver sity of I-type gran ites. Ex per i men tal melts, geo chem i - cal and iso to pic data and the pres ence of mafic and fel sic microgranular en claves in I-type plutons in di cate that calc-al ka - line I-type gra nitic mag mas re sulted from mix ing/min gling of mafic and fel sic mag mas (Col lins, 1996; Kemp et al., 2007).

The high Fe and Mg con tent in the ma jor ity of granodioritic and tonalitic mag mas arises due to the en trance of peritectic min er - als from the protolith. This in di cates that the na ture of the magma gen er ated was also sig nif i cantly in flu enced by the type and fre quency of these min er als (Clem ens and Stevens, 2012).

The study of MMEs is a unique op por tu nity in the rec og ni tion of petro gen esis and the source of granitoid mag mas (Perugini et al., 2003; Barbarin, 2005). MMEs pro vide ev i dence for man - tle–crust in ter ac tion dur ing the mix ing/min gling pro cess (Zhao et al., 2012). Re cently, magma mix ing has been re garded as a cha otic pro cess in magma cham bers which re sults in the for - ma tion of fractal struc tures (Perugini and Poli, 2012). The fo cus of this study is on magma mix ing/min gling ev i dence in the DBG.

This study pres ents de tails of the min er al ogy, pe trol ogy and geo chem i cal fea tures of granodiorites and their MMEs from the Dehe-Bala suite. Fur ther more, this study pro vides a dis tinct ap - proach to dis cus sion of the magma mix ing/min gling pro cess.

We es ti mate the fractal di men sion of MMEs (Dbox) by us ing the com plex ity of the MMEs’ mor phol ogy. The main goal of this work is to clar ify the de grees of mix ing/min gling be tween crust

* Cor re spond ing au thor, e-mail: kananian@ut.ac.ir

Re ceived: August 7, 2018; ac cepted: May 28, 2019; first pub lished on line: August 8, 2019

(2)

and man tle com po nents in volved in the gen e sis of the granodiorites and their MMEs. Fi nally, the fractal di men sions of the MMEs and the geo chem i cal data pro vide di rect as sess - ment of the vis cos ity of the fel sic and mafic end-mem bers.

GEOLOGICAL SETTING

Ac cord ing to field and petrographic ob ser va tions, the Paleogene in tru sive rocks within the Buin Zahra area mainly con sist of gab bro, diorite, quartz diorite, quartz monzonite and gran ite (Tabakhe Shabani, 1990). Some of these granitoids no - ta bly in clude abun dant MMEs, and their shapes, colours and tex tures re flect the magma mix ing/min gling pro cess as well as the geo chem i cal re ac tions be tween man tle- and crust-de rived mag mas (Safarzadeh, 2007).

The DBG is part of the Urumieh–Dokhtar Mag matic As sem - blage (UDMA), which is lo cated about 45 km south-west of Buin Zahra, Qazvin Prov ince, North west ern Iran. For ma tion of the UDMA re sulted from subduction of the Neotethyan oce anic litho sphere be neath the south west ern mar gin of the Cen tral

Iran microcontinent. The UDMA is char ac ter ized by vol ca nic suc ces sions and in tru sive com plexes (Berberian and King, 1981; Agard et al., 2011). Rocks older than Eocene are miss ing in the Dehe-Bala–Agh-Ghoyu re gion. The Eocene and Oligocene rocks of the UDMA nor mally clas sify as of calc-al ka - line (Berberian and King, 1981) and, in some cases, al ka line af - fin ity (Moradian, 1997). As a re sult of com pres sive events in the Late Eocene–Oligocene, the DBG has in truded into Eocene vol ca nic and sed i men tary rocks and a nar row ther mal meta - mor phic con tact au re ole has been formed in the host rocks (Tabakhe Shabani, 1990).

Field ob ser va tions show that the Dehe-Bala in tru sion mainly con sists of light and dark grey granodiorites. All rock units of the DBG have a soft mor phol ogy with weath ered and al tered sur - faces. The MMEs are ran domly scat tered, 2–30 cm in size in the DBG, and typ i cally pos sess el lip soi dal and rounded shapes, so that var i ous other shapes such as crusty, an gu lar, schlieren and ex tremely elon gated en claves are very rare in the DBG. The MMEs also dis play sharp and ir reg u lar con tacts with their host rocks. In com par i son with the host rocks, MMEs are iden ti fied by a fine-grained tex ture and dark col our (Figs. 1 and 2).

Fig . 1A – sim pli fied map of tec tonic zones of the Zagros Orogenic Belt, Urumieh–Dokhtar Mag matic As sem blage (UDMA), Sanandaj–Sirjan Zone (SSZ), Zagros Fault Thrust Belt (ZFTB); B – sim pli fied geo log i cal map of the DBG

in south -west Buin Zahra (af ter Eghlimi, 2000)

(3)

ANALYTICAL METHODS

Af ter pet ro log i cal and field ob ser va tions, 60 sam ples of fel - sic rocks and MMEs were col lected from the DBG. De tailed petrographic sur veys were per formed on 50 thin sec tions. 16 fresh sam ples (10 host rocks and 6 en claves) were se lected based on their var i ous min er al ogy and tex ture. Each sam ple was crushed into 200 mesh for whole-rock ma jor and trace el e - ment anal y sis.

The ma jor and trace el e ments of sam ples were mea sured by ICP-AES ICP-MS method in ALS Chemex Lab, Loughrea, Ire land (code, ME-MS81). The above-men tioned meth ods were se lected due to lower de tec tion lim its and good ac cu racy in geo chem i cal anal y sis. The de tec tion limit for ma jor el e ments, trace el e ments and rare earth el e ments was 0.01 wt.%, 0.10–1 ppm, 0.01–0.5 ppm, re spec tively. A lith ium bo rate fu - sion of the sam ple prior to acid dis so lu tion and ICP-MS anal y sis pro vides the most quan ti ta tive ap proach for a broad suite of trace el e ments. This tech nique solubilizes most min eral spe - cies, in clud ing those that are highly re frac tory. Op tions for add - ing the whole rock el e ments from an ICP-AES anal y sis from the same fu sion, or base met als from a sep a rate four-acid di ges - tion, are avail able.

RESULTS

PETROGRAPHY

The Dehe-Bala in tru sion is mainly com posed of grano - diorites that in some places grad u ally grade into quartz monzodiorite; how ever, there is no clear dis tinc tion be tween them. All sam ples con sist of quartz (6–20 wt.%), plagioclase (40–48 wt.%), K-feld spar (20–30 wt.%), bi o tite (5–18 wt.%), am phi bole (3–12 wt.%) and clinopyroxene (1–2 wt.%). Ac ces - sory phases mainly in clude ap a tite, zir con, ti tan ite and op aques (1–2 wt.%).

Quartz oc curs as ir reg u lar in ter sti tial phases with un du la tory ex tinc tion be tween plagioclase, K-feld spar and mafic min er als.

Plagioclase crys tals gen er ally are euhedral and subhedral and dis play zon ing and polysynthetic twins. In di vid ual pheno crysts show re sorp tion sur faces, and sieve and poikilitic tex tures.

Plagioclases have been par tially al tered to seri cite, epidote and cal cite. K-feld spar is pres ent as small to large crys tals; some poikiolitic grains of ten en close plagioclase, bi o tite, quartz, hornblende and ap a tite. Lo cally, K-feld spar grains ae re placed by clay min er als. Bi o tite, am phi bole and pyroxene are gen er ally ob served as euhedral and anhedral crys tals of dif fer ent sizes.

Brown bi o tite is the dom i nant phase in the granodiorites with ob vi ous cor ro sion of some crys tals. Cer tain biotites and py rox - enes are al tered to chlorite and actinolite, re spec tively.

Most MME sam ples are quartz diorite and quartz monzodiorite in com po si tion. The MMEs have sim i lar min eral as sem blages to the host granitoids ex cept for the greater abun - dance of plagioclase and mafic min er als, such as hornblende.

Gran u lar to microgranular, poikilitic and sieve tex tures are ob - served in the MMEs. The MMEs are char ac ter ized by smaller grain size and are darker than the host granodiorites. Chilled mar gins are ob served along some bound aries of the en claves.

There are two types of quartz in the MMEs: the first type is ob - served as anhedral and small in ter sti tial phases; the sec ond type com prises quartz xeno crysts of ten sur rounded by fine-grained bi o tite (quartz ocelli). Plagioclases are ob served as euhedral to subhedral grains and dis play polysynthetic twin ing and re peated re sorp tion sur faces (Fig. 3). Plagioclase crys tals usu ally ex ist along the bound aries of MMEs and the host rock, on both sides (Fig. 3). K-feld spar crys tals are ir reg u lar and some times in the form of large xeno crysts con tain ing fine-grained plagioclase, bi o tite, quartz, hornblende, and ap a - tite (poikilitic tex ture). Mafic min er als (hornblende, bi o tite, am - phi bole and pyroxene) ap peared in dif fer ent sizes and of eu - hedral to anhedral form. Some fine-grained mafic clots com - posed of mafic min er als such as bi o tite, am phi bole and ti tan ite are ob served in both MMEs and the host rock. Ap a tite is the most com mon ac ces sory min eral in most MMEs. Acicular ap a - tite is ob served in MMEs but ap a tite oc curs as thick and pris - matic crys tals in the host rocks (Fig. 3).

GEOCHEMISTRY

Geo chem i cal anal y ses of the host granodiorites and MMEs are shown in Ta bles 1 and 2. Sam ples of the Dehe-Bala in tru - sion are lo cated in the granodiorite field on a to tal al kali against SiO2 (TAS) clas si fi ca tion di a gram (Fig. 4A). Based on the alu - mi num sat u ra tion in dex, all granodiorite sam ples are me ta lu - Fig . 2. The pic tures of granodiorites (A) and mafic

microgranular en claves (B) in Dehe-Bala area

(4)

Fig. 3. Pho to mi cro graphs of granodiorite host (right) and mafic en clave (left)

A – poiklitic K-feld spar (Kfs) (xpl); B – the pres ence of plagioclase (Pl) in the bound ary be tween the en clave and granodiorite (xpl); C – ocelli quartz (Qz) and bi o tite (Bt) (xpl); D – ap a tite (Ap) acicular ap a tite in MMEs (xpl); E – large plagioclase (Pl) with re sorp tion sur face (xpl); F – plagioclase, hornblende (Hbl) and bi o tite (Bt) (xpl); G – the mafic clots in granodiorite ma trix (ppl); H – pyroxene (Px), (xpl); min eral ab bre vi a - tions from Kretz (1983)

Fig. 4A – plot of to tal al ka lis against sil ica (mod i fied from Wil son, 2007); B – plot of A/NK vs. A/CNK (Maniar and Piccoli, 1989); C – calc-al ka line rocks and rich in po tas sium as ev i dences by K2O + Na2O + CaO against SiO2 di a gram (Frost et al., 2001); D – Mg# ver sus SiO2 di a gram, the shaded fields rep re sent ex per i men tal stud ies of pure crustal par tial melts (see PatiÔo Douce and Johnston, 1991; Rapp and Wat son, 1995; Sisson et al., 2005 for de tailed)

(5)

SAMPLE DA40 DA41 DA42 DA43 DA1 DA5 [wt.%]

SiO2 56.5 56.4 58.2 55.9 56 52.8

Al2O3 17 16.8 17.05 16.8 17 16.3 Fe2O3(t)

8.78 8.1 8.57 7.9 8.59 9.99

CaO 6.46 6.39 5.23 6.27 5.31 7.08

MgO 3.5 3.53 2.9 3.29 3.52 3.81

Na2O 3.57 3.47 4.36 3.5 3.96 4.17 K2O 2.14 2.42 2.25 2.52 2 1.17 TiO2 0.94 0.91 0.91 1.05 0.99 1.12

MnO 0.23 0.23 0.16 0.19 0.21 0.26

P2O5 0.2 0.26 0.23 0.18 0.21 0.17 Cr2O3 <0.01 0.01 <0.01 <0.01 <0.01 0.01

SrO 0.03 0.03 0.02 0.03 0.03 0.03

BaO 0.05 0.06 0.05 0.05 0.06 0.04

LOI 1.03 1.15 1.45 0.89 1.78 1.57

To tal 100 99.76 101.4 98.57 99.6 98.5 [ppm]

Ba 384 489 441 468 525 424

Ce 61.6 82.1 46.4 53.8 47 67.5

Cr 10 20 <10 <10 <10 20

Cs 4.76 3.03 6.91 4.22 2.48 2.56

Dy 7.54 7.22 5.53 4.8 5.26 6.13

Er 4.53 4.41 3.18 3.03 3.23 3.5

Eu 1.13 1.05 0.92 1.12 0.95 1.24

Ga 20.2 20.2 19.9 19.3 20.8 22.6

Gd 7.49 7.22 5.62 4.99 5.44 6.2

Hf 3 3.7 3.1 3.4 3.6 2.4

Ho 1.49 1.48 1.09 0.99 1.05 1.22

La 29.1 44.6 23.2 28.3 22.5 31.7

Lu 0.69 0.65 0.48 0.46 0.5 0.53

Nb 28.3 30 23.1 27.8 29.7 35.2

Nd 30.7 35 23.6 23.4 22.7 30.1

Pr 7.68 9.39 5.91 6.24 5.81 7.77

Rb 97.3 95.6 137 110 107 61.5

Sm 7.26 7.21 5.31 4.76 4.91 6.29

Sn 4 4 4 3 3 5

Sr 305 318 241 312 303 332

Ta 1.9 1.8 1.5 2 1.8 2.3

Tb 1.23 1.16 0.9 0.77 0.88 0.97

Th 12.5 10.95 11.05 11.25 9.18 9.63

Tm 0.65 0.62 0.45 0.43 0.44 0.57

U 3.65 2.91 2.68 2.3 2.36 2.17

V 183 162 152 189 170 246

W 264 184 281 409 382 261

Y 42.2 42.7 33.4 29.1 30.9 35.8

Yb 4 4.27 3.25 2.89 3.15 3.64

Zr 86 120 116 123 130 86

REE(t) 176 216.2 136 146.5 132 176

Eu/Eu* 0.47 0.44 0.51 0.7 0.56 0.61

Nb/Ta 14.9 16.66 15.4 13.9 16.5 15.3

K2O/Na2O 0.59 0.69 0.51 0.72 0.5 0.28

Mg# 0.44 0.46 0.4 0.45 0.44 0.43

T a b l e 1 Ma jor ox ide and trace el e ment con tents in the Dehe-Bala MMEs

(6)

SAMPLE DG2 DG3 DG8 DG9 DG10 DG11 DG12 DG13 DG16 DG18 [wt.%]

SiO2 67 65 65 64 65.5 64.8 65.6 66.6 66.1 66.7

Al2O3 15 16 16 16 15.95 16 15.7 15.9 15.6 15.5

Fe2O3

(t) 4.5 4.9 5.1 5.3 4.68 4.89 4.43 4.66 4.28 4.02

CaO 3.7 4.1 4.1 4.2 3.83 4.15 3.88 3.84 3.55 3.44

MgO 1.5 1.7 1.9 2 1.75 1.89 1.55 1.72 1.57 1.41

Na2O 3.2 3.2 3.2 3.2 3.32 3.22 3.06 3.31 3.14 3.33

K2O 3.8 3.8 3.5 3.4 3.75 3.54 4 3.72 3.86 4.01

TiO2 0.5 0.6 0.6 0.6 0.6 0.61 0.54 0.58 0.53 0.51

MnO 0.1 0.1 0.1 0.1 0.11 0.12 0.12 0.1 0.09 0.09

P2O5 0.1 0.1 0.2 0.2 0.13 0.16 0.12 0.15 0.13 0.12

Cr2O3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

SrO 0 0 0 0 0.02 0.03 0.03 0.03 0.03 0.02

BaO 0.1 0.1 0.1 0.1 0.08 0.08 0.08 0.08 0.08 0.07

LOI 0.7 0.9 1.3 1.2 1.02 1.03 1.8 0.87 1.03 1.13

To tal 100 100 101 100 100.7 101 101 102 99.9 100

[ppm]

Ba 595 681 690 622 695 625 695 684 686 591

Ce 52 58 52 52 49.7 50.5 56.9 56.8 52.7 68.7

Cr <10 <10 10 <10 <10 <10 <10 <10 <10 <10

Cs 4 3.5 2.7 2.7 4.48 3.37 4.67 4.39 3.02 2.61

Dy 3.9 4.2 3.8 3.6 3.95 3.69 3.86 4.19 3.92 3.36

Er 2.5 2.9 2.6 2.3 2.38 2.19 2.55 2.58 2.38 2.1

Eu 0.9 0.9 1 1 0.92 1 0.94 0.91 0.87 0.83

Ga 16 17 17 17 16.1 15.4 16.2 16.6 15.5 15.6

Gd 4 4.6 4.1 3.9 3.7 3.99 3.89 4.2 3.93 3.61

Hf 5.2 5.3 4.8 5.1 4.9 5.5 4.8 5.5 4.9 4.1

Ho 0.8 0.9 0.9 0.7 0.77 0.76 0.79 0.88 0.81 0.72

La 29 32 28 29 27.1 27.9 31.7 32.4 28.8 38.1

Lu 0.4 0.5 0.4 0.4 0.4 0.39 0.4 0.44 0.4 0.39

Nb 19 21 20 21 22.1 19.4 18.1 20.3 18.5 23.6

Nd 22 23 21 21 20.7 20.9 22.2 22.7 20.9 23.8

Pr 5.9 6.4 5.8 5.8 5.54 5.53 6.08 6.25 5.85 6.81

Rb 130 134 118 114 134.5 121 138 133 137 155

Sm 4.3 4.7 4.3 4.1 4.09 3.8 4.05 4.27 4.06 3.98

Sn 2 2 12 2 2 2 3 2 2 19

Sr 251 276 295 284 267 275 282 277 266 236

Ta 1.7 1.8 2 1.7 1.6 1.6 1.5 1.7 1.7 2.3

Tb 0.7 0.7 0.6 0.6 0.61 0.62 0.66 0.68 0.62 0.57

Th 16 17 12 13 12.65 11.1 12.8 14.7 15.6 15.5

Tm 0.3 0.4 0.4 0.3 0.34 0.32 0.35 0.36 0.37 0.33

U 3.3 3.8 2.6 2.6 3.02 2.69 2.52 3.57 3.06 2.74

V 75 91 97 102 87 86 81 84 80 74

W 495 433 734 415 363 445 628 424 639 891

Y 24 27 23 23 23.4 22.3 23.5 24.9 24.7 21.1

Yb 2.3 2.7 2.6 2.4 2.4 2.39 2.39 2.69 2.65 2.4

Zr 187 191 178 191 194 197 177 203 180 166

REE(t) 129 142 127 127 122.6 124 137 139 128 156

Eu/Eu*

Nb/Ta

0.7 11

0.6 12

0.7 10

0.7 12

0.72 13.81

0.79 12.1

0.72 12

0.66 11.9

0.67 10.9

0.67 10.3

K2O/Na2O 1.2 1.2 1.1 1.1 1.12 1.09 1.3 1.12 1.22 1.2

Mg# 0.4 0.4 0.4 0.4 0.42 0.43 0.41 0.42 0.42 0.41

T a b l e 2 Ma jor ox ide and trace el e ment con cen tra tions in the DBG

(7)

minous (Fig. 4B). Granodiorites have a re stricted range of SiO2

(64.2–66.9), Al2O3 (14.8–16), Fe2O3(t)

(4–5.26), CaO (3.44–4.16), MgO (1.41–1.99), K2O (3.44–4.16) and TiO2

(0.51–0.69). The DBG rocks are calc-al ka line and en riched in po tas sium as seen on a K2O + Na2O + CaO against SiO2 di a - gram (Frost et al., 2001; Fig. 4C). On a to tal al kali against SiO2

clas si fi ca tion plot, the MMEs are sit u ated in the field of diorite and quartz-monzodiorite (Fig. 4A) and have in ter me di ate-mafic sig na tures (SiO2 = 52.8–58.2). Harker plots of some ma jor and trace el e ments dis play trends with a compositional gap be - tween the host granodiorites and MMEs. The MMEs have higher con tents of Al2O3 (16.3–17), Fe2O3(t)

(7.9–9.99), CaO (5.2–7), MgO (2.9–3.81), TiO2 (0.91–1.12) and P2O5

(0.17–0.26) as well as lower con cen tra tions of K2O (1.17–2.52) in com par i son with the host granodiorites (Figs. 4C and 5). The con tents of Nb, Y, Sr, and V in the MMEs is higher than those of the host rocks (Fig. 6). Non-lin ear trends can be formed for some trace el e ments by cha otic move ment (Perugini et al., 2008; S³aby et al., 2011).

On a chondrite-nor mal ized REE di a gram (Boynton, 1984), both of the host granodiorites and the MMEs show mod er ately con cave-up ward pat terns, with en rich ment in LREEs, a flat or non-frac tion ated pat tern for the HREE seg ment and mod er ate Eu neg a tive anom a lies. It is note wor thy to men tion that, MMEs are char ac ter ized by (La/Yb)n = 4.8–7, Eu/Eu*= 0.44–0.7 and all the MMEs sam ples dis play sim i lar mod er ate to tal REE con - cen tra tions (163.8). (La/Yb)n, Eu/Eu* ra tios and REE(t) con tent of the host sam ples ranges from 7.13 to 10.7, 0.6 to 7.9 and 133.21 re spec tively (Fig. 7A).

In tprimitive man tle-nor mal ized trace el e ment pat terns (Sun and McDonough, 1989), the granodiorites and the MMEs are gen er ally en riched in large-ion lithophile el e ments (LILE) and

de pleted in high-field strength el e ments (HFSE). The granodiorites show neg a tive Nb, Ti, P and Ba anom a lies whereas en claves dis play a spe cial pat tern; they have higher Yb,Y, Dy, Lu, Sm, Ti, P, Nb and lower Ba and Zr amounts than those of their host rocks (Fig. 7B).

MAGMA MIXING/MINGLING EVIDENCE

Sev eral lines of ev i dence doc u ment eval u ate the pos si bil ity of source mix ing/min gling in the Dehe-Bala MMEs:

TEXTURAL FEATURES

Based on field ob ser va tions as de scribed above, MMEs in the DBG ex hibit gen er ally el lip soi dal and rounded shapes rang - ing from 2 to 30 cm in size. More over, there is an ab sence of com plex shapes, im ply ing that magma mix ing/min gling has been rel a tively weak in the MMEs (Barbarin, 2005; Farner et al., 2014). Cer tain dis equi lib rium tex tures are doc u mented in the DBG, in clud ing poikilitic large feld spars, small lath-shaped plagioclase in large plagioclase, mafic clots, plagioclase with sieve tex ture, com plex os cil la tory zon ing, re peated re sorp tion sur faces in both the MMEs and host granodiorites, and also acicular ap a tite and quartz pheno crysts in the Dehe-Bala MMEs. These tex tural fea tures are con sid ered to re flect chem i - cal and/or ther mal changes in magma con di tions, also sup port - ing a magma mix ing/min gling or i gin (Baxter and Feely, 2002).

The fine-grained tex ture of MMEs along with the ex is tence of acicular ap a tite, the chilled mar gins and zon ing in plagioclase most likely re sult from rapid tem per a ture equil i bra tion be tween the hot ter mafic and cooler fel sic mag mas dur ing magma mix - ing/min gling (Barbarin, 1990). Ac cord ing to Kumar (2010), the Fig. 5. Hacker plots of ma jor el e ments for the DBG and their MMEs

(8)

Fig. 6. Hacker plots of trace el e ments for the DBG and their MMEs

Fig. 7. The pat terns of trace el e ment dis tri bu tions in DBG and the MMEs A – chondrite-nor mal ized REE pat terns (Boynton, 1984);

B – primitive man tle-nor mal ized trace el e ment pat terns (Sun and McDonough, 1989)

(9)

mix ing of cool and wa ter-bear ing fel sic magma with dry and hot mafic magma can pro duce a va ri ety of va por phases which boosts the crys tal li za tion of hy drous phases (am phi bole and bi - o tite) at the ex pense of pyroxene. The pres ence of some rem - nants of pyroxene in the Dehe-Bala MMEs sug gests that dif fu - sion of wa ter dur ing magma mix ing/min gling has been ef fec tive.

The quartz ocelli and K-feld spar megacrysts in the MMEs most likely were en trained from the host to the MMEs in a mag matic en vi ron ment (Bussy and Ayrton, 1990). In ad di tion, the align - ment of some min er als along the en clave-host bound aries sug - gest a mag matic or i gin for the Dehe-Bala MMEs. In turn, these tex tural fea tures are re garded as ev i dence of the magma mix - ing /min gling pro cess for the gen e sis of the DBG. The higher con tents of CaO, MgO and Fe2O3

(t) cor re spond ing to a greater num ber of mafic min er als in the MMEs, sug gest that they are de rived from hot ter and rel a tively more mafic melts than the host rocks (Kumar and Pieru, 2010).

DIFFUSION AND CHEMICAL EXCHANGE

Best (1982) high lighted that dif fu sion of at oms or mol e cules is a spon ta ne ous pro cess which oc curs due to dif fer ent con cen - tra tions of en ergy or com po si tion in the solid, liq uid and gas phases. There are two main dif fu sion pro cesses in ig ne ous sys - tems as re gards chem i cal ex change: (1) vol a tile and fluid mi - gra tion from the fel sic com po nent to the mafic one (Vernon, 1983) that sig nif i cantly en hances the rate of dif fu sion (Wat son, 1981), (2) dif fu sion of el e ments re sult ing from ther mal, me chan - i cal and compositional con trasts be tween co eval fel sic and mafic magma (Vogel et al., 1984). Ma jor and trace el e ments are con sid ered as net work-form ing and non-net work com po nents in sil i cate mag mas, re spec tively. There fore, trace el e ments dis - play higher diffusional mo bil ity rel a tive to ma jor el e ments dur ing magma mix ing/min gling events (Lesher, 1990). The ma jor and trace el e ment data of the DBG seem ingly show el e ment ex - change which is mainly re lated to hy brid iza tion be tween the MMEs and the host granodiorites dur ing magma mix ing/min - gling. As stated pre vi ously, the DBG and their MMEs are dif fer - ent in terms of their con tents of some ma jor el e ments. The trace el e ments of the MMEs and host granodiorites il lus trate sim i lar trends to prim i tive man tle-nor mal ized pat terns. In ad di tion, the MMEs have sim i lar REE pat terns to those of the host rocks, but the MMEs have higher to tal REE and HREE con cen tra tions.

Higher HREE and to tal REE con cen tra tions in the MMEs of the DBG may be the re sult of dif fu sion of el e ments from the host granodiorites to the mag matic en claves dur ing magma mix - ing/min gling. Fur ther more, the REE en rich ments are in ac cor - dance with crys tal li za tion of ac ces sory min er als such as ap a - tite, zir con and ti tan ite in the MMEs (Sawka, 1988). Sim i larly, the higher Al2O3, TiO2, MgO and FeO3(t)

in the Dehe-Bala MMEs may be re lated to lower diffusional mo bil ity from the MMEs to their fel sic host. There fore, these geo chem i cal fea - tures are in ter preted as be ing in dic a tive of var i ous dif fu sion rates and rel a tive equil i bra tion be tween mafic and fel sic mag - mas from di verse sources dur ing magma mix ing/min gling (Kumar and Pieru, 2010).

In harker di a grams, a neg a tive re la tion ship be tween SiO2

and some ma jor el e ment ox ides is ob served (CaO, MgO, Fe2O3, TiO2, P2O5 and MnO). Ac cord ing to the geo chem i cal cri - te ria three stages of hy brid iza tion have been pro posed for the MMEs as shown be low (Tindle, 1991):

1. MMEs with at least hy brid iza tion char ac ter ized by SiO2

less than 55 wt.% (DA5 = 52.8).

2. MMEs with lit tle hy brid iza tion char ac ter ized by SiO2

about 56 wt.% (DA1 = 56, DA40 = 56.5, DA41 = 56.4, DA43 = 55.9).

3. MMEs with mod er ate hy brid iza tion char ac ter ized by SiO2 close to 58 wt.% (DA42 = 58.2).

The MMEs of stage 1 can be in dic a tive of rapid undercooling of mag mas, which most prob a bly re flects the min - i mum de grees of magma mix ing/min gling be tween MMEs and their fel sic host rock mag mas. The MMEs of 2 and 3 stage il lus - trate slower cool ing of mag mas, so the MME mag mas show signs of slight chem i cal ex change with their host mag mas.

Over all, the geo chem i cal data strongly sug gests that the MMEs from the DBG have ex pe ri enced low lev els of hy brid iza tion with their fel sic host rocks, like stage 2.

FRACTAL DIMENSIONS OF MMES

The MMEs con tained in the DBG dis play rounded and ovoid forms, and also sharp and un even con tacts with their fel - sic host rocks. The MME shapes are de pend ent on lin ear or cha otic move ment mainly due to in ter ac tion be tween co eval fel - sic and mafic mag mas in the magma cham ber (Vernon et al., 1988; Kumar et al., 2004).

When an ob ject shows self-sim i lar prop er ties and an ir reg u - lar shape, it is de scribed as fractal. Fractal the ory has been used for de scrib ing nat u ral shapes. It is dif fi cult to ap ply math e - mat i cal ge om e try to these kinds of ir reg u lar shapes in na ture be cause they can not be rep re sented with Eu clid ean ge om e try.

As noted by Mandelbrot (1989), self-sim i lar ity of frac tals im plies that pat terns tend to re peat them selves at all scales, and for a true fractal, the num ber of scales of nat u ral pat terns is in fi nite.

In fact, the het er o ge ne ity of the mor phol ogy of the MMEs is an other nat u ral ex pres sion of self-sim i lar pat terns which can be mea sured as fractal struc tures (Perugini and Poli, 2000). Pho - to graphs of 24 sam ples were taken for ac cu rate de tec tion of the con tact be tween the MMEs and the cor re spond ing fel sic granodiorites. Sev eral pho tos of the in ter face were taken to eval u ate the er ror, which was con sid ered to be about 2–3%.

The pho tos were con verted to bi nary im ages by use of soft ware ImageJ. In bi nary im ages, the MMEs and the host are sep a - rated from each other by black and white pix els, re spec tively.

The fractal pat terns from the Dehe-Bala MMEs were cal cu lated by a box-count ing method (Dbox) and by the fol low ing re la tion - ship (Mandelbrot, 1982) in the soft ware Im age J:

( ) ( )

logN = -Dbox +logr [1]

Ac cord ing to equa tion [1] the fractal di men sion is a func tion of the num ber of boxes (N) with dif fer ent sizes (r) that con tain part of the im age.

The slope of the line in a plot of log(r) vs. log(N) is equal to –Dbox. The Dbox value in the 24 sam ples from the Dehe-Bala MMEs var ies from 1.14 to 1.29 (Ta ble 3) and has a mode of Dbox = 1.29 in the his to gram (Fig. 8).

VISCOSITY

Perugini and Poli (2005) pro posed that the fractal di men - sions of the con tact sur face be tween two flu ids (Dbox) and their vis cos ity ra tio (VR) are strictly re lated (Ta ble 3). Af ter many ex - per i ments they ex tracted a new em pir i cal equa tion as fol lows:

( )

logVR =0 013. ´e3 34. ´Dbox [2]

In this part, we es ti mate the log a rithm of the vis cos ity ra tio ac cord ing to eqation [2] and the Dbox val ues. The log a rithm of the vis cos ity ra tio log(VR) var ies be tween 0.56 to 0.96 and Fig - ure 9 de picts the high est fre quency as about 0.96.

(10)

Fur ther more, a melt vis cos ity model (Giordano et al., 2008) as a func tion of whole-rock geo chem i cal com po si tion and tem - per a ture was ap plied to es ti mate the vis cos ity of the en clave and host granodiorite sam ples. The melt vis cos i ties for melts with 2.5, 2 and 1 wt.% of H2O at dif fer ent tem per a tures were de - ter mined (Ta ble 4) us ing PELE soft ware (Boudreau, 1999). The av er age whole-rock com po si tion was re cal cu lated to 100 af ter add ing 2.5, 2 and 1 wt.% H2O.

DISCUSSION

GEOCHEMICAL INTERPRETATION DBG

The rel a tively high con cen tra tions of SiO2 (64.2–66.9), K2O (3.44–4.16) and metaluminous na ture ac com pa nied by sev eral min er al og i cal fea tures in clud ing the pres ence of hornblende

and the lack of cor di er ite, gar net, and nor ma tive co run dum dem on strate that the DBG be long to I-type gran ites.

In com par i son with melts pro duced by ex per i men tal de hy - dra tion-melt ing (PatiÔo Douce, 1999), the com po si tion of DBG rocks in di cate an ig ne ous source. Some el e men tal ra tios such as high CaO/Na2O > 1, mo lar CaO/MgO + FeO(t) > 0.5 val ues and small pro por tions of Al2O3/TiO2 (<35), Rb/Ba (<1), Rb/Sr (<1) as well as the mo lar Al2O3/MgO + FeO(t) (<2) sup port their der i va tion from ba saltic am phi bo lite sources (Fig. 10A, B).

More over, it is no ta ble that the DBG have higher Mg¹ (0.39–0.43) lev els than that of ex per i men tally yielded pure crustal par tial melts as de picted in Fig ure 3. How ever, the high Mg¹ value of the sam ples stud ied is in con flict with adakitic mag - mas be cause of the fact that these rocks have lower Sr/Y (= 10.41–12.6) and (La / Yb)n = 7.13–10.7 ra tios than those in adakites. Com mon adakite mag mas are char ac ter ized by Sr/Y > 40 and (La / Yb)n > 12 ra tios (Wang et al., 2005; Fig. 10C).

Fur ther more, The Ba/Rb ra tio in the Dehe-Bala I-type granodiorites (Ba/Rb = 3.81–5.84, »5) is lower than in man -

sam ple C2 C3 C4 C6 C8 C12 C16 C32 C64 Dbox log(VR)

1 1530 944 679 412 296 179 128 52 22 1.224 0.77

2 935 538 395 225 162 99 68 31 14 1.212 0.74

3 5239 3223 2247 1401 954 569 390 159 60 1.286 0.95

4 632 412 281 180 131 81 56 23 11 1.183 0.67

5 901 552 376 218 159 93 66 27 12 1.254 0.85

6 1645 1024 698 416 287 173 122 54 25 1.221 0.76

7 2486 1456 999 588 400 240 173 72 30 1.271 0.9

8 2154 1268 891 535 370 210 156 61 24 1.292 0.97

9 2122 1244 880 510 348 205 143 60 24 1.292 0.97

10 3655 2251 1539 947 623 388 250 105 47 1.272 0.9

11 3598 2168 1487 883 604 363 245 103 45 1.273 0.91

12 4281 2602 1825 1080 730 432 293 120 49 1.297 0.98

13 1432 894 643 374 273 161 114 50 21 1.222 0.77

14 1066 635 453 280 202 123 85 39 17 1.19 0.69

15 1243 722 483 279 197 111 85 38 15 1.261 0.87

16 1724 1022 705 415 288 173 115 48 20 1.289 0.96

17 1744 1059 746 441 307 185 130 53 26 1.231 0.79

18 5048 2889 2006 1146 788 465 336 148 57 1.28 0.93

19 826 505 342 205 141 84 62 27 10 1.26 0.87

20 3462 2100 1474 946 678 417 283 118 49 1.223 0.77

21 755 462 320 209 144 88 69 28 12 1.186 0.68

22 934 552 379 238 163 96 71 32 12 1.238 0.81

23 857 515 381 237 161 110 70 33 17 1.144 0.59

24 1099 684 499 311 216 138 97 47 22 1.133 0.57

C2–C64 val ues in tro duce box se quences with dif fer ent sizes

T a b l e 3 The re sults of fractal di men sions of MMEs (Dbox) and logarithm of the vis cos ity ra tio

be tween the granodiorites and the MMEs

Fig. 8. Fre quency his to gram rep re sent ing the dis tri bu tion of val ues of the fractal di men sions (Dbox) of the MMEs

in the DBG

Fig. 9. Fre quency his to gram rep re sent ing the dis tri bu tion of val ues of log a rithm of the vis cos ity ra tio log(VR) be tween

the granodiorite host and the MMEs

(11)

tle-de rived mag mas (Ba/Rb = 11; Hofmann and White, 1983) and it is closer to that of crustal-de rived mag mas (Ba/Rb = 6.7) (Rudnick and Foun tain, 1995). Also the Th/Ta ra tio, which is an im por tant char ac ter is tic of crust–man tle in ter ac tion, is about 2 for man tle-de rived rocks, 6.9 for up per crust and 7.9 for lower crust (Shellnutt et al., 2009). The Th/Ta ra tio in granodiorites (Th/Ta = 6.22–9.35, »7.9) is con sis tent with par tic i pa tion of lower crust in the for ma tion of the granodiorite magma (Shellnutt et al., 2009). The Nb/Ta ra tios in the DBG vary from 10 to 13.81. Man tle-de rived melts are gen er ally char ac ter ized by a high Nb/Ta ra tio (>17.5; Huang et al., 2011), the Nb/Ta ra - tio of crustal-de rived melts rang ing from 10 to 13.8 (Rudnick and Foun tain, 1995; Huang et al., 2011). Thus they can not be con sid ered pure melt de riv a tives from crust. The mix ture of

crust-de rived fel sic with man tle-de rived mafic melts is a suit able ex pla na tion for the or i gin of the DBG. The REE plots of the granodiorite sam ples dis play mod er ately frac tion ated REE Pat - terns ((La/Yb)n = 7.13–10.7), en rich ment in LREEs ((La/Sm)n = 4–6.2) and rel a tive de ple tion in HREEs ((Gd /Yb)n = 1.19–1.38).

The flat pat terns for HREE and rel a tively high Y con tents sug - gest that the melt ing of sources oc curred out side the gar net sta - bil ity field (Rapp and Wat son, 1995). The mod er ately frac tion - ated REE pat terns ((La/Yb)n = 7.13–10.7) and the high Y/Yb = 8.79–10 and low (Ho/Yb)n = 0.87–0 ra tios can be at trib - uted to an am phi bole-bear ing source (Hu et al., 2012).

Harker plots of se lected ma jor and trace el e ments show sys tem atic vari a tions in el e men tal con cen tra tion. A prom i nent fea ture of the frac tional crys tal li za tion pat tern is de picted in the Fig. 10A, B – the com par i son be tween the Dehe-Bala sam ples with ex per i ments ob tained from par tial

melt ing of the crust and man tle rocks in the ab sence of fluid (PatiÔo Douce, 1999); C – Sr/Y vs. Y (Drummond and Defant, 1990) di a gram for the Dehe-Bala samples

DG9 DA5 DA42

wt.%

H2O 2.5 2 1 2.5 2 1 2.5 2 1

T [°C]

1000 4.6 4.8 5.6 3.6 3.8 4.5 4.0 4.2 4.9

900 6.0 6.3 7.2 5.1 5.5 6.3 5.4 5.8 6.6

800 7.3 7.7 8.8 6.5 6.9 7.9 6.8 7.2 8.2

700 8.7 9.2 10.6 7.9 8.3 9.5 8.2 8.6 9.8

600 10.4 11 12.7 9.4 9.9 11.3 9.7 10.3 11.7 T a b l e 4 The vis cos ity cal cu la tions of sam ples in the DBG (DG9) and their en claves

(DA5 and DA42) at dif fer ent tem per a tures and H2O con tent

(us ing PELE soft ware Boudreau, 1999 and equa tions of Giordano et al., 2008)

(12)

Ba vs. Eu/Eu* and Rb/Sr vs. Sr di a grams (Fig. 11). With in - crease in SiO2, the amounts of MgO, CaO, Al2O3, Fe2O3(t)

, Sr, Eu/Eu* de crease, while K2O, ASI and Ba in crease. These vari - a tions im ply that frac tional crys tal li za tion of plagioclase and hornblende is dom i nant dur ing magma evo lu tion (Wil son, 1989). The mod er ate Rb/Ba and Rb/Sr ra tios sug gest lower de - grees of frac tion ation in I-type granitoids (Landenberger and Col lins, 1996). These ra tios in the DBG show that the granodiorites are not highly frac tion ated gran ites (Rb/Ba (0.17–0.26) and Rb/Sr (0.4–0.65). Geo chem i cal data sug gest that the evo lu tion of the granodiorites was con trolled by frac - tional crys tal li za tion and magma mix ing pro cesses in the Dehe-Bala suite. Ac cord ing to the whole-rock geo chem is try and field re la tions it seems that the DBG com po si tion is a mix - ture of crust and man tle mag mas along with stron ger crustal con tri bu tion while, on the other hand, the potassic con tent of sam ples (K2O/Na2O = 1.16), the LILE en rich ment rel a tive to the HFSE as well as the neg a tive Ba anom a lies and the Th/Ta »7.9 ra tio show that lower con ti nen tal crust (LCC) has played an im - por tant role in the or i gin of the DBG. Ev i dently, man tle-de rived mafic magma in jec tion be neath the lower crust led to heat trans fer and chem i cal ex change be tween co eval fel sic and mafic mag mas (Hildreth and Moorbath, 1988, Kananian et al., 2014). There fore, we can con clude that most likely pa ren tal magma of these rocks was de rived from the par tial melt ing of mafic lower crust and then mixed to a low de gree with man - tle-de rived mafic magma.

MMEs

The or i gin of MMEs has long been con tro ver sial. The MMEs in the DBG are re garded as tes ti mo nies of man tle-de - rived mafic magma which can also serve as a doc u ment of in - com plete mix ing be tween two dis tinct mag mas. The MMEs and the host granodiorites dis play sim i lar min eral as sem blages with ig ne ous tex tures, which is in con sis tent with the restite model.

Meta mor phic or re sid ual sed i men tary fab ric is one of the fea - tures of the restite model (White et al., 1999). Also, the lack of cu mu late tex tures and the pres ence of chilled mar gins in the MMEs is in con sis tent with the autolith model. It is also note wor - thy that the rel a tively sim i lar con tent of REEs, semi-par al lel trace el e ment pat terns and grain size dif fer ence be tween the MMEs and their host granodiorites, strongly con tra-in di cate an autolith or i gin for MMEs for ma tion. The Mg ¹ 0.4–0.46 value in the MMEs is slightly higher than that in the host granodiorites (Mg ¹ 0.39–0.43), which sup ports the prob a bil ity mix ing/min - gling of man tle-de rived mafic magma with crust-de rived fel sic mag mas in var i ous pro por tions.

The av er age Nb/Ta ra tio in crust-de rived melts is about 11 to 12 and in man tle-de rived melts is 17.5 (Green, 1995). This ra tio in the MMEs is 15.44. As noted by Morata et al. (2005), the La/Nb and Ba/Nb ra tios for crust-de rived melts are 2.2 and 5.4 and for man tle-de rived melts vary be tween 0.76–1.03 and 7.6–17.4, re spec tively. The La/Nb and Ba/Nb ra tios of the Dehe-Bala MMEs range from 0.7 to 1.4 and 12 to 19, re spec - tively. These el e men tal ra tios sug gest sig nif i cant con tri bu tion of a more mafic mag matic com po nent in the gen e sis of these MMEs. Par tial melt ing in the gar net sta bil ity field pro duces melts with high val ues of the (DY/Yb > 2.5) ra tio, whereas man - tle-de rived melts in the spinel field have gen er ally lower ra tios of DY/Yb < 1.5 (Liu et al., 2015). More over, the Dehe-Bala MMEs are char ac ter ized by Dy/Yb ra tios of about 2 and rel a tively potassic con tents of K2O = 1.4–3.8, im ply ing that en clave-form - ing mag mas de rived from par tial melt ing of man tle in the spinel-gar net tran si tion zone. These ob ser va tions lead us to con clude that the MMEs in the DBG were glob ules of man - tle-de rived mafic magma. Mafic glob ules were in jected into crust-de rived fel sic magma and par tially mixed with host magma.

TRACING MAGMA MIXING

Field ob ser va tions and geo chem i cal data il lus trate that magma mix ing has oc curred in the Dehe-Bala com plex. In or - der to know what frac tion of mafic magma is pres ent in the granodiorites and the en claves, we have cho sen two rep re sen - ta tive en clave and granodiorite sam ples (DA1 and DG9) with low, and high SiO2 con tent re spec tively to cal cu late the amount of mix ing us ing the fol low ing mix ing equa tion (Fourcade and AllÀgre, 1981):

CiM-CiA = X(CiB-CiA) [3]

CiA is the con cen tra tion of el e ment i in the fel sic end-mem - ber (i.e. the av er age com po si tion of granodiorites as the fel sic end-mem ber), CiB is a com po nent which shows the con cen tra - tion of el e ment i in the mafic end-mem ber (i.e. the DA5 sam ple and the av er age com po si tion of the en claves were cal cu lated as the mafic end-mem ber in the en claves and granodiorites re - spec tively), the last com po nent is CiM which shows the con cen - tra tion of el e ment i in hy brid mag mas (i.e. DA1 and DG9). X is the frac tion of mafic com po nent in the hy brid.

The plot of mix ing pa ram e ters shows slopes (x) of 0.98 and 0.13 for DA1 and DG9 sam ples re spec tively (Fig. 12). It seems that the hy brid en claves and granodiorites were gen er ated by a min i mum de gree of mix ing of fel sic and mafic end-mem bers Fig. 11. A prom i nent fea ture of frac tional crys tal li za tion pat tern in the Ba vs. Eu/Eu*

and Rb/Sr vs. Sr plots for DBG samples

(13)

with a rel a tively high mafic mass frac tion in the en claves and a low frac tion in the granodiorites.

Perugini and Poli (2000) sug gested that the fractal di men - sions of MMEs are re lated to the dif fer ent de grees of mag matic in ter ac tion. Thus, with de creas ing of fractal di men sions within MMEs, the mor phol ogy of the in ter face be tween co eval fel sic and mafic mag mas prob a bly be come less com plex, and so MMEs re flect in creas ing “di lu tion” with fel sic magma and lie far - ther away from the mafic end-mem ber in com po si tion. In the con trast, as the fractal di men sions of MMEs in crease, the in ter - face be comes more ir reg u lar, hence these MMEs dis play lower de grees of con tam i na tion and are more sim i lar to the mafic end-mem ber (Perugini and Poli, 2000; Al bert et al., 2014). As shown in Fig ure 13 the Dbox val ues de crease from A to C and also from D to F. The de crease in the Dbox value is ac com pa nied by re duc ing the com plex ity of the mor phol ogy of the MMEs. Fig - ure 14 em pha sizes that dif fer ent Dbox val ues cor re spond to dif - fer ent log(VR).

When the log(VR) de creases, the mix ing pro cess is fa cil i - tated be tween co eval fel sic and mag mas; con se quently, the MMEs dis play lower Dbox and are closer in com po si tion to the mafic end-mem ber. Field and pe trog ra phy re la tions of mix ing struc tures show that both mag mas be haved as liq uids at the same time. The pres ence of plagioclase pheno crysts at the in ter - face im plies that there was a small vis cos ity dif fer ence be tween two mag mas (Chen et al., 2009). Fur ther more, the vis cos ity cal - cu la tions in di cates loghgr > log hen at dif fer ent tem per a tures and also a small vis cos ity dif fer ence be tween the en clave and granodiorite melts (Fig. 15 and Ta ble 4). This sug gests that the pro por tion of mafic magma may have been large enough (>80%;

Laumonier et al., 2014) to heat the fel sic magma to lower the mix ing de gree be tween two co eval mag mas. Com par i son of the vis cos i ties of the granodiorites and the en claves sug gest that when the high tem per a ture mafic magma en coun tered the fel sic magma with lower tem per a ture and higher wa ter con tent, the mafic magma dropped in tem per a ture and the tem per a ture of the fel sic magma started to in crease (Grove and Sando, 1982;

Hildreth and Moorbath, 1988), there fore log(VR) de creases and magma mix ing pro cesses were eas ier. At the same time the mafic magma cooled off and crys tal lized to gen er ate more vis - cous en claves. Thus, the vis cos ity val ues of the mag mas could be re versed (loghen > loghgr). The en claves in the Dehe-Bala granodiorites have higher Dbox and log(VR). They were also

closer in com po si tion to the mafic end-mem ber. The vis cos ity of DA42 was higher than that of DA1 be cause of the fact that the DA42 sam ple is more evolved than DA1 and pro duced by mod - er ate hy brid iza tion with the fel sic magma. This is con sis tent with the geo chem i cal data and the fractal di men sions of en claves (Dbox) in the Dehe-Bala com plex.

CONCLUSION

Based on the geo chem i cal re sults pre sented in this re - search, we can con clude that:

1. The Dehe-Bala granodiorites are high-K calc-al ka line, metaluminous and dis play geo chem i cal char ac ter is tics of I-type gran ites. The neg a tive Nb and Ti anom a lies and low Sr (236–296) and high Y (21–26.5) con tents along with neg a tive Eu anom a lies, the flat pat tern in HREE and mod er ately frac tion - ated REE pat terns of the chondrite-nor mal ized REE plots in the stud ied sam ples im plies to a gar net-free source.

2. The granodiorite rocks have been de rived by par tial melt - ing of lower crust rocks, then ex pe ri enced low de grees of mix - ing/min gling with man tle-de rived mafic magma. Sim i larly, MMEs from the DBG show signs of a magma mix ing/min gling or i gin as at tested by the high con tri bu tion of a man tle com po nent and a low pro por tion of the fel sic com po nent in their evo lu tion.

3. The dis tri bu tion of ma jor and trace el e ments along with the oc cur rence of some crys tals be long ing to the fel sic host (e.g. K-feld spar megacrysts and quartz ocelli) within en claves can be re garded as re flect ing chem i cal ex change and diffusional pro cesses that may be con sid ered as a nat u ral re sult of the magma mix ing/min gling event.

4. The tex tural het er o ge ne ity re lated to the Dehe-Bala MMEs has been de ter mined as of high fractal di men sion(Dbox = 1.29).

Thus fractal study of MMEs pro vided a dif fer ent and new per - spec tive on the Dehe-Bala com plex. The first re sult of the fractal anal y sis is that the MMEs with high Dbox val ues have more com - plex ity of mor phol ogy among the MMEs. The sec ond out come is that the MMEs with high Dbox val ues dis play high log VR and hence re flect low de grees of mix ing/min gling with the host magma. Fi nally, lower de grees of mix ing/min gling have been dem on strated in the Dehe-Bala com plex, both from the geo - chem i cal and the fractal ge om e try points of view.

Fig. 12. Magma mix ing plots (CiM-CiA ver sus CiB-CiA) us ing ma jor el e ments for A – DA1 and B – DG9 sam ples Magma mix ing pro cess is not oc curred in the grey area (af ter Fourcade and Allégre, 1981); see text for more dis cus sion

(14)

Fig. 13. Ex am ples of fractal di men sions of the bound ary be tween the en claves with granodiorite host. The im ages and the di a grams were pro cessed by (Image J)

soft ware

Fig. 14. Vari a tion of Dbox vs. log(VR) for the MMEs in the DBG

(15)

Ac knowl edg ments. We ex press our grat i tude to the ed i tor, W. Granoszewski, for ed i to rial han dling and two anon y mous re - view ers for gen er ous com ments and sug ges tions that helped to im prove the stan dard of the manu script. Geo chem i cal anal y ses

were car ried out at the ALS-Chemex Lab, Loughrea, Ire land.

We would like to thank Mr. Mostafaie for tech ni cal as sis tance.

REFERENCES

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spak-man, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros orog eny: a subduction-dom i nated pro cess. Geo log i cal Mag a - zine, 148: 692–725.

Al berta, H., Perugini, D., Marti, J., 2014. Fractal anal y sis of en - claves as a new tool for es ti mat ing rhe o log i cal prop er ties of mag mas dur ing mix ing: the case of Montan a Reventada (Tenerife, Ca nary Is lands). Pure and Ap plied Geo phys ics, doi:

10.1007/s00024-014-0917-5 Fig . 15. Di a grams of mea sured vis cos i ties ver sus dif fer ent tem per a tures for the granodiorite (DG9) and

en clave (DA1 and DA42) melts

A – with 2.5 wt.% H2O con tent; B – with 2 wt.% H2O con tent, C – with 1 wt.% H2O con tent;

see text for more discussion

(16)

Barbarin, B., 1990. Plagioclase xeno crysts and mafic mag matic en - claves in some granitoids of the Si erra Ne vada Batholith, Cal i - for nia. Jour nal of Geo phys i cal Re search, 95: 17747–17756.

Barbarin, B., 2005. Mafic mag matic en claves and mafic rocks as - so ci ated with some granitoids of the cen tral Si erra Ne vada batholith, Cal i for nia: na ture, or i gin, and re la tions with the hosts.

Lithos, 80: 155–177.

Baxter, S., Feely, M., 2002. Magma mix ing and min gling tex tures in granitoids: ex am ples from the Galway Gran ite, Connemara, Ire - land. Min er al ogy and Pe trol ogy, 76: 63–74.

Berberian, M., King, G.C.P., 1981. To wards a palaeo ge ogra phy and tec tonic evo lu tion of Iran. Ca na dian Jour nal of Earth Sci - ences, 18: 210–265.

Best, M., 1982. Ig ne ous and Meta mor phic Pe trol ogy. Free man, San Fran cisco.

Boudreau, A.E., 1999. PELE – a ver sion of the MELTS soft ware pro gram for the PC plat form. Com put ers & Geosciences, 25:

201–203.

Boynton, W.V., 1984. Geo chem is try of the rare earth el e ments: me - te or ite stud ies. In: Rare Earth El e ment Geo chem is try (ed. P.

Henderson): 63–114. Elsevier, Am ster dam.

Bussy, F., Ayrton, S., 1990. Quartz tex tures in dioritic rocks of hy - brid or i gin. Schweizerische Mineralogische und Petrographische Mitteilungen, 70: 223–235.

Cas tro, A., 2013. The off-crust or i gin of gran ite batholiths.

Geoscience Fron tiers, 5: 63–75.

Chappell, B.W., White, A.J.R., 1974. Two con trast ing gran ite types. Pa cific Ge ol ogy, 8: 173–174.

Chen, B., Chen, Z.C., Jahn, B.M., 2009. Or i gin of mafic en claves from the Taihang Me so zoic orogen, north China craton. Lithos, 110: 343–358.

Clem ens, J.D., Stevens, G., 2012. What con trols chem i cal vari a - tion in gra nitic mag mas? Lithos, 134(135): 317–329.

Col lins, W.J., 1996. Lach lan Fold Belt granitoids: prod ucts of three-com po nent mix ing. Trans ac tions of the Royal So ci ety of Ed in burgh Earth Sci ences, 87: 171–181.

Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite gen e sis and crustal growth via slab melt ing: Archean to mod ern com par i sons. Jour nal of Geo phys - ics Re search, 95: 21503–21521.

Eghlimi, B., 2000. Geo log i cal map of Danesfahan (Khiaraj) scale 1:100,000 (in Per sian). Geo log i cal Survay of Iran, Teh ran, Iran.

Farner, M.J., Lee, C.T.A., Putirka, K.D., 2014. Mafic-fel sic magma mix ing lim ited by re ac tive pro cesses: a case study of bi o tite-rich rinds on mafic en claves. Earth and Plan e tary Sci ence Let ter, 393: 49–50.

Fourcade, S. and AllÀgre, C.J., 1981. Trace el e ment be hav ior in gran ite gen e sis: a case study of the calc-al ka line plutonic as so - ci a tion from the Querigut com plex (Pyr e nees, France). Con tri - bu tions to Min er al ogy and Pe trol ogy, 76: 177–195.

Frost, B.R., Barnes, C.G., Col lins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geo chem i cal clas si fi ca tion for gra nitic rocks. Jour nal of Pe trol ogy, 42: 20–33.

Giordano, D., Rus sell, J.K., and Dingwell, D.B., 2008. Vis cos ity of mag matic liq uids: a model. Earth and Plan e tary Sci ence let ters, 271: 123–134.

Green, T.H., 1995. Sig nif i cance of Nb/Ta as an in di ca tor of geo - chem i cal pro cesses in the crust man tle sys tem. Chem i cal Ge ol - ogy, 120: 347–359.

Grove, D.C., and Sando, T.W., 1982. Or i gin of calc-al ka line se ries lavas at Med i cine Lake Vol cano by frac tion ation, as sim i la tion and mix ing. Con tri bu tions to Min er al ogy and Pe trol ogy, 80:

160–182.

Hildreth, W., Moorbath, S., 1988. Crustal con tri bu tion to arc magmatism in the An des of centeral Chile. Con tri bu tions to Min - er al ogy and Pe trol ogy, 98: 455–489.

Hofmann, A.W., White, M., 1983. Ba, Rb and Cs in the earth man - tle. Naturforsch, 38: 258–266.

Huang, H., Niu, Y., Zhao, Z., Hei, H., Zhu, D., 2011. On the enigma of Nb-Ta and Zr-Hf frac tion ation a crit i cal re view. Jour nal of Earth Sci ence, 22: 52–66.

Hu, J., Jian, Sh.Y., Zhao, H.X., Shao, Y., Zhang, Z.Z., Xiao, E., Wang, Y.F., Dai, B.Z. and Li, H.Y., 2012. Geo chem is try and petro gen esis of the Huashan gran ites and their im pli ca tions for the Me so zoic tec tonic set ting in the Xiaoqinling gold min er al iza - tion belt, NW China. Jour nal of Asian Earth sci ences, 56:276–289.

Kananian, A., Sarjoughian, F., Nadimi, A.R., Ahmadian, J., Ling.

W., 2014. Geo chem i cal char ac ter is tics of the Kuh-e Dom in tru - sion, Urumieh–Dokhtar Mag matic Arc (Iran): im pli ca tions for source re gions and mag matic evo lu tion. Jour nal of Asian Earth Sci ences, 90: 137–148.

Karsli, O., Chen, B., Aydin, F., ªen, C., 2007. Geo chem i cal and Sr–Nd–Pb iso to pic com po si tions of the Eocene Dölek and Sariçiçek Plutons, East ern Tur key: Im pli ca tions for magma in - ter ac tion in the gen e sis of high-K calc-al ka line granitoids in a post-col li sion extensional set ting. Lithos, 98: 7–96.

Kemp, A.I., Hawkesworth, C.J., Fos ter, G.L., Pat er son, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., Whitehouse, M.J., 2007. Mag matic and crustal dif fer en ti a tion his tory of gra nitic rocks from Hf–O iso topes in zir con. Sci ence, 315: 980–983.

Kretz, R., 1983. Sym bols for rock-form ing min er als. Amer i can Min - er al o gist, 68: 277–279.

Kumar, S., 2010. Mafic to hy brid microgranular en claves in the Ladakh batholith, north west ern Himalaya: im pli ca tions on calc-al ka line magma cham ber pro cesses. Jour nal of Geo log i cal So ci ety of In dia, 6: 5–25.

Kumar, S., Pieru, T., 2010. Pe trog ra phy and ma jor el e ment geo - chem is try of microgranular en claves and Neoproterozoic granitoids of South Khasi, Meghalaya: ev i dence of magma mix - ing and al kali dif fu sion. Jour nal of Geo log i cal So ci ety In dia, 76:

345–360.

Kumar, S., Rino, V., Pal, A.B., 2004. Field ev i dence of magma mix - ing from microgranular en claves hosted in Palaeoproterozoic Malanjkhand granitoids, cen tral In dia. Gond wana Re search, 7:

539–548.

Landenberger, B., Col lins, W.J., 1996. Der i va tion of A-type gran - ites from a de hy drated charnockitic lower crust: ev i dence from the Chaelundi com plex, East ern Aus tra lia. Jour nal of Pe trol ogy, 37: 145–170.

Laumonier, M., Scaillet, B., Pichavant, M., Champallier, R., Andujar, J., Arbaret, L., 2014. On the con di tions of magma mix - ing and its bear ing on an de site pro duc tion in the crust. Na ture Cominucation, ar ti cle num ber: 5607, doi: 10.1038/ncomms6607 Lesher, C.E., 1990. De coup ling of chem i cal and iso to pic ex change

dur ing magma mix ing. Na ture, 344: 235–237.

Liu, Z., Jiang, Y.H., Jia, R.Y., Zhao, P., Zhou, Q., 2015. Or i gin of Late Tri as sic high-K calc-al ka line granitoids and their potassic microgranular en claves from the west ern Ti bet Pla teau, north - west China: im pli ca tions for Paleo-Tethys evo lu tion. Gond wana Re search, 27: 326–341.

Mandelbrot, B.B., 1982. The Fractal Ge om e try of Na ture. W.H.

Free man, New York.

Mandelbrot, B.B., 1989. Fractal ge om e try: what is it, and what does it do? In: Frac tals in the Nat u ral Sci ences (eds. F.R.S.

Fleischmann, D. Tildesley and R.C. Ball). Prince ton Uni ver sity Press, Prince ton NJ.

Maniar, P.D., Piccoli, P.M., 1989. Tec tonic dis crim i na tion of granitoids. Ge ol ogy So ci ety of Amer i can Bul le tin, 101: 635–643.

Moradian, A., 1997. Geo chem is try, Geo chron ol ogy and Pe trog ra - phy of Feldspathoid Bear ing Rocks in Urumieh-Dokhtar Vol ca - nic Belt, Iran. Un pub lished Ph.D the sis, Uni ver sity of Wollongong, Aus tra lia.

Morata, D., Oliva, C., Cruz, R.D.l., Suarez, M., 2005. The Bandurrias gab bro: Late Oligocene al ka line magmatism in the Patagonian Cor dil lera. Jour nal of South Amer i can Earth Sci - ences, 18: 147–162.

PatiÔo Douce, A.E., 1999. What do ex per i ments tell us about the rel a tive con tri bu tions of crust and man tle to the or i gin of gra nitic mag mas? Geo log i cal So ci ety of Lon don Spe cial Pub li ca tions, 168: 55–75.

PatiÔo Douce, A.E., Johnston, A.D., 1991. Phase equi lib ria and melt pro duc tiv ity in the pelitic sys tem: im pli ca tions for the or i gin

(17)

of peraluminous granitoids and aluminous granu lites. Con tri bu - tions to Min er al ogy and Pe trol ogy, 107: 202–218.

Perugini, D., Poli, G., 2000. Cha otic dy nam ics and frac tals in mag - matic in ter ac tion pro cesses: a dif fer ent ap proach to the in ter pre - ta tion of mafic microgranular en claves. Earth and Plan e tary Sci - ence Let ters, 175: 93–103.

Perugini, D., Poli, G., 2005. Vis cous fin ger ing dur ing re plen ish ment of fel sic magma cham bers by con tin u ous in puts of mafic mag - mas: field ev i dence and fluid-me chan ics ex per i ments. Ge ol ogy, 33: 5–8.

Perugini, D., Poli, G., 2012. The mix ing of mag mas in plutonic and vol ca nic en vi ron ments: anal o gies and dif fer ences. Lithos, 153:

263–279.

Perugini, D., Poli, G., Christofides, G., Eleftheriadis, G., 2003.

Magma mix ing in the Sithonia plutonic com plex, Greece: ev i - dence from mafic microgranular en claves. Min er al ogy and Pe - trol ogy, 78: 173–200.

Perugini, D., De Cam pos, C.P., Dingwell, D.B., Petrelli,M., Poli, G., 2008. Trace el e ment mo bil ity dur ing magma mix ing: pre lim i - nary ex per i men tal re sults. Chem i cal Ge ol ogy, 256: 146–157.

Rapp, R.P., Wat son, E.B., 1995. De hy dra tion melt ing of metabasalt at 8–32 kbar: im pli ca tions for con ti nen tal growth and crust–man - tle re cy cling. Jour nal of Pe trol ogy, 36: 891–931.

Rudnick, R.L., Foun tain, D.M., 1995. Na ture and com po si tion of the con ti nen tal crust: a lower crustal per spec tive. Re views of Geo phys ics, 33: 267–309.

Safarzadeh, E., 2007. Petrogheraphy and pe trol ogy of Haji Abad pluton (in Per sian with Eng lish ab stract). MSc. the sis, Uni ver sity of Shahid Beheshti, Teh ran, Iran.

Sawka, W.N., 1988. REE and trace el e ment vari a tions in ac ces sory min er als and hornblende from the strongly zoned McMurry Mead ows pluton, Cal i for nia. Trans ac tions of the Royal So ci ety of Ed in burgh, 79: 157–168.

Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., 2005.

Vo lu mi nous graniticmagmas from com mon ba saltic sources.

Con tri bu tions to Min er al ogy and Pe trol ogy, 148: 635–661.

S³aby, E., Smigielski, M., Smigielski, T., Domonik, A., Si mon, K., Kronz, A., 2011. Cha otic three-di men sional dis tri bu tion of Ba, Rb, and Sr in feld spar megacrysts grown in an open mag matic sys tem. Con tri bu tion to Min er al ogy and Pe trol ogy, 162:

909–927.

Shellnutt, J.G., Wang, C.Y., Zhou, M.F., Yang, Y., 2009. Zir con Lu-Hf iso to pic com po si tions of metaluminous and peralkaline A-type gra nitic plutons of the Emeishan large ig ne ous prov ince

(SW China): con straints on the man tle source. Jour nal of Asian Earth Sci ence, 35: 45–55.

Sun, S.S., McDonough, W.F., 1989. Chem i cal and iso to pic sys tem - at ics of oce anic bas alts: im pli ca tions for man tle com po si tion and pro cesses. Geo log i cal So ci ety Lon don, Spe cial Pub li ca - tions, 42: 313–345.

Tabakhe Shabani, A.A., 1990. Petrogheraphy and pe trol ogy of ig - ne ous plutons of south Boien Zahra. (in Per sian with Eng lish ab - stract). MSc. the sis, Uni ver sity of Kharazmi, Karaj, Iran.

Tindle, A.G., 1991. Trace el e ment be hav iour in microgranular en - claves from gra nitic rocks. In: En claves and Gran ite Pe trol ogy, De vel op ments in Pe trol ogy (eds. J. Didier and B. Barbarin): 13:

13–33. Elsevier, Am ster dam.

Vernon, R.H., 1983. Restites, xe no liths and microgranitoid en - claves in gran ites. Jour nal and pro ceed ings of the Royal So ci ety of New South Wales (Lon don), 116: 77–103.

Vernon, R.H., Etheridge, M.A., Wall, V.J., 1988. Shape and micro - struc tures of microgranitoid en claves: in di ca tors of magma min - gling and flow. Lithos, 22: 1–11.

Vogel, T.A., Youn ker, L.W., Wilband, J.T., Kampueller, E., 1984.

Magma mix ing: the Marsco suite, Isle of Skye, Scot land. Con tri - bu tions to Min er al ogy and Pe trol ogy, 87: 231–241.

Wang, Q., McDermott, F., Xu, J.F., Bellon, H., Zhu, Y.T., 2005. Ce - no zoic K-rich adakitic vol ca nic rocks in the Hohxil area, north ern Ti bet: lower-crustal melt ing in an intracontinental set ting. Ge ol - ogy, 33: 465–468.

Wat son, E.B., 1981. Dif fu sion in mag mas at depth in the earth: the ef fects of pres sure and dis solved He2O. Earth Plan e tary Sci - ence Let ter, 52: 291–301.

Wil son, M., 1989. Ig ne ous petro gen esis: In ter pre ta tion and Ap pli - ca tion. Chap man and Hall, Lon don.

Wil son, M., 2007. Ig ne ous Petro gen esis, A Global Tec tonic Ap - proach. Springer.

White, A.J.R., Chappell, B.W., Wyborn, D., 1999. Ap pli ca tion of the restite model to the Ded dick Granodiorite and its en claves - a re in ter pre ta tion of the ob ser va tions and data of Maas, R., Nicholls, I.A., and Legg, C., 1997. Jornal of Pe trol ogy, 40:

413–421.

Zhao, K.D., Jiang, S.Y., Yang, S.Y., Dai, B.Z., Lu, J.J., 2012. Min - eral chem is try, trace el e ments and Sr\Nd\Hf iso tope geo chem is - try and petro gen esis of Cailing and Furong gran ites and mafic en claves from the Qitianling batholith in the Shi-Hang zone, South China. Gond wana Re search, 22: 310–324.

Cytaty

Powiązane dokumenty

Okazało się, że możliwa jest afirmacja człowieka jako bytu skończonego przy jednoczesnym przeświadczeniu, iż można dowiedzieć się, czym jest człowiek prawdziwy albo na

To obtain a better understanding of the cause for these differ- ences, the radial distribution functions (RDFs) of the Na + and Cl − ions in respect to the center of mass of the CDs

Autorka książki „Powiedzieć to wszystko, o czym myślę” zdecydowała się na rozwi- nięcie dwu ważnych i występujących w refleksji nad poezją Barańczaka wątków myślo-

All type strains of ‘non-fermentative’ yeasts, available in the culture collection of the Centraalbureau voor Schimmel- cultures, were reinvestigated for their capacity to

Główne cele, jakie sobie stawia, s ˛ a trojakiego rodzaju: (1) przes´ledzenie rozwoju hermeneutyki filozoficznej od Schleiermachera do Vattimo, ze szczególnym

Oprócz nich wystąpiły czarne ślady w poszczególnych war­ stwach /1 - VII/ sugerujące konstrukcję prostokątnyoh budowli mieszkalnych lub gospodarczych / - byt może ziemianki

Pierwszym zagadnieniem jest stworzenie nazewnictwa tej dużej ilości nowych elektrod, które by nawiązywało do nazw ja kie były przyjęte dla pierwszych