• Nie Znaleziono Wyników

A Generalization of Chebyshev’s Inequality

N/A
N/A
Protected

Academic year: 2021

Share "A Generalization of Chebyshev’s Inequality"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES UNIVERSITATIS MABLAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL.XXX1X46 ______________ SECTIO A ________________________ 1985 Faculty ot Civil Engineering

University of Beograd

J.E.PEĆARIÓ

A Generalization of Chebyshev’ s Inequality Pewne uogólnienie nierówności Czeby siewa

Некоторые обобщение неравенства Чебышева

Let 0,7 and p< (»,/ — l,...,n) be real numbers. Let us adopt the notations:

A 6,7 = fli+lj ~ )

A

o

,7 = 0,-j+i •- a,7 ,

AAa,/ = A(Aa<y) = o, + u+1 - 0,-j+i - a i+1J + 0,7- ,

* *

p * = 52 p ’' ’ ^* = 52?” =

1 = 1 i-k

Then the following theorem is valid:

Theorem 1. (a) Let n-tuple p satisfy the conditions 0 < p* < p n (1 < k < n).

If &■§.<*} > 0 (»,/ = 1,... ,n - 1), then 1 I

D(a-,p)>0 (1)

» » *

D(a;p) = y^Pj a Jj 52 •

i=l j = l

where

(2)

132_ J.E.PeearK

If < 0 (s',/ = - 1), then the reverse inequality in (I) is valid.

(b) Let be either 0 < p„ < fit (k 1,...,n) or 0 < p« < p* (* = l,...,n).

Lf <0 (»,/ = 1,...,n - 1), then (1) holds; and if &&a^j > 0 (»,/ = 12 12

1), then the reverse inequality in (1) is valid.

»

Proof. As identity EPi(an “ au) ~ a' + d< *s where

j=i

i—1 n

°> = y?Pj(an~O-ij-aJ + lJ + l+a»J+l), di =

P=1 y=«+l

then, because Oi = 0 and d« = 0, we obtain:

D(a,p) = t = l \j = l ~ j i = l ~ ^L,P<ai

+ E^ =

i=l

a » — 1

= EF«(°«- a’ -i) +E mt* - ^i+i^ ~

'~ 2 ? ,=i

» /•—* \

= E F I E^f^-W - E-iAo,_ w_i +

i=t \j=l I

+ EF| f E A44«V-l + Pt+iAa,.,

+1

» —1 \j'=i+2

1

2

i.e.

» —1 a

0MsEEP,F^*-W+.E E F'C^AaiU_i. (2)

i=2j=l

«'=1 /=«'+2

a • —1

Using (2), we can easily prove Theorem I.

Remarks: 1® We can also easily show that the conditions of Theorem 1 are necessary and sufficient.

2" If a and 6 are monotonous «-tuples, then from Theorem 1, for o,y = atbj, we can get the well-known Chebyshev’ s inequality.

Theorem 2. Letp be positive n-tuple such that M~ max (P*P*+i).

!<*<«-!

Lf either AAa,y > 0 = I,. ,n - 1) or AAtt,y < 0 («,; = 1,.. n - I ) then

|B(a;p)| < M\a„„ - aBl - a la + ai a| .

(3)

A Generalization of Chebyshev1» Inequality

133

Proof. From (2) we have:

»—I a

i » •— 1

iB(a;p)i <15252 44a''-w

1 2

+ 52 52

1 2

, Jj=2/ = 1 i = l J=i-rl

= M (a BS - <2,1 - «1, + Ol,i| .

Corollary 1. If either AAa,y >0 (»,/ = I,...,n — I)or AAa,y < 0 (s',/ = - 1) then

nVaii - V •u

ij=l

- [?] ( n ~ ti! ) ' a- " a>1 ~ ai" + ai>1 '

i = l

Analogously we can prove the corresponding integral analogue of Theorems 1 and 2.

Theorem 8. Let the function A : [a, il ►-» R be either continuous or of bounded d2 f variation and let,the function f : [a,ij x (a,ij •-> R have partial derivative for every x,y E[a,b}.

(a) Let A(a) < A(x) < A(6) , for all x G la,ij.

dxdy

If

d

2f

dxdy >0 ( for ail x,jzG|a,i] then

T(f;X)>0 (3)

where

T(/;A)= f'dX(y) j* f(x,z)dX(z) - J* J* f(i,y)dX(x)dX(y) .

If d2f < 0 ( for all x,y G [a, 6]) then the reverse inequality in (3) is valid, dxdy

(b) Let be either A(a) < A(6) < A(x) for all x G |a,6] or

A(i) > A(a) > A(x) for all x G [a, 6]. If <0 (for all x,y G [a, 6]) then (3) holds, and if >0 (for all x,y G ja,6]) then the reverse inequality in (3)

dxdy holds.

Theorem

4.

Let X be nondecreasing function on [a, 61 such that d2 f

M = max,€ [«,*]((A(x) - A(a))(A(6) - A(z))). If either >0 (for all x,y G (a, 6]) or < 0 (for all x,y G [a,i]), then

\T(f-, A)| < A/|/(6, 6) - f(a,b) - /(6, a) + /(a,a)|.

(4)

J.E.Pe4arió

Remark S. If A is continuous nondecreasing function then AZ = |(A(A)-A(a))2. .

The previous results are generalizations of some results from [I (2j, [3j and [4].

REFERENCES

,1, B ier nac k i, M. ,Pidek,H. ,Ryll-Nardzewski, C. .o’lr sae meyaliti entrc dee intignlce dcfinia.

Ann. Univ. Mariae Sklodowska-Curie Sect.A, 4 (1960) 1-4.

jj| Pe4ari4, J.E , On the Oebylcv incyielity, BuLStiinl.Tehn.lnst.Polhehn. Traian Unia. Timisoara (in print).

i>J

Pe4ariif , J.E , On en ineynahty of TJ’opovidt, Traian Unia, Timisoara (in print).

,4j VasiJ , P.M.,Stan kowi<f, Lj. R. , Pei&ric, J.E.Notee on the Ocbyicv incynality, \Joiv. Beograd.

Publ. Elektrotebn. Fak. Ser. Mat. Fiz. (in print).

STRESZCZENIE

W pracy tej zostało podane uogólnienie dobrze znanej nierówności Czebyszewa. Podano również uogólnienie pewnej nierówności M.Biernackiego, H.Pidek i CJtylla-Nardzewskiego.

РЕЗЮМЕ

В данной работе представлено обобщение известного неравенства Чебышева. Пред­

ставлено также обобщение некоторого неравенства Бернацкого, Пидек и Рилл-Нардзевского.

Cytaty

Powiązane dokumenty

In a recent paper Fournier and Ruscheweyh established a theorem related to a certain functional.. Introduction and statement

There remains the following question: for which integers n do there exist four distinct natural numbers such that the product of any two of them increased by n gives the square of

Then zav would be a bispecial suffix of w of length strictly greater than |v|, and zava is left special, and hence by Lemma II.1, azav is right special.. It follows from the

Jeżeli operator ciągły К w przestrzeni Banacha przeprowadza zbiór zamknięty, zwarty i wypukły w siebie, wówczas w tym zbiorze istnieje punkt stały.. Oznaczmy

Materiał edukacyjny wytworzony w ramach projektu „Scholaris – portal wiedzy dla nauczycieli&#34;.. współfinansowanego przez Unię Europejską w ramach Europejskiego

It is proven that the lengths of diagonals of a regular n-gon with the side of length equal to one are the sums of positive roots of the respective renormalized Chebyshev polynomials

1552, kształcił się w naukach humanistycznych prawdopodobnie w Poznaniu, pod kierunkiem Jana Parvusa (Leo- politanus), następnie przeniósł się do Krakowa, gdzie w

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE X II (1969)K. ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE