• Nie Znaleziono Wyników

Skład próchnicy glebowej i koprolitów dżdżownic z czarnych ziem

N/A
N/A
Protected

Academic year: 2021

Share "Skład próchnicy glebowej i koprolitów dżdżownic z czarnych ziem"

Copied!
12
0
0

Pełen tekst

(1)

R O C Z N I K I G L E B O Z N A W C Z E , T. X I X , D O D A T E K , W A R S Z A W A 1968

Z D Z ISŁ A W M IRO W SK I

CO M PO SITIO N O F HUM US IN SO IL AND EARTH-W ORM CASTING S (EXTREM ENTS) O F BLACK EARTH

D ep artm en t of S oil S cien ce, C o lleg e of A gricu ltu re, O lsztyn. H ead — Prof. Dr. H. U ggla

It is w ell know n th a t e a rth w orm p lay im p o rta n t role in soil processes and p ro d u ctiv ity of th e soils. E a rth -w o rm s activ ely p a rticip a te in decom ­ position of p la n t residu es and pro d u ctio n of hum ous substances [3, 4, 5, 7,

8, 9]. The h u m us produce by e a rth -w o rm influ ences p ro d u ctiv ity of the soils w h a t w as said m any y ears ago by D a r w i n [3]. C ontents of hu m u s in e x crem en ts of e a rth -w o rm depend on h a b ita t facto rs [4, 5, 8, 9]. In n a ­ tive lite ra tu re w e found only tw o positions [4, 5] re la te d w ith com position and p ro p ertie s of hu m u s produced by ea rth -w o rm s of d iffe re n t stan ds.

It induce us to studies of com position of h u m u s in black e a rth and e a rth w orm castings from d iffe re n t stan d s located on m orain h ill u n d e r pastu re.

M ETH O D S OF IN V E ST IG A T IO N S

The inv estig atio n s w ere ca rrie d out on one of th e m orain slopes in Biel, d istric t B iskupiec Reszelski. On th is slope th e re w ere dug th re e opens for tak in g th e sam ples. The opens w ere located on th e h illtop, slope, an d at th e foot. Besides th a t on th e sam e places th e re w ere picked up a e a rth -w o rm castings from ten chosen at ran d o m squ ares 25 by 25 ce n tim e ters (10 1 1964).

L A B O R A TO R Y ST U D IE S

In soil sam ples and e a rth -w o rm castings th e re w ere m ade th e fol­ low ing d eterm in atio n s: fra c tio n a l an alysis of hum u s, according to B o ­ r a t y ń s k i e and W i l k m ethod [1, 2]. С in soils, e a rth -w o rm c a s t­ ings an d d etached fractio n w as d e te rm in e d by T iu rin m ethod w ith use

(2)

of N -p h e n y la n th ra n ilic acid as an in d icator. F locculation of hum ic acids w as p erfo rm ed by using H2S 04 and h e a tin g on th e b a th for one hour. O ptical d e n sity of hum ic acids p rev io u sly equalized to 100 mg of С p e r 1 1 w as d e te rm in e d on “Specol” w ith d ifra c tio n a l screen. In alloys of

soils and w orm casts th e re w ere d e te rm in e d sesquioxides, F e20 3, CaO,

MgO, S i 02 and losses from th e ig n itio n according to G i e d r o i c’s

m ethod [6]. Besides th a t in e x tra c t of 1 N CH3COONH4, pH 7, th e re

w ere d ete rm in e d CaO, MgO an d cap acity to NH4\ A vailable K 20 an d P2O5 by E g n e r’s m ethods.

R E SU L T S

In v estig ated soils belong to black e a rth s ty pe. Those soils developed fro m clays and h eav y m orain loam s. In neigh b ourh oo d of K ę trz y n and R eszel those soils occur m ain ly on low er p a rts of th e slopes and in depressions. V ery often th e y cover th e w hole, som etim es v e ry steep hills. O ne of th e slopes has been selected to th ese studies. The firs t openning w as situ a te d on th e h illtop , th e second on th e slope effected by erosion an d th e th ird at th e foot. On th e h illto p (stan d I) th e re is black e a rth developed from h eav y loam u n d e rla y e d b y clay. It has a v e ry good developed h u m u s horizon (about 50 cm deep), ph > 7. O n th e slope (stand II) th e re is also black e a rth b u t its h u m u s horizion is sh allo w er and has low er con ten ts of h um us. A shallow A 1 horizon is a re s u lt of erosion processes. This soil is m uch h eav ier, th a n th a t on th e hilltop. It shows m echanical te x tu re of v e ry h e av y loam (62 p er cent p articles <C 0,02 mm), pH > 7. A t th e foot (stand III) th e re accu m u lated th ick la y e r of d ellu v ia l sedim ents. It belongs to d ellu v ial h eav y black e a rth , ric h in h um us in its w hole profile (up to 150 cm), pH 6,8. It should be n o ted th a t d u rin g h e a v ie r storm s a p a rt of v e ry th in w ashing m a te ria l is c a rrie d aw ay to steam , so th a t soils form ed at th e food are lig h ter th a n those on th e slope. The p la n t cover w as th e sam e in all stu d ied places. As it w as said, th e soil and e a rth -w o rm castings w ere analy zed on chem ical com ­ positions an d fra c tio n a tio n of hum us. We p re se n t only th e d a ta for u p p er lay ers of th e soils a lth o u g h it is clear th a t d eeper lay e rs in flu en ce th e com position of h u m u s su b stan ces in e x crem en ts of ea rth -w o rm . F ro m th e d a ta of Tab. 1 it can be seen th a t w orm casts in com parison to soils a re a few tim es ric h e r in organic m a tte r (losses on ignition). The rich est in organic m a tte r are those fro m th e hillto p, w hile those of th e slope and foot are alm ost th e sam e. The sam ples of th e th ird sta n d show th e g re a te st losses am ongst th e soils. In g e n e ra l w orm casts have less S i 02

(3)

T a b l e 1

Some chem ical p r o p e r tie s o f s o i l sam ples and the excrem ents o f th e ea rth worms

Element o f s lo p e Samples o f Depth cm L088 Of i g n i t i o n % S i0 2 % r2°3 % ^®2^3 % CaO % MgO % A v a ila b le In mg/1 0 0 g o f s o i l Exchangeable c a tio n s m .e . /1 0 0 g o f s o i l Exchange c a p a c ity to NHJ m .e . /1 0 0 g o f s o i l P2O5 K20 Ca++ Mg++ H illt o p s o i l 5 -1 0 4 0-50 5 .8 2 9 2 .7 3 3 6 8 .1 7 4 5 9 .7 0 0 1 8 .7 5 2 2 1 .7 3 3 4 .9 2 7 6 .1 8 2 2 .5 4 1 10 .5 2 6 1 .5 3 3 2 .9 6 8 1 0 .6 0 .4 3 8 .6 1 0 .2 2 2 .1 6 2 5 .0 0 4 .5 2 7 .6 8 3 2 .8 5 3 0 .4 6 excrem ents 16 .8 3 0 5 9 .5 9 0 1 6 .0 2 8 4 .4 1 0 3 .3 6 3 1 .3 7 2 5 0 .0 1 2 4 .2 2 9 .8 0 4 .9 0 4 4 .8 4 Slop e s o i l 5-15 35-45 5 .3 8 2 2 .0 0 9 6 6 .4 4 8 70.723 2 0 .4 4 1 1 9 .6 2 1 5 .9 6 6 6 .5 2 5 2 .4 8 9 1.5 0 5 2 .0 6 6 1 .7 7 1 9 .9 1 1 .5 2 3 .7 8 .7 1 7 .2 2 18 .8 0 3 .2 6 3 .2 6 2 6 .8 4 excrem ents 1 4.180 6 4 .0 2 0 1 6 .2 0 9 4 .4 7 0 2 .6 3 2 1 .1 9 9 2 7 .5 9 5 .0 2 6 .9 5 4 .3 2 3 4 .4 5 Foot s o i l 5 -1 0 40-50 7.6 8 6 6 .8 4 8 7 0 .0 9 2 6 7 .7 0 8 1 8 .2 4 5 2 0 .1 1 1 4 .7 1 0 5 .6 0 0 2 .0 6 3 1 .6 1 8 1 .4 3 1 I .6 4 6 6 .7 2 .0 3 6 .1 7 .6 1 8 .3 5 2 3 .0 0 4 .0 3 4 .8 0 2 8 .5 3 2 9 .0 6 excrem ents 14.7 2 0 6 5 .7 5 0 1 6 .1 9 6 4 .2 5 0 1 .8 0 6 0 .9 6 7 > 5 0 . 0 1 1 7 .6 2 3 .3 0 5 .8 6 4 1 .8 2 C o m p o si ti o n of h u m u s

(4)

n o ted on th e slope. W orm casts w ith reg a rd to sesquioxides an d F e 20 3 are poorer th a n soils. It should be s ta te d th a t w orm casts from all th re e stan d s have alm ost eq ual conten ts of K 20 3 and F e20 3 w hile sig nifican t d ifferences have been noted am ongst th e soils. W orm casts from stan d s I and II are ric h e r in calcium in com parison w ith soils of th e sam e points, ft seem s th a t th e deeper lay ers of th e soil have g reat in flu ence on the con tents of CaO in w o rm casts, since it is accessible to e a rth - -w orm s. It m ay be proved by d ifferences in contens of CaO in sam ples from 5— 10, 40— 50 cm deep an d w orm casts (stand I). C ontents of MgO are som ew hat low er in w o rm casts th a n in soils. The casts of earth -w o rm s are v ery rich in available K 20 an d P 20 5 (som etim es 3— 7 tim es ric h e r th a n the soil). W orm casts, as have been sta te d by m any au th o rs [4,8], en rich soils in av ailable calcium . In our case w orm casts have 5— 9 m.e./100 g m ore calcium in com parison w ith th e soils. No differences have been found in co n tents of m agnesium . In crease of organic m a tte r in w orm casts in flu enced th e absorbing cap acity to NH . In w o rm casts from th e h illto p it is 44,84 m .e./100 g, on th e slope 34.45 and at the foot 41.82. In com parison w ith th e soil it is 39— 49 per cent higher.

Taking into consideration th a t th e basic food of e a rth -w o rm s is th e organic m a tte r of p lan ts, our in v estig atio n s w ere devoted m ain ly to the hu m u s in soil and w orm casts. A nalizing th e d a ta concerning th e h u m u s com position (Tab. 2) it should be stated . W orm casts from d iffe re n t places have th e sam e percen tag e of h u m us w h ereas m ark ed differen ces are observed in th e soils. The soil from th e hillto p has abo ut 1 per cent m ore of organic carbon as soils on th e slope and at the foot. The up p er lay ers of h u m u s horizons fro m th e slope and foot are id en tic a l w ith aspect to h u m u s contents. The w orm casts in com parison w ith soils of the sam e stan d s have 166 p e r cent of to ta l carbon of the hilltop, 223.6 p er cent of the slope an d 221.3 p e r cent of th e on foot. This differen ce is so ev id en t th a n th e re can be no possible doubt, m oreover it is in ag reem en t w ith e a rlie r p ub licatio n s of m an y au th o rs, w ho em ­ phasize th a t alth o u g h th e e n ric h m e n t of w o rm casts in organic С depends on soils b u t m ain ly on th e p la n t cover. The hilltop, slope a hillfoot w ere u n d e r p a stu re so th a t th e food used by e a rth -w o rm s w ere roots, and leaves of grass.

The sam e am ou nts of organic С in w orm casts of d iffe re n t places ev id e n tly proved th e p red o m in an t in flu en ce of p lan ts on th e com position of h u m us in e a rth -w o rm castings. Table 2 p resen ts a b ro ad er p ictu re of q u a lity of h u m u s e x tra c te d fro m w orm casts. F ro m th ese d a ta it is ev id en t th a t in th e a lim e n ta ry canal of earth -w o rm s organic m a tte r and soils undergo fu n d a m e n ta l changes. In th e a lim e n ta ry can al th e ingested m a te ria l is en rich ed w ith su b stances soluble in an alkohol-benzene

(5)

so-T a b l e 2

Character o f organic m atter of the s o i l s and the earthworm's excrem ents

Element o f the

slo p e

Samples o f Depth in cm

0 o f humus su b sta n ces in per cent

column 5-12 --- .100 4 R atio column T otal E xtract o f Alco- h ol-ben zene 1 :1 E xtract o f 0 .1 N Na4P20 7 E x tra ct of 0 .1 N NaOH (I ) E xtract of 0 .1 N NaOH ( I I ) E xtract o f 0 .5 H h2s o 4 Non e x tr e c -ta b le subs­ tan ces 7 6 9 8 11 7+9+11 f u lv ic

acid s humica c id s f u l v i ca c id s humica c id s f u lv ica cid s humica c id s

10 64-8+I0 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 16 17 18 H illt o p s o i l excrements 2-13 13-30 3 .8360 1.6970 6.3686 0.0704 0.0723 0.4 0 3 9 0.3982 0.1103 0.2049 0.1381 0.1177 0.2396 0.3 2 1 9 0.2522 1.1203 0.4203 0.1 8 2 6 0 .7 7 4 2 0 .1619 0.0798 0.0744 0 .2821 0.2363 0 .0 3 3 5 0.0134 0.0 4 6 7 1.7768 O.6096 3 .5486 99.Ю 99.80 101.00 0 .3 5 1.07 1.27 0 .8 1 0 .7 2 0 .6 9 1.74 3 .2 1 0 .7 8 1 .2 6 0 .7 4 С excrements --- .100 С s o i l 1 66.0 37 3 .7 3 1 .3 188 2 1 4 .7 18 4 .2 4 3 .9 139.4 1 97.7 Slope s o i l excrements 2-10 10-22 2.8380 1.4130 6.3467 0 .1 3 3 1 0.0784 0.4 1 3 6 0 .1719 0.0823 0.2366 0 .1472 0 .0 2 7 1 0.1 3 4 8 0.8897 0 .1 3 3 2 0.9313 0.1793 0 .0 8 9 4 0.7183 0.0136 0.0 1 1 1 0.0833 333-3 0.0 1 3 6 0 .0379 0.0099 0.0461 1.2450 0 .9 6 4 2 3 .6924 99.97 100.30 99.20 0 .8 6 0 .3 3 0 .6 0 0 .2 0 0 .5 8 0 .7 7 1 .0 0 0 .3 1 0 .4 7 0 .6 9 С excrements ---.100 С s o i l 2 2 3 .6 3 0 7 .6 149.3 103.2 104.7 400. 7 121.6 2 9 6 .6 Foot so i l excrements 2-12 12-23 2.8140 2.8278 6.2278 0 .1288 0.0710 0.3132 0.1667 0.6736 0.1381 0 .3803 0.3313 0.1989 0.3173 0 .2263 1.2607 0.4 8 7 0 0.3 7 1 4 0.6 7 9 8 0.0377 0.0337 0.0336 0.0798 0.0819 0.0887 0 .0156 0.0111 0.0460 1.0600 0.9367 3 .3440 95.40 97.62 98.30 2.2 8 0 .4 9 I .94 1 .5 3 1 .6 4 О.54 1 .3 8 1.4 7 1.6 5 1.7 5 0 .8 2 0 .6 7 С excrements ---.100 С s o i l 2 21.3 2 4 3 .2 8 2 .8 3 2 .3 3 9 7 .1 1 41.6 93.0 1 11.5 2 9 5 .0 3 1 5 .5 o> <1 C o m p o si tio n of h u m u s

(6)

lu tion , it is so-called b itu m in o u s su b stances. B oth absolute co n ten ts of bitom ino us su b stances an d th e ir p a rticip a tio n (Fig. 1, 2, 3) in to ta l organic m a tte r ex p ressed as organic С is m uch h ig h er in w orm casts th a n in soils: on th e h illto p six tim es m ore, on th e slope 3 tim es an d a t th e fot 2.5 tim es. As it is k n ow n th e tre a tm e n t of sam ples w ith 0.1 N N a4P 20 7 lib e rate th e m ost m obile an d th e least polim erized substances to th e solution m ain ly fulvic acids an d sim ple hum ic acids. T he e x c re ­ m ents from th e h illto p coin tain ed m ore an d fro m th e hillfoot less of those substan ces th a n soils. H um ic acids of e x crem en ts e x tra c ta b le w ith 0.1 N N a4P 20 7 are fo u nd in g re a te r q u a n titie s th a n fulvic acids on the h illto p abo u t 25 p e r cen t a t th e foot 94 p e r cen t m ore.

On th e o th er h a n d on th e slope th e fu lv ic acids are dom inan t. Possible it is caused by p ro p ertie s of th e soils (very sm all co ntents of CaO and sub stan ces soluble in N a4P 20 7 of th e d eep er lay e rs of th e soil).

V ery im p o rta n t to th e c h a ra c te ristic of h u m u s are substances e x tra c ­ tab le w ith 0.1 N NaOH. These su b stan ces are m ain ly boun d w ith Ca2+ an M g2+ [2].

A h igh ab solute increase b o th in hum ic acids an d fulvic acids of e x crem en ts in com parison to soils can be observed in a ll casses. A r e la ­ tive in crease of hum ic acids of th is g roup is th e h ig h est on th e slope (for tim es m ore in e x crem en ts th a n in soil), th e n on th e h illto p (about tw o tim es more) an d th e least a t th e hillfoo t (see Tab. 2). F ulvic acids p rese n t a d iffe re n t p ictu res. On th e slope th e soil and ex crem en ts con­ tain alm ost equ al am ounts, e x crem en ts on th e h illto p tw o tim es m ore, an d at th e foot fo u r tim es m ore of fulvic acids, th a n th e soil of th e sam e stands.

S u bstan ces boun d firm ly w ith m in e ral p a rts (soluble in 0,1 N N aO H II a fte r tre a tin g th e soil w ith 0,5 N H 2S 0 4) are re p re se n te d in sm all am ounts, b oth in soils and ex crem en ts, ex cep t in u p p e r lay e r of A 1 horizon on th e hilltop. It should be noticed th a t th e re w ere no hum ic acids in th is group in ex crem en ts from stan d s I and II. A t th e foot (stand III) th e re are no d ifferen ces w ith resp ect to co n ten ts of bo th h um ic an d fulv ic acids in soils an d ex crem en ts. E a rth -w o rm castings from d iffe re n t stan d s have alm ost th e sam e am o unts of n o n -e x tra c ta b le substances, b u t in com parison w ith th e soils of th e sam e stan d s, th e re are d ifferences and so: ex crem en ts a re ric h e r alm ost tw o tim es on th e hilltop, th e re tim es on th e slope and over th re e tim es a t th e foot. The p a rticip a tio n of n o n e x tra c ta b le su b stan ces (hum ins an d ulm ins) in to ta l organic С (Fig. 1, 2, 3) is m uch h ig h er in ex crem en ts th a n in soils (from nine p er cent on th e hillto p to six te e n p e r cent a t th e foot). T he low est p ercen tag e of С of th a t com pound group in rela tio n to to ta l С has been observed in th e soil of th e hillfo ot (Fig. 3).

(7)

Stand I Stand II S tan d III

f'Jâ o/o W3%t

Fig. 1, 2 i 3. C om position of h um us of ex tr e m e n ts (upper diagram s) and soil (low er diagram s) of d iffe r e n t stan d s 1 — b i t u m i n o u s s u b s t a n c e s ( a l c o h o l - b e n z c n e x t r a c t ) , 2 — h u m i c a c i d s e x t r a c t e d w i t h 0.1 N N a 4P 207, 3 — h u m i c a c i d s e x t r a c t e l w i t h 0.1 N N a O H , 4 — h u m i c a c i d s e x t r a c t e d w i t h 0.1 N N a O H a f t e r t r e a t i n g t h e s o i l w i t h 0.5 N H 2S 0 4, 5 — f u l v i c a c i d s e x t r a c t e d with 0.1 N N a 4P 20 7, 6 — f u l v i c a c i d s e x t r a c t e d w i t h 0.1 N N a O H , 7 — f u l v i c a c i d s e x t r a c t e d w i t h 0.1 N N a O H a f t e r t r e a t i n g t h e s o i l w i t h 0.5 N H 2S 0 4, 8 — s u b s t a n c e s e x t r a c t a b l e w i t h 0.5 N HoSO*, 9 — h u m i n s a n d u l m i n s ( n o n e x t r a c t a b l e s u b s t a n c e s ) C o m p o si ti o n of h u m u s

(8)

G raphs 1,2 and 3 clearby show th a t th e p a rticip a tio n of С of in d i­ v id u al com ponents of hum ous su bstances in to ta l С is less d iffe re n tia te d in

e x crem en ts fro m v ariou s places th a n in th e soil sam ples. It is also ev id en t th a t th e com position of hum u s in soil sam ples influen ce th e p a rticip a tio n of in d iv id u al com ponents in ex crem ents, for exam ple v e ry sm all p a rt of h um ic acids in th e soil of th e slope caused a decrease in th ese groups of excrem en ts. The ratio of hum ic to fulvic acids (see colum n 18 T able 2) in ex crem en ts is th e h igh est on the h illto p and alm ost th e sam e as in soil, in e x crem en ts from sta n d s II an d III is equal. The ratio of Ch : Cf is tw o tim es h ig h er in ex crem en ts on th e slope th a n in th e soil, and at th e foot th e re tim es sm aller. The g re a te st differen ces in ratio of Ch : Cf w as observed in e x tra c t of 0.1 N te tr a sod ium -py - ropho sphate, it is in th e least polim erized group. H um ic acids e x tra c ta b le w ith 0.1 N N aO H I w ere teste d on optical density. It can be seen fro m th e D iagram 4 th a t h um ic acids of ex crem en ts have low er values of E th a n hum ic acids from th e soils. It seem s th a t th e y are less polim erized an d have less com plicated s tru c tu re th a n those from th e soils of th e sam e stand s. T h ere should be also noticed a s trig h t co rrelatio n b etw een optical d e n sity of hum ic acids fro m th e soils and excrem ents.

Fig. 4. O ptical d en sity of hum ic acids of soils and e a r th -w o r m ’s ex tr e m e n ts from

(9)

C om p osition of hum us 171

R EFE REN C ES

[1] B o r a t y ń s k i K. , W i l k K.: N ow a m etod a an a lizy fra k cjo n o w a n ej zw ią z ­ k ó w p róch n iczn ych w g leb a ch m in era ln y ch . P race K o m isji F a ch o w y ch PTG , nr 1, W arszaw a 1963.

[2] В o r a t y ń s к i K., W i l k K.: B o ra ty ń sk i and W ilk ’s M ethod of F ra k tio n a l A n a ly sis of H u m u s C om pounds, and Its U sa b ility for D eterm in in g H um us C om p osition in M in eral S o ils of V arious A g ricu ltu ra l U tiliza tio n . R oczn ik i G le ­ bozn aw cze, t. X IV — dodatek, 1964.

[3] D a r w i n C.: T h e fo rm a tio n of V e g e ta b le M ould, through th e action of W orm s, w ith O b servation on T heir H ab its I - s t Ed, L ondon 1881.

[4] G a w r o ń s k i E.: R ozp u szczaln e fr a k c je hu m u su e k strem en tó w d żdżow nic. A n n a le s UM CS, L u b lin , vol. X V , 12, S. C, 1960.

[5] G a w r o ń s k i E.: W łasn ości o p tyczn e fr a k c ji hu m u su z ek sk rem en tó w d żd żo w ­ nic. A n n a les UM CS, L ublin, vol. X V II, 9, S. C., 1962.

[6] G i e d r o i c K. K.: Izb ran n yje so czin ien ija . T. 2, S elch ozgiz, M oskw a 1955. [7] К u b i e n a W. L.: A n im a l A c tiv ity in S o il as a D e c isiv e Factor in E sta b lish m en t

of H um us Form s. S o il Z oology Proc. N ottin g h a m Sch. A gric. Sei., 1955.

[8] P o n о m a r i e v a S. I.: R oi d o żd iew y ch czerw iej w sozd an ii procznoj str u k ­ tu ry w tra w o p o ln y ch siew oob orotach . P o czw o w ied ien ., 8, 1950.

[9] P o n о m a r i e v a S. I.: W lija n ije ziz m ie d ie ja tie ln o sti d ożd iew ych czerw iej na so zd a n ije u sto jeziw o j stru k tu ry d iern o w o -p o d zo listo j p oczw y. T rudy P oczw . Inst. D ok u czajew a, 41, 1953.

Z. M I R O W S K I

C O M PO SITIO N DE L ’H U M U S DU SOL ET D ES CO PRO LITES D ES VERS DE TERRE DES TER R ES N O IR ES

C h a i r e d e P é d o l o g i e d e la H a u t e É c o l e d ’A g r i c r . l t u r e à O l s z t y n

R é s u m é

Pour con n aitre p lu s p r écisém en t le rôle que le s v ers de terre rem p lissen t dans le sol et su rtou t dans la p rod u ction de l ’h um us on décida d ’ex a m in er la ten eu r et la com p osition de l ’h um us du so l et des e x crém en ts p ro v en a n t de trois em p la c e ­ m en t d ifféren ts: du som m et, du v ersa n t et du pied de m on tagn e. L ’ex a m en a eu lie u dans un m o n ticu le de m orain e près de R eszel à B iel (v o ïv o d ie d’O lsztyn). L es terres n oires ren co n trées dans cette région fu r e n t fo rm ées des a rgiles et des lim on s lourds. L ’a n a ly se de la com p osition ch im iq u e du sol et des cop rolites fu t e x e c u té e par des m éth od es g én éra le m en t em p lo y ées, l ’a n a ly se de l ’h um us par la m éth od e de B o ra ty ń sk i et W ilk.

On co n sta te q u e les cop rolites des v ers de terre son t b eaucoup p lu s rich es en su b sta n ces o rgan iq u es qu e le s éch a n tillo n s du sol pris des m êm es lieu x . Ils d ifféren t au ssi par leu r com p osition . Ils co n tien n en t en com p araison av ec le sol p lu s de su b ­ sta n ces qui ne se la isse n t pas ex tra ire et b eau cou p p lu s de b itu m in es. L es acid es h u m iq u es des ex c r é m e n ts d ém on tren t u n e d en sité o p tiq u e m oin s gran d e qu e ceu x du sol. On co n sta ta un e corrélation en tre la d en sité op tiq u e des acid es h u m iq u es des cop rolites et ceu x du sol. L es co p ro lites du tr o isiè m e e m p la cem en t (pied de m ontagne) d ém o n trèren t la p lu s gran d e d en sité optique, ceu x du d e u x iè m e em p la cem en t

(10)

(versan t) la m oin s gran d e d en sité. L es cop rolites d ém o n trèten t en com p araison avec le sol u n e ten eu r b eau cou p p lu s fo rte en Ca2+ et u n e ca p a cité de ab sorb tie plus grande par rapport au jons N H + . La ten eu r en K 20 et P 20 5 a ssim ila b les éta it p lu sieu rs fo is p lu s gran d e dans les cop rolites q u e dans le sol.

Z. M I R O W S K I DIE Z U SA M M E N SE T ZU N G D ES BO D EN H U M U S U N D DER R EG EN W Ü RM ERK O PR O LITE IN D EN SC H W A R Z EN BÖ D EN (SC H W A R Z E R D E Ä H N L IC H E N BÖDEN) L e h r s t u h l f ü r B o d e n k u n d e , L a n d w i r t s c h a f t l i c h e H o c h s c h u l e i n O l s z t y n Z u s a m m e n f a s s u n g

Z w eck s b esserer E rk en n u m g der R o lle v o n R eg en w ü rm ern im B oden, in s b e ­ son d ere bei der H u m u sb ild u n g, en tsch lo ss m an sich, den G eh alt und d ie Z u sa m m en ­ setzu n g des B od en h u m u s und der R eg e n w ü r m e r e x k r e m e n te au f drei v e r sch ied en en S ta n d orten , und zw ar au f der A n h öh e, dem H an g und an der S oh le, zu u n tersu ch en . D ie U n tersu ch u n g en w u rd en au f ein em M orän eh ü gel bei R eszel, in der O rtsch aft B iel (W oiw od sch aft O lsztyn) d u rch gefü h rt. In d ieser G egend treten die aus T onen und sch w eren L eh m en en tsta n d en en S ch w a rzen B öden auf. D ie B estim m u n g der ch em isch en Z u sa m m en setzu n g des B od en s und der R eg en w ü rm erk o p ro lite w u rd en nach ü b lich en M ethoden, die A n a ly se der H u m u szu sa m m en setzu n g — nach der M eth od e von B o ra ty ń sk i und W ilk, durch gefü h rt.

D ie U n tersu ch u n gserg'eb n isse zeigten , dass d ie R eg en w ü rm erk o p ro lite w e se n tlic h reich er an organ isch em S to ff sin d als die au s d en selb en P u n k ten en tn o m m en en B odenproben. D ie Z u sa m m en setzu n g der ersteren ist auch anders. S ie en th a lten , im V ergleich m it dem B oden, m eh r n ic h te x tr a h ie r e n d e r S to ffe und sind w e se n tlic h reicher an B itu m in a. Es w u rd e ein e K orrelation zw isch en der o p tisch en D ich te der H u m in sä u ren der K op roliten und des B odens fe s tg e ste llt. D ie K op rolite aus dem III. S tan d ort (an der Sohle) zeic h n eten sich m it der g rössten , d iese aus dem II. Stan d ort (Hang) m it der k le in ste n o p tisch en D ich te aus. D ie K op rolite e r w ie se n sich, im V erg leich m it dem B oden, als w e se n tlic h reich er an C a2+ und zeic h n eten sich m it grösserer A b so rb tio n k a p a zitä t de N h 4; -Io n en g eg en ü b er aus. D er G eh alt des a u fn eh m b a ren K 20 und P 20 5 w a r in den K op roliten e in ig e m a l höher als im Boden.

Z . M I R O W S K I

SK Ł A D PRÓ CH NIC Y G LEBOW EJ I K O PRO LITÓ W DŻD ŻO W N IC Z C ZA RN YC H ZIEM

K a t e d r a G l e b o z n a w s t w a W S R , O l s z t y n

S t r e s z c z e n i e

W celu d o k ła d n iejszeg o p ozn an ia roli dżd żow n ic, jaką sp e łn ia ją one w g leb ie, a sz c z e g ó ln ie ich roli w p rod u k cji p róch n icy, p o sta n o w io n o zbadać zaw artość i sk ład p róch n icy g leb o w ej i ek strem en tó w poch od zących z trzech różn ych sta n o w isk : w ie r z ­

(11)

C om p osition of hum us 173

ch o w in y , zbocza i podnóża. B ad an ia p rzeprow adzono na p agórku m o ren o w y m koło R eszla, w m ie jsc o w o śc i B iel, w w o j. o lszty ń sk im . W ty ch o k olicach w y stę p u ją czarn e ziem ie w y tw o r z o n e z iłó w i g lin ciężkich . S k ład ch em iczn y g leb y i k o p ro li- tó w w y k o n a n o o g ó ln ie p r zy jęty m i m etod am i, a n a lizę sk ła d u p róch n icy p rzep ro w a ­ dzono m etod ą B o ra ty ń sk ieg o i W ilka.

N a p o d sta w ie p rzep row ad zon ych badań stw ierd zon o, że k op rolity d żd żow n ic są zn aczn ie zasob n iejsze w su b sta n cję organ iczn ą niż gleb a pobrana z ty ch sam ych p u n k tów . R óżnią się on e ró w n ież sk ład em . Z aw ierają, w p o ró w n a n iu z gleb ą, w ię c e j su b sta n cji n ie d ających się w y e k str a h o w a ć i zn aczn ie w ię c e j b itu m in . K w a sy h u m i- n ow e z ek str e m e n tó w w y k a zu ją m n ie jsz ą g ęsto ść op tyczn ą niż z g leb y. S tw ierd zo n o k o rela cję m ięd zy g ęsto ścią op tyczn ą k w a só w h u m in o w y ch z k o p ro litó w i gleb y. K op rolity ze sta n o w isk a III (podnóże) w y k a z y w a ły n a jw ięk szą g ęstość optyczną, ze sta n o w isk a II (zbocze) n a jm n iejszą . K op rolity w p o ró w n a n iu z g leb ą ok azały się znaczn ie za so b n iejsze w Ca2+ oraz w y k a z y w a ły w ięk szą p ojem n ość sorp cyjn ą w sto ­ su n k u do jon ów N H ; . Z aw artość p r z y sw a ja ln y c h KX) i P 20 5 b y ła k ilk a k ro tn ie w y ż ­ sza w k op rolitach niż w gleb ie.

3 . М И Р О В С К И СОСТАВ ПОЧВЕННОГО ГУМ УСА И К О П РО Л И ТО В Д О Ж Д Е В Ы Х Ч Е РВ ЕЙ И З Ч Е Р Н Ы Х (ТЁМ Н О Ц ВЕТН Ы Х) ПОЧВ К а ф е д р а П о ч в о в е д е н и я , В ы с ш а я С е л ь с к о х о з я й с т в е н н а я Ш к о л а , О л ь ш т ы н Р е з ю м е Д ля б ол ее обстоятельного и зуч ен и я роли д о ж д е в ы х червей, которую они исполняю т в почве, а в частности и х роли в образов ан и и гум уса, и ссл едовал и так состав почвенного гумуса как и экскрем ентов в т р ех р азличн ы х п унк тах м и к р ор ел ьеф а: верш ины , склона и п о д н о ж ь я (подош вы ). И ссл едов ан и я п ров о­ дили на м оренном хол м и к е около Р еш л я в м естности Б ел ь .(Ольштынское в о е­ водство). В этой окрестности залегаю т черны е почвы, обр азов авш и еся из илов и т я ж е л ы х глин. Х и м ически й состав почвы и копролитов о п р едел ял и по обы чно применяемы м методам, ан али з состава гум уса проводили по м етоду Б оратьш ь- ского и Вилька. Н а основании п ров еден н ы х и ссл едован и й установили, что копролиты д о ж ­ девого черв я отличаю тся вы сш ей обогащ енносты о органическим вещ еством, чем почва в зятая из т е х ж е пунктов. Они разл и ч н ы и п о составу. По сравнению с почвой копролиты со д ер ж а т больш е вещ еств, не п о ддаю щ и хся эк страги рова­ нию, и знач и тельн о больш е битумов. Гуминовы е кислоты и з экск рем ентов п о ­ казы ваю т меньш ую оптическую плотность, чем из почвы. У становлена к орре­ ляция м е ж д у оптической плотностью гум иновы х кислот копролитов и почвы. К опролиты из п о д н о ж ь я хол м а отличались самой вы сокой оптической п л от­ ностью , а со склона — сам сй низкой. По сравнению с почвой копролиты бы ли л уч ш е обесп еч ен ы С а-+ и обн ар уж и в ал и больш ую поглотительн ую способность в отнош ении ионов NH^_ . С одерж ан и е усвояем ы х К 20 и Р 20 5 бы ло в несколько раз вы ш е в копролитах, чем в почве.

(12)

Cytaty

Powiązane dokumenty

lack of expected effects convinced the patient to begin an alternative form of treatment. A thera- py using permanent ribbon arch appliances was suggested for

W badaniach, jak wspomniano, wzięło udział 49 osób; 51% (25 osób) to stu- denci pedagogiki opiekuńczo-wychowawczej z resocjalizacją i PS, a 49% (24 oso- by) studiuje wychowanie

Należy zauważyć, iż liczba godzin przeznaczonych na realizację treści przy- gotowujących do prowadzenia zajęć z tak wielu zakresów edukacji jest podob- na do liczby

Odwołując się do holistycznego postrzegania wartości wyznawanych przez studentów, można stwierdzić, że najistotniejsze dla nich są wartości związane ze

W przypadku nieodpowiednio dobranego rozmiaru ćwieka gutaperkowego, po kontroli ra− diologicznej, może okazać się, że materiał wypeł− niający został przepchnięty do

Considering the course of asthma, its chronic nature, many factors that can intensify symptoms and methods of its treatment, it can be said that it has a significant impact on

„Życie dworskie w Pszczynie (1765—1846)&#34;; 7) Muzeum Historii Polskiego Ruchu Rewolucyjnego w Warszawie za Ogólnopolski Konkurs Historyczny o charakterze zbierackim adresowany

ściany kościoła (ok. ścianę odkrytej budowli.. Ilość zap raw y w apiennej zm niejszyła się na głębokości ok.. Pod brukiem w ystąpiła w arstw a czarno - brunatnej