• Nie Znaleziono Wyników

On existence theorems for some class of non-linear Tchebycheff approximations

N/A
N/A
Protected

Academic year: 2021

Share "On existence theorems for some class of non-linear Tchebycheff approximations"

Copied!
4
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE X II (1969)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X II (1969)

S. S

t a ń k o

(Poznań)

On existence theorems for some class of non-linear Tchebycheff approximations

1. In the sequel the following notations will he used: X denotes an arbitrary compact topological space; С [X ] the linear space of real-valued continuous functions, defined on the space X, with the Tchebycheff’s norm:

ll/llr = sup |/(#)|;

X e X

E n denotes a given ^-dimensional real Euclidean space; we say that a set of vectors a — (ax, a2, ..., an)e E n is bounded if max|ćq| < M holds

i

for every element of this set with some M . В denotes an arbitrary compact space; a mapping В x X x E x E x is denoted by w (b , sc, y) ; g = {gx, ..., gn) denotes an w-tuple of real-valued continuous functions defined on X ;

П

(a,g(cc)): = ^ щ д ^ х )-, r ^ x ) : = wlb, x, (a, g{xj)\.

i = 1

Let us assume:

1.1. For any given b0eB the exists a subset X b <= X , dense in X such that w is continous at {b0, x, у) for beB, xe X &0, y e E x, simultaneously.

1.2. For every e > 0 there exists M c > 0 such that for every beB and x e X b the inequality \y\ > M c implies \w(b, x, y)\ > c.

2. With respect to 1.1 it is seen that the function

P a b i ® o ): =

ГдьЫ lim Гаь(оо)

for

X 0 e X b ,

for

X 0 e X \ X b ( х) ,

is well defined for every a e En and beB.

Let us now put P : = { р аь' aeEn, beB}. As usually the real number d: — inf II/— Pab\W is called the distance of f from P : a function pa*b*eP

Pab*p

(1) W e take lim rab{x) if |lim

гаь(%)\ >

(lira

rab(x)\

and lim

rab(x )

otherwise.

(2)

302 S. S t a ń k o

such that II/—р а*ь*\\т — d is called a best approximation to / in P ; let us set w(b, x, у) = min(|w(&, x, \y\)\, \w(b, x, — |?/|)|).

2.1. I t is seen that

( + ) w(b, x, y) ^

0

for any i,b, x у y'je13 x -IT x E ^ ^

( + + ) for any beB and any c > 0 there exist a positive constant M c independent of b, and a subset X b dense in X such that the inequality w ( b , x , y ) > c holds for \y\ > M c and x e X b’, ( + + + ) w( b , x , y ) ^ \ w{ b , x , y ) \ for any (b, x, y) eB X X x E x.

2.2. I f gx, ... , gn are linearly independent on X , then there exists a positive constant и such that max |ad

= 1

implies ||(a, д)\\т > и >

0

.

i P r o o f . See e.g. [9], p. 24.

2.3. I f f e C [ X ] is bounded and the functions gl f . . . , g n <we linearly independent on X , then the set {{ak, bk): an = {a\, ..., a!f)^En, bkeB, Tc —

1

,

2

, ...} of parameters for which

( + ) lim||/—pafcb/, ||T = d < oo.

к

has a cluster point (a0, &0), a0eEn, b0eB, and all components of the vector a0 are finite.

P r o o f . From

2

.

2

. it follows that for any positive constant e < и there exists an open subset X ae dependent on aeEn and such that \{a,g{x))\

> u — e for any x e X ae with max|od = 1- From 2.1 ( + + ) it follows that for c = ||/||r+ d -f

1

there exists a constant uc >

0

such that for all \y\ > uc and all x e X b r\ X ae Ф 0, beB, the inequality

( + + ) w ( b , x , y ) > c

holds.

I f a — (ax, ..., an) with max|ad > u j ( u — e) = M c, then П

|(a,gf(«))| == max|ad X (<*i/max |%|)уг(яО > max [a/ ( u — e) ^ uc

* i==l i ' 1

for x e X aie, ax = a/max|a/.

i Hence, in view of 2.1 ( + + + ) and 2.3 ( + + ), and the definition of p ab we get

( + + + ) о < w[b, x, (a, g{x))) < |w[b, x, (а, gr(a>)))| < \\раъ\\т-

On the other hand, for sufficiently large K , h > K , by our assumption 2.3 ( + ) we get М - р акьк\\т < d +

1

. Hence \\ракьк\\т < WflW + d X 1 = c.

So, by 2.3 ( + + + ) it follows that тах|а^| < M c. B y the Bolzano-

(3)

Non-linear .Tchebycheff approximation 303

Weierstrass Theorem the sequence ak has a cluster point a0 = (a°x, ..., a°n) with max \a\\ < M c.

3. Simple examples show that in general there does not exist a best approximation by a function from P ; see e.g. [2] and [5].

3.1. I f f , gx, ..., gm are bounded functions in C [ X ] , X an arbitrary topological space, w a real-valued function satisfying

1 . 1

and

1

.

2

, and there exist aeEn and beB such that \\раъ—йт < °°? then there exists a best Tcheby­

cheff approximation р а*ь* to f on X .

