• Nie Znaleziono Wyników

Kierunki dalszych prac

W dokumencie Index of /rozprawy2/10245 (Stron 118-127)

W ramach dalszych prac rozwojowych związanych z tematyką niniejszej pracy doktorskiej autor zamierza: 1. Rozbudować system zabezpieczeń tak, by umożliwić pracę układu szeregowego przy pełnym

wykorzy-staniu parametrów znamionowych użytych elementów, w szczególności kondensatorów DC.

2. Przystosować układ szeregowy do pracy w trybie stabilizacji ciągłej w sieci o znamionowym napięciu fazowym 230 V.

3. Zmodernizować algorytm obliczania napięcia wzorcowego odbiornika, uwzględniając optymalizację wymiany mocy czynnej między układem szeregowym a siecią zasilającą w różnych stanach pracy. 4. Przeprowadzić próby pracy układu stabilizatora z trójfazowymi odbiornikami nieliniowymi, w

szcze-gólności z prostownikiem sterowanym.

5. Opracować algorytm sterowania umożliwiający pracę układu szeregowego w charakterze aktywnego układu blokującego przepływ wyższych harmonicznych – razem z pasywnym filtrem równoległym. 6. Opracować algorytm sterowania umożliwiający wykorzystanie układu stabilizatora jako część

szere-gową układu UPQC – razem z aktywnym filtrem równoległym.

7. Opracować implementacje algorytmów sterujących umożliwiających wykonanie układu sterowania w oparciu o dedykowane układy z procesorem DSP.

Bibliografia

[1] E. Aeloiza, P. Enjeti, L. Moran, O. Montero-Hernandez, and S. Kim, “Analysis and design of a new voltage sag compensator for critical loads in electrical power distribution systems,” IEEE Trans. on Industry Applications, vol. 39, no. 4, pp. 1143–1150, Jul./Aug. 2003.

[2] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage components,” IEEE Trans. on Industry Applications, vol. IA-20, no. 3, pp. 625–630, 1984.

[3] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous power theory and applications to power conditioning, ser. IEEE press series on power engineering. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.

[4] M. Albu and G. T. Heydt, “On the use of RMS values in power quality assessment,” IEEE Trans. on Power

Delivery, vol. 18, no. 4, pp. 1586– 1587, Oct. 2003.

[5] H. Awad and M. Bollen, “Power electronics for power quality improvements,” in Proc. IEEE International

Symposium on Industrial Electronics ISIE ’03, vol. 2, 2003, pp. 1129–1136.

[6] H. Awad and F. Blaabjerg, “Modification of double vector control algorithm to filter out grid harmonics,” in

Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE, vol. 1, Mar. 2005, pp. 628–634.

[7] H. Awad and J. Svensson, “Compensation of unbalanced voltage dips using vector-controlled static series compensator with lc-filter,” in Industry Applications Conference, 2002. 37th IAS Annual Meeting, vol. 2, 2002, pp. 904–910.

[8] H. Awad and J. Svensson, “Double vector control for series connected voltage source converters,” in Proc. of

Power Engineering Society Winter Meeting, 2002, vol. 2, Jan. 2002, pp. 707–712.

[9] H. Awad, J. Svensson, and M. Bollen, “Mitigation of unbalanced voltage dips using static series compensator,”

IEEE Trans. on Power Electronics, vol. 19, no. 3, pp. 837–846, May 2004.

[10] H. Awad, “Vector control of static series compensator for mitigation of voltage dips,” Master’s thesis, Depar-tement of Electric Power Engineering, Chalmers University of Technology, Gooteborg, Sweden, 2002.

[11] H. Awad, “Control of static series compensator for mitigation of power quality problems,” Ph.D. dissertation, Departement of Electric Power Engineering, Chalmers University of Technology, Gooteborg, Sweden, 2004. [12] H. Awad, J. Svensson, and M. J. Bollen, “Tuning software phase-locked loop for series connected converters,”

IEEE Trans. on Power Delivery, vol. 20, no. 1, pp. 300–308, Jan. 2005.

[13] T. Axente, M. Basu, M. F. Conlon, and K. Gaughan, “Protection of DVR against short circuit faults at the load side,” in Power Electronics, Machines and Drives, The 3rd IET International Conference on, Mar. 2006, pp. 627–631.

[14] A. Baggini, Ed., Handbook of Power Quality. John Willey & Sons, Ltd, 2008.

[15] M. Becker and T. Mouton, “Transformerless series dip/sag compensation with ultracapacitors using a new multilevel boost DC-to-AC topology,” in Proc. of 36th Power Electronics Specialists Conference, PESC ’05, 11-14 Sep. 2005, pp. 2257– 2263.

[16] A. Bendre, D. Divan, W. Kranz, and W. Brumsickle, “Equipment failures caused by power quality disturbances,” in 39th IAS Annual Meeting Industry Applications Conference Conference Record of the 2004 IEEE, vol. 1, 2004, pp. 482–489.

[17] A. Bendre, D. Divan, W. Kranz, and W. E. Brumsickle, “Are voltage sags destroying equipment?” IEEE

[18] G. Benysek, Improvement in the quality of delivery of electrical energy using power electronics systems, ser. Power Systems. Springer, 2006.

[19] B. M. Bird, J. F. Marsh, and P. R. McLellan, “Harmonic reduction in multiple converters by triple-frequency current injection,” IEE Proceedings, vol. 116, no. 10, pp. 1730–1734, 1969.

[20] M. H. J. Bollen, “Characterisation of voltage sags experienced by three-phase adjustable-speed drives,” IEEE

Trans. on Power Delivery, vol. 12, no. 4, pp. 1666–1671, Oct. 1997.

[21] M. H. J. Bollen and L. D. Zhang, “Analysis of voltage tolerance of AC adjustable-speed drives for three-phase balanced and unbalanced sags,” IEEE Trans. on Industry Applications, vol. 36, no. 3, pp. 904–910, May/Jun. 200.

[22] M. J. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions. IEEE Press Series on Power Engineering, 2000.

[23] M. Bongiorno, “Control of voltage source converters for voltage dip mitigation in shunt and series configura-tions,” Master’s thesis, Chalmers University of Technology, Gooteborg, Sweden, 2004.

[24] M. Bongiorno, J. Svensson, and A. Sannino, “An advanced cascade controller for series-connected VSC for vol-tage dip mitigation,” in Conference Record of Fourtieth IAS Annual Meeting, Industry Applications Conference, vol. 2, Oct. 2005, pp. 873–880.

[25] W. Brumsickle, R. Schneider, G. Luckjiff, D. Divan, and M. McGranaghan, “Dynamic sag correctors: cost-effective industrial power line conditioning,” IEEE Trans. on Industry Applications, vol. 37, no. 1, pp. 212–217, Jan./Feb. 2001.

[26] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” Proceedings of the IEEE, vol. 95, no. 4, pp. 806–820, Apr. 2007.

[27] A. Campbell and R. McHattie, “Backfilling the sinewave. a dynamic voltage restorer case study,” Power

Engi-neering Journal, vol. 13, no. 3, pp. 153–158, 1999.

[28] F. Carlsson, “Saturation in synchronous machines due to voltage sags,” in Proc. IEMDC’03 Electric Machines

and Drives Conference IEEE International, 1-4 Jun. 2003, pp. 1571–1575.

[29] W. W. Carter, “Control of power quality in modern industry,” in Proc. of IEEE Annual Textile Industry

Technology Conference, 1989, p. 11/1–11/4.

[30] B.-S. Chae, W.-C. Lee, and D.-S. H. T.-K. Lee, “An overcurrent protection scheme for series active compensa-tors,” in Proc. of the 27th Annual Conference of the IEEE Industrial Electronics Society, IECON ’01, vol. 2, Denver, CO, USA, 29 Nov. -2 Dec. 2001, pp. 1509–1514.

[31] K. Chan, A. Kara, and G. Kieboom, “Power quality improvement with solid state transfer switches,” in Proc.

8th International Conference on Harmonics And Quality of Power, vol. 1, Athens, Greece, 14–16 Oct. 1998, pp. 210–215.

[32] P.-T. Cheng, C.-C. Huang, C.-C. Pan, and S. Bhattacharya, “Design and implementation of a series voltage sag compensator under practical utility conditions,” in Proc. of 17th Annual IEEE Applied Power Electronics

Conference and Exposition, APEC 2002, vol. 2, 2002, pp. 1061–1067.

[33] P.-T. Cheng, C.-C. Huang, C.-C. Pan, and S. Bhattacharya, “Design and implementation of a series voltage sag compensator under practical utility conditions,” IEEE Trans. on Industry Applications, vol. 39, no. 3, pp. 844–853, Jun. 2003.

[34] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, “Dynamic voltage restoration with minimum energy injection,”

IEEE Trans. on Power Systems, vol. 15, no. 1, Feb. 2000.

[35] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, “A comparative study of inverter- and line-side filtering schemes in the dynamic voltage restorer,” in Proc. of Power Engineering Society Winter Meeting, vol. 4, 2000, pp. 2967–2972.

[36] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, “Design and analysis of the inverter-side filter used in the dynamic voltage restorer,” IEEE Trans. on Power Delivery, vol. 17, no. 3, pp. 857– 864, Jul. 2002.

[37] S. S. Choi, J. D. Li, and D. M. Vilathgamuwa, “A generalized voltage compensation strategy for mitigating the impacts of voltage sags/swells,” IEEE Trans. on Power Delivery, vol. 20, no. 3, pp. 2289–2297, Jul. 2005. [38] S. S. Choi, T. X. Wang, and D. M. Vilathgamuwa, “A series compensator with fault current limiting function,”

BIBLIOGRAFIA

[39] L. Conrad, K. Little, and C. Grigg, “Predicting and preventing problems associated with remote fault-clearing voltage dips,” IEEE Trans. on Industry Applications, vol. 26, p. 167–172, Jan./Feb. 1991.

[40] P. Daehler and R. Affolter, “Requirements and solutions for dynamic voltage restorer, a case study,” in Proc.

of Power Engineering Society Winter Meeting, vol. 4, Jan. 2000, pp. 2881 – 2885.

[41] P. Daehler, M. Eichler, O. Gaupp, and G. Linhofer, “Power quality devices improve manufacturing process stability,” ABB Review, vol. 1, pp. 62–68, 2001.

[42] B. Delfino, F. Fornari, and R. Procopio, “An effective SSC control scheme for voltage sag compensation,” IEEE

Trans. on Power Delivery, vol. 20, no. 3, pp. 2100–2107, Jul. 2005.

[43] S. B. Dewan, “Optimum input and output filters for a single-phase rectifier power supply,” IEEE Trans. on

Industry Applications, vol. IA-17, p. 282–288, May/Jun. 1981.

[44] J. W. Dixon, G. Venegas, and L. A. Moran, “A series active power filter based on a sinusoidal current-controlled voltage-source inverter,” in Proc. IEEE IECON 21st International Conference on Industrial Electronics,

Con-trol, and Instrumentation, 1995, pp. 639–644.

[45] J. W. Dixon, G. Venegas, and L. A. Moran, “A series active power filter based on a sinusoidal current-controlled voltage-source inverter,” IEEE Trans. on Industrial Electronics, vol. 44, no. 5, pp. 612–620, Oct. 1997. [46] D. S. Dorr, “Point of utilization power quality study results,” IEEE Trans. on Industry Applications, vol. 31,

no. 4, pp. 658 – 666, Jul./Aug. 1995.

[47] D. S. Dorr, M. B. Hughes, T. M. Gruzs, R. E. Jurewicz, and J. L. McClaine, “Interpreting recent power quality surveys to define the electrical environment,” IEEE Trans. on Industry Applications, vol. 33, no. 6, pp. 1480–1487, Nov./Dec. 1997.

[48] D. S. Dorr, A. Mansoor, A. G. Morinec, and J. C. Worley, “Effects of power line voltage variations on different types of 400 W high-pressure sodium ballasts,” IEEE Trans. on Industry Applications, vol. 33, no. 2, pp. 472–476, Mar./Apr. 1997.

[49] J. L. Duran-Gomez, P. N. Enjeti, and B. O. Woo, “Effect of voltage sags on adjustable-speed drives: a critical evaluation and an approach to improve performance,” IEEE Trans. on Industry Applications, vol. 35, no. 6, pp. 1440–1449, Nov./Dec. 1999.

[50] M. Fang, A. I. Gardiner, A. MacDougall, and G. A. Mathieson, “A novel series dynamic voltage restorer for distribution systems,” in Proc. of International Conference on Power System Technology, IEEE, Power Engineering Society. Beijing, China: IEEE, Piscataway, NJ, USA, 18-21 Aug. 1998, pp. 38–42.

[51] A. Firlit, “Analiza porównawcza algorytmów stepowania filtrów aktywnych opartych na wybranych teoriach mocy,” Ph.D. dissertation, Akademia Górniczo-Hutnicza, Wydz. Elektrotechniki, Automatyki, Informatyki i Elektroniki, 2006.

[52] C. Fitzer, M. Barnes, and P. Green, “Voltage sag detection technique for a dynamic voltage restorer,” IEEE

Trans. on Industry Applications, vol. 40, no. 1, pp. 203–212, Jan.-Feb. 2004.

[53] C. Fitzer, A. Arulampalam, M. Barnes, and R. Zurowski, “Mitigation of saturation in dynamic voltage restorer connection transformers,” IEEE Trans. on Power Electronics, vol. 17, no. 6, pp. 1058– 1066, Nov. 2002. [54] H. Fujita and H. Akagi, “The unified power quality conditioner: The integration of series active filters and

shunt active filters,” in Proc. 27th Annual IEEE Power Electronics Specialists Conference PESC ’96 Record, vol. 1, 1996, pp. 494–501.

[55] S. George and V. Agarwal, “A DSP-based control algorithm for series active filter for optimized compensation under nonsinusoidal and unbalanced voltage conditions,” IEEE Trans. on Power Delivery, vol. 22, no. 1, pp. 302–310, Jan. 2007.

[56] A. Ghosh, “Compensation of distribution system voltage using DVR,” IEEE Trans. on Power Delivery, vol. 17, no. 4, pp. 1030–1036, Oct. 2002.

[57] A. Ghosh, A. K. Jindal, and A. Joshi, “Design of a capacitor-supported dynamic voltage restorer (DVR) for unbalanced and distorted loads,” IEEE Trans. on Power Delivery, vol. 19, no. 1, Jan. 2004.

[58] A. Girgis and F. Ham, “A quantitative study of pitfalls in the FFT,” IEEE Trans. on Aerospace and Electronic

Systems, vol. AES-16, no. 4, pp. 434–439, Jul. 1980.

[59] J. Gomez, M. Morcos, C. Reineri, and G. Campetelli, “Behavior of induction motor due to voltage sags and short interruptions,” IEEE Trans. on Power Delivery, vol. 17, no. 2, pp. 434–440, Feb. 2002.

[60] M. Gonzalez, V. Cardenas, and R. Alvarez, “Detection of sag, swells and interruptions using the digital RMS method and Kalman filter with fast response,” in Proc. of IEEE 32nd Annual Conference on Industrial

Elec-tronics, IECON2006. IEEE Industrial Electronic Society, 2006, pp. 2249–2254.

[61] M. Gonzalez, V. Cardenas, and R. Alvarez, “A fast detection algorithm for sags, swells, and interruptions based on digital rms calculation and Kalman filtering,” in Proc. of 10th IEEE International Power Electronics

Congress, Oct. 2006, pp. 1–6.

[62] L. Guasch, F. Corcoles, and J. Pedra, “Effects of symmetrical and unsymmetrical voltage sags on induction machines,” IEEE Trans. on Power Delivery, vol. 19, no. 2, pp. 774–782, 2004.

[63] L. Guasch, F. Córcoles, J. Pedra, and L. S´ainz, “Effects of symmetrical voltage sags on three-phase three-legged transformers,” IEEE Trans. on Power Delivery, vol. 19, no. 2, pp. 875–883, Apr. 2004.

[64] K. Haddad, G. Joos, and S. Chen, “Control algorithms for series static voltage regulators in faulted distribution systems,” in Proc. of 30th Annual IEEE Power Electronics Specialists Conference, PESC99, vol. 1. Power Electronics Society, Aug. 1999, pp. 418–423.

[65] M. H. Haque, “Voltage sag correction by dynamic voltage restorer with minimum power injection,” IEEE Power

Engineering Review, vol. 21, no. 5, pp. 56–58, May 2001.

[66] N. G. Hingorani, “Flexible AC transmission,” IEEE Spectrum, vol. 30, no. 4, pp. 40–45, Apr. 1993. [67] N. G. Hingorani, “Introducing Custom Power,” IEEE Spectrum, pp. 41–48, Jun. 1995.

[68] N. G. Hingorani, “FACTS technology - state of the art, current challenges and the future prospects,” in IEEE

Power Engineering Society General Meeting, 2007, Tampa, FL, USA, 24-28Jun. 2007, pp. 1–4.

[69] D. G. Holmes and T. A. Lipo, Pulse width modulation for power converters. John Wiley & Sons, Inc., 2003. [70] C.-J. Huang, S.-J. Huang, and F.-S. Pai, “Design of dynamic voltage restorer with disturbance-filtering

enhan-cement,” IEEE Trans. on Power Electronics, vol. 18, no. 5, pp. 1202–1210, Sep. 2003.

[71] “IEEE recommended practice for monitoring electric power quality,” IEEE Standard 1159-1995, IEEE, 345 East 47th Street, New York, NY 10017 USA, 2 Nov. 1995.

[72] Proc. of International Conference on Power System Technology, PowerCon 2000, IEEE, Power Engineering Society. Perth, Australia: IEEE, Piscataway, NJ, USA, 4-7 Dec. 2000.

[73] “ITI (CBEMA) curve,” available at www.itic.org, Nov. 2000.

[74] J. Jerzy and F. Ralph, “Voltage waveshape improvement by means of hybrid active power filter,” in Proc. of

IEEE International Conference on Harmonics and Power Systems, ICHPS IV, Bologna, Italy, 21-23Sep. 1994, pp. 250–255.

[75] A. K. Jindal, A. Ghosh, and A. Joshi, “Interline unified power quality conditioner,” IEEE Trans. on Power

Delivery, vol. 22, no. 1, pp. 364–372, Jan. 2007.

[76] G. Joos, “Three-phase static series voltage regulator control algorithms for dynamic sag compensation,” in

Proc. of the IEEE International Symposium on Industrial Electronics, ISIE ’99, vol. 2, Bled, Slovenia, Jun. 1999, pp. 515–520.

[77] F. Jurado, “Neural network control for dynamic voltage restorer,” IEEE Trans. on Industrial Electronics, vol. 51, no. 3, pp. 727–729, Jun. 2004.

[78] V. Kaura and V. Blasko, “Operation of a phase locked loop system under distorted utility conditions,” IEEE

Trans. on Industry Applications, vol. 33, no. 1, pp. 58–63, Jan./Feb. 1997.

[79] Y. Y. Kolhatkar and P. S. Das, “An optimum UPQC with minimum VA requirement and mitigation of unba-lanced voltage sags,” Int. Journal of Emerging Electric Power Systems, vol. 2, no. 2, 2005.

[80] C.-S. Lam, M.-C. Wong, and Y.-D. Han, “Per-unit design of a transformerless, h-bridge dynamic voltage restorer with closed-loop load voltage and current-mode control,” in Conference Record of the Fourtieth IAS Annual

Meeting, Industry Applications Conference 2005, vol. 4, 2-6 Oct. 2005, pp. 2420– 2427.

[81] J. Lamoree, D. Mueller, P. Vinett, W. Jones, and M. Samotyj, “Voltage sag analysis case studies,” IEEE Trans.

on Industry Applications, vol. 30, no. 4, pp. 1083–1089, Jul./Aug. 1994.

[82] T. Larsson and C. Poumarede, “STATCOM, an efficient means for flicker mitigation,” in Proc. IEEE Power

BIBLIOGRAFIA

[83] G.-M. Lee, D.-C. Lee, and J.-K. Seok, “Control of series active power filters compensating for source voltage unbalance and current harmonics,” IEEE Trans. on Industrial Electronics, vol. 51, no. 1, pp. 132–139, Feb. 2004.

[84] K. Lee, T. M. Jahns, W. E. Berkopec, and T. A. Lipo, “Closed-form analysis of adjustable-speed drive per-formance under input-voltage unbalance and sag conditions,” in Proc. IEEE 35th Annual Power Electronics

Specialists Conference, PESC 04, vol. 1, 2004, pp. 469–475.

[85] S.-J. Lee, H. Kim, S.-K. Sul, and F. Blaabjerg, “A novel control algorithm for static series compensators by use of PQR instantaneous power theory,” IEEE Trans. on Power Electronics, vol. 19, no. 3, pp. 814–827, May 2004.

[86] W.-C. Lee, T.-K. Lee, C.-S. Ma, and D.-S. Hyun, “A fault protection scheme for series active compensators,” in Proc. of IEEE 33rd Annual Power Electronics Specialists Conference, PESC 2002, vol. 3, 23-27 Jun. 2002, pp. 1217–1222.

[87] B. H. Li, S. S. Choi, and D. M. Vilathgamuwa, “On the injection transformer used in the dynamic voltage restorer,” in Proc. of International Conference on Power System Technology, IEEE, Power Engineering Society. Perth, Australia: IEEE, Piscataway, NJ, USA, 4-7 Dec. 2000, pp. 941–946.

[88] B. Li, S. Choi, and D. Vilathgamuwa, “Transformerless dynamic voltage restorer,” IEE Proceedings on

Gene-ration, Transmission and Distribution, vol. 149, no. 3, pp. 263–273, May 2002.

[89] D. Li, Q. Chen, Z. Jia, and J. Ke, “A novel active power filter with fundamental magnetic flux compensation,”

IEEE Trans. on Power Delivery, vol. 19, no. 2, pp. 799–805, Apr. 2004.

[90] J. D. Li, S. S. Choi, and D. M. Vilathgamuwa, “Impacts of voltage phase shift on motor loads and series custom power devices including converter thermal effects,” IEEE Trans. on Power Delivery, vol. 19, no. 4, pp. 1941–1949, 2004.

[91] J. Li, S. Choi, and D. Vilathgamuwa, “Impact of voltage phase jump on loads and its mitigation,” in Proc. 4th

International Power Electronics and Motion Control Conference IPEMC 2004, vol. 3, 2004, pp. 1762–1766. [92] J. Li, S. Choi, and D. Vilathgamuwa, “Impacts of voltage phase shift on motor loads and series custom power

devices including converter thermal effects,” IEEE Trans. on Power Delivery, vol. 19, no. 4, pp. 1941–1949, Oct. 2004.

[93] Y. W. Li, S. S. Choi, D. M. Vilathgamuwa, F. Blaabjerg, and P. C. Loh, “A robust control scheme for medium voltage level DVR implementation,” IEEE Trans. on Industrial Electronics, vol. 54, no. 4, pp. 2249–2261, Aug. 2007.

[94] P. C. Loh, D. M. Vilathgamuwa, S. K. Tang, and H. L. Long, “Multilevel dynamic voltage restorer,” Power

Electronics Letters, IEEE, vol. 2, no. 4, pp. 125– 130, Dec. 2004.

[95] J. A. R. Macias and A. G. Exposito, “Self-tuning of Kalman filters for harmonic computation,” IEEE Trans.

on Power Delivery, vol. 21, no. 1, pp. 501–503, Jan. 2006.

[96] A. Mansoor and R. J. Ferraro, “Characterizing ASD power quality application issues,” in Proc. PQA-97 North

America, Columbus, OH, North America, 3-6Mar. 1997.

[97] M. Marei and M. Salama, “Advanced techniques for voltage flicker mitigation,” in Proc. th IEEE International

Power Electronics Congress, Puebla, Mexico, 16–18 Oct. 2006, pp. 1–5.

[98] M. McGranaghan and D. Mueller, “Effects of voltage sags in process industry applications,” in Proc. of

Stoc-kholm Power Tech International Symposium on Electric Power Engineering, vol. 1, Stockholm, Sweden, 18- 22 Jun. 1995, pp. 4–10.

[99] M. F. McGranaghan, D. R. Mueller, and M. J. Samotyj, “Voltage sags in industrial systems,” IEEE Trans. on

Industry Applications, vol. 29, no. 2, pp. 397–403, Mar./Apr. 1993.

[100] R. McHattie, “Dynamic voltage restorer the customers’s perspective,” in Proc. IEE Half Day Colloquium on

Dynamic Voltage Restorers - Replacing Those Missing Cycles, 1998, pp. 1–5.

[101] F. Mekri, B. Mazari, M. Machomoum, and N. A. Ahmed, “Determination of voltage references for series active power filter based on a robust PLL system,” awaiting for publication.

[102] S. W. Middlekauff and E. R. C. Jr., “System and customer impact: Consideration for series custom power devices,” IEEE Trans. on Power Delivery, vol. 13, no. 1, pp. 278–281, Jan. 1998.

[103] L. Moran, R. Oyarzun, I. Pastorini, J. Dixon, and R. Wallace, “A fault protection scheme for series active power filters,” in Proc. of 27th Annual IEEE Power Electronics Specialists Conference, PESC ’96, vol. 1, 23-27 Jun. 1996, pp. 489–493.

[104] L. A. Moran, J. W. Dixon, J. R. Espinoza, and R. R. Wallace, “Using active power filters to improve power quality,” in 5th Brazilian Power Electronics Conference, COBEP99, 1999.

[105] L. A. Moran, I. Pastorini, J. Dixon, and R. Wallace, “A fault protection scheme for series active power filters,”

IEEE Trans. on Power Electronics, vol. 14, no. 5, pp. 928–938, Sep. 1999.

[106] A. Moreno-Munoz, Ed., Power quality: mitigation technologies in a distributed environment, ser. Power Systems. Springer, 2003.

[107] B. M. Nacke and R. L. Schlake, “The importance of power quality management in the pulp and paper industry,”

IEEE Trans. on Industry Applications, vol. 38, no. 3, pp. 758–762, May/Jun. 2002.

[108] R. Naidoo and P. Pillay, “A new method of voltage sag and swell detection,” IEEE Trans. on Power Delivery, vol. 22, no. 2, pp. 1056–1063, Apr. 2007.

[109] O. N. Neto, L. F. C. Pimentel, M. C. Cavalcanti, F. A. S. Neves, C. L. Costa, and W. B. dos Santos, “A design guideline for dynamic voltage restorers,” in Proc. of 11th International Power Electronics and Motion Control

Conference, EPE-PEMC 2004, Riga, Latvia, 2-4 Sep. 2004.

[110] M. J. Newman, “Design and control of a universal custom power conditioner,” Ph.D. dissertation, Departament of Electrical and Comuter System Engineering, Monash University, Victoria, Australia, Sep. 2003.

[111] M. J. Newman, D. G. Holmes, J. G. Nielsen, and F. Blaabjerg, “A dynamic voltage restorer DVR with selective harmonic compensation at medium voltage level,” IEEE Trans. on Industry Applications, vol. 41, no. 6, pp. 1744–1753, Nov. 2005.

[112] M. Newman and D. Holmes, “An integrated approach for the protection of series injection inverters,” in

Con-ference Record of Thirty-Sixth IAS Annual Meeting, IEEE Industry Applications ConCon-ference, vol. 2, Chicago, IL, USA, 30 Sep.-4 Oct. 2001, pp. 871–878.

[113] J. G. Nielsen, “Design and control of a dynamic voltage restorer,” Ph.D. dissertation, Inst. Energy Technol. Aalborg Univ., Aalborg, Sweden, 2002.

[114] J. G. Nielsen and F. Blaabjerg, “A detailed comparison of system topologies for dynamic voltage restorers,”

IEEE Trans. on Industry Applications, vol. 41, no. 5, pp. 1277–1280, Sep. 2005.

[115] J. G. Nielsen, M. Newman, H. Nielsen, and F. Blaabjerg, “Control and testing of a dynamic voltage restorer (DVR) at medium voltage level,” IEEE Trans. on Power Electronics, vol. 19, no. 3, pp. 806–813, May 2004. [116] Z. Pan, F. Z. Peng, and S. Wang, “Power factor correction using a series active filter,” IEEE Trans. on Power

Electronics, vol. 20, no. 1, pp. 148–153, Jan. 2005.

[117] J. Pedra, F. Corcoles, and F. Suelves, “Effects of balanced and unbalanced voltage sags on vsi-fed adjustable-speed drives,” IEEE Trans. on Power Delivery, vol. 20, no. 1, pp. 224–233, Jan. 2005.

[118] M. K. Peel, A. Sundaram, and N. Woodley, “Power quality protection using a platform-mounted SCD-demonstration project experience,” in Proc. of Industrial and Commercial Power Systems Technical Conference, May 2000, pp. 133 – 139.

[119] F. Z. Peng, H. Akagi, and A. Nabae, “A new approach to harmonic compensation in power systems: a combined system of shunt passive and series active filters,” IEEE Trans. on Industry Applications, vol. 26, pp. 983–990, Nov./Dec. 1990.

[120] F. Z. Peng, H. Akagi, and A. Nabae, “Compensation characteristics of a combined system of shunt passive

W dokumencie Index of /rozprawy2/10245 (Stron 118-127)

Powiązane dokumenty