P r o o f . Let gx, . . . , g m be a maximal linearly independent subset of gx, . . . , g n, Let (ak, bk) be the sequence of vectors akeEm, bkeB with

\\Ракьк~Л\т < d + l/&. Por this sequence, by 2.3, there exists the cluster point (a0, b0), a0eEm, b0eB. W e have

\Pa0b0(0C)~f(0C)\ < \Pa0b0{ x ) - p a kbk(®)\X \Pakbk(x) ~ f W l

< \Ра0Ъ0{я)\-РакЪк{х) \Хй+11к.

As [ a, g{x] ) is continuous in x e X , then \paQb0{ x ) ~ Ракьк(х )\ -> 0 for к -> oo and x e X bQ, and thus

( + ) \Pa0b0{ x) —f(®)\ < d for x e X h .

Hence, from the definition of р аь(х ) and the continuity of / we may choose a sequence x,j -> x e X ^ X b(j, x j e X bo, such that \Ра0ь0(х ) — Pa0b0(xj)\

< 1 lj, \f(x ) ~ f ( xj)\ < 1 Ij holdS. SO \Pa0b0{CO)-f{CC)\ < \Pa0b0{ ® ) - P a 0b0{Xj)\ + + \Pa0bo(0Ci)-f(Xj)\+

\ f { X j ) — f ( x ) \

< 2 H + d for

X e X \

X b(j. НеПСв |Pa0b0(x ) ~

~ f ( x )\

^ d for x e X \ X bf). So, from 3.1 ( + ) and the last inequality we obtain \\раоь0~ й т < d. Since a0eEm and b0eB, there exists a best approximation p a(p0 to

f

in P.

4. Let us measure a distance between / and раъ by means of the functional \\s(pab~f)\\T, where s e C [ X ] is a given weight function see e.g. [

1

]. This problem of weighted Tchebycheff approximation may be reduced to the previous one by the following substitutions: f x = s-f, wx — s-w. The proof of 3.1 is valid if the coefficients are restricted to a closed set R <=Emx B containing at least one vector (a0, b0) such that \\s{paobo-f)\\T < oo.

4.1. I f f , s, gx, . . . , g n denote functions belonging to G [ X ] such that s , f , g x, . . . , g n are bounded on X and s • w — wx is a real-valued function satisfying 1.1 and 1.2, then for any closed subset R с E n X В including a vector (a0, &0) with \\s(paobo—/)||г < oo there exists a best weighted Tche­

bycheff approximation p a*b* to f, and

\\$(Ра*Ъ*—Л\\т = mf \\s{Pab-f)\\T-

(ia,b)eR

(4)

304 S. S t a ń k o

From 3.1 and this theorem we may obtain the existence of the best Tchebycheff approximation by functions of the form

П

r ab{x) m J

7 = 1 i

where and hj (i — 1 , ..., n, j —

1

, ..., m) are continuous real-valued functions on X ; have the dense non-zero property in X for a given closed, bounded subset В a E m (for the definition of dense non-zero property see e.g. [2]) and hj are bounded in X- , pi { x , y), i — 1,2, are real-valued con­

tinuous functions defined for ( x , y ) e X x E l , р { ( х , у ) = 0 if and only if у = 0; Pi(%, y) -> oo if \y\ -> oo uniformly on X , i = 1,2. Moreover, we assume that p 2{x,y) < oo for \y\ < oo and x e X .

The results presented in this note generalize some theorems on the existence of approximations which may be found in [

1

]- [

1 0

].

R e fe r e n c e s

[1] N. J. A c h ie s e r ,

Theory of approximation,

New York 1956.

[2] B. B o eh m ,

Existence of best Tchebycheff approximations,

Pacific Journ.

Math. 15, No. 1 (1965), pp. 19-28.

[3] E. В o re l,

Leęons sur les fonctions des Variables Beetles,

Paris 1905.

[4] E. W . C h en ey,

Introduction to approximation theory,

New York 1966.

[5] — and H. L. L o e b ,

Generalised rational approximation,

Journ. Soc. Indust.

Appl. Math. Series В. 1 (1964), pp. 11-25.

[6] Gr. M e in a rd u s ,

Approxim ation von Funktionen und ihre numerische Behand- lung,

Berlin 1964.

[7] D. J. N e w m a n and H. S. S h a p iro ,

Approximation by generalised rational functions,

Proceedings of Conference on Approximation, Birkliauser Yerlag Besel

(1964).

[8] J. R. R ic e ,

On the existence o f best Tchebycheff approximations by general rational functions,

Abstract 63 T, Notices Amer. Math. Soc. 10 (1963), p. 331.

[9] —

The approximation of functions,

Vol. 1.

Linear theory,

London 1964.

[10] J. L. W a ls h ,

The existence of rational functions of best approximation,

Trans. Amer. Math. Soc. 33 (1931), pp. 668-689.

DEPARTMENT OF MATHEMATICS I, A. MICKIEWICZ UNIVERSITY, POZNAN K ATEDRA M ATEMATYKI I, UNIW ERSYTET A. MICKIEWICZA, POZNAN

Cytaty

Powiązane dokumenty

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVII (1987) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXV (1985) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE XXV

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVI (1986) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXIII (1983) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXIV (1984) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X V II (1974) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGOZ. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X V II (1973) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATE MAT

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE X II (1969)M. ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE