• Nie Znaleziono Wyników

Perspektywy badawcze

W dokumencie Index of /rozprawy2/11311 (Stron 60-70)

IV. CZĘŚĆ DOŚWIADCZALNA 4.1. Materiały i metody

4.4. Perspektywy badawcze

W dalszej perspektywie planowane są badania zmierzające w dwóch kierunkach. Pierwszy z nich obejmował będzie zastosowanie jako modyfikatorów matrycy polimerowej cząstek bioaktywnych szkieł stanowiących nośnik biologicznie aktywnych jonów. Planuje się wykorzystanie szkieł uwalniających zarówno jony o działaniu osteogennym (Zn, Sr, Mg), angiogennym (Cu, Co), jak również antybakteryjnym (Ag, Ce, Cu) [80, 81]. Drugi kierunek badań dotyczył będzie opracowania metody wytwarzania kompozytowych nośników związków polifenolowych w postaci membran oraz przestrzennych rusztowań. W związku z szeroką aktywnością biologiczną polifenoli, można spodziewać się że otrzymane materiały wykazywały będą, obok działania przeciwutleniającego i antynowotworowego, również aktywność osteoimmunomodulacyjną, czy antybakteryjną. W obu przypadkach, prowadzone badania ukierunkowane będą na ustalenie czynników determinujących kinetykę uwalniania aktywnych składników (zarówno jonów metali, jak również polifenoli) z materiałów kompozytowych, a także ich potencjału aplikacyjnego w medycynie regeneracyjnej i inżynierii tkanki kostnej.

B I B L I O G R A F I A | 62

BIBLIOGRAFIA

1. Williams D (2004) Benefit and risk in tissue engineering. Mater Today 7:24–29

2. Gerhardt L-C, Boccaccini AR (2010) Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials (Basel) 3:3867–3910

3. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431 4. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555

5. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PFM, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions — A 21st century perspective. Bone Res 1:216–248

6. Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L (2007) Risk factors contributing to fracture non-unions. Injury 38:S11–S18

7. Elgali I, Omar O, Dahlin C, Thomsen P (2017) Guided bone regeneration: materials and biological mechanisms revisited. Eur. J. Oral Sci. 125:315–337

8. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25 9. Hench LL (2002) Third-Generation Biomedical Materials. Science (80- ) 295:1014–1017 10. Hench LL (1980) Biomaterials. Science (80- ) 208:826–831

11. Taylor BC, French BG, Ty Fowler T, Russell J, Poka A (2012) Induced membrane technique for reconstruction to manage bone loss. J. Am. Acad. Orthop. Surg. 20:142–150

12. Williams DF (1987) Definitions in biomaterials. Elsevier, Amsterdam

13. Bertazzo S, Zambuzzi WF, Campos DDP, Ogeda TL, Ferreira C V., Bertran CA (2010) Hydroxyapatite surface solubility and effect on cell adhesion. Colloids Surfaces B Biointerfaces 78:177–184

14. LeGeros RZ (2008) Calcium Phosphate-Based Osteoinductive Materials. Chem Rev 108:4742– 4753

15. Bagambisa FB, Joos U, Schilli W (1993) Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J Biomed Mater Res 27:1047–1055

16. Hench LL (1991) Bioceramics: From Concept to Clinic. J Am Ceram Soc 74:1487–1510 17. Dorozhkin S V. (2015) Calcium orthophosphate bioceramics. Ceram Int 41:13913–13966 18. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of

ceramic prosthetic materials. J Biomed Mater Res 5:117–141

19. Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15:805–817

B I B L I O G R A F I A | 63

processing. J Appl Biomater 2:231–239

21. Hench LL, Roki N, Fenn MB (2014) Bioactive glasses: Importance of structure and properties in bone regeneration. J Mol Struct 1073:24–30

22. Lu HH, Pollack SR, Ducheyne P (2001) 45S5 Bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a solution containing fibronectin. J Biomed Mater Res 54:454–461

23. Juhasz JA, Best SM, Auffret AD, Bonfield W (2008) Biological control of apatite growth in simulated body fluid and human blood serum. J Mater Sci Mater Med 19:1823–1829

24. Rohanová D, Boccaccini AR, Horkavcová D, Bozděchová P, Bezdička P, Častorálová M (2014) Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests? J Mater Chem B 2:5068–5076

25. Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol‐gel‐derived bioactive glasses in vitro. J Biomed Mater Res 28:693–698

26. Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311

27. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740

28. Jones JR (2012) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486 29. Saravanapavan P, Jones JR, Pryce RS, Hench LL (2003) Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2 -CaO-P2O5-Na2O). J Biomed Mater Res A 66:110–119

30. Saravanapavan P, Hench LL (2001) Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J Biomed Mater Res 54:608–618

31. Pirayesh H, Nychka JA (2013) Sol-Gel Synthesis of Bioactive Glass-Ceramic 45S5 and its in vitro Dissolution and Mineralization Behavior. J Am Ceram Soc 96:1643–1650

32. Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K (2016) Structural variations of bioactive glasses obtained by different synthesis routes. Ceram Int 43:14700– 14709

33. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155– 163

34. Crovace MC, Souza MT, Chinaglia CR, Peitl O, Zanotto ED (2016) Biosilicate® — A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. J Non Cryst Solids 432:90– 110

35. Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22:493–507

B I B L I O G R A F I A | 64

Mater Res Innov 3:313–323

37. Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res - Part A 95:172– 179

38. Fu Q, Rahaman MN, Fu H, Liu X (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res - Part A 95:164–171

39. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel). 8:5744–5794

40. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B Polym. Phys. 49:832–864

41. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762– 798

42. Hajiali F, Tajbakhsh S, Shojaei A (2017) Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym Rev 1–44

43. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer - Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

44. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2017) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 1–31

45. Wang L, Abedalwafa M, Wang F, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Rev Adv Mater Sci 34:123–140

46. Sisson AL, Ekinci D, Lendlein A (2013) The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer (Guildf) 54:4333–4350

47. Rich J, Jaakkola T, Tirri T, Närhi T, Yli-Urpo A, Seppälä J (2002) In vitro evaluation of poly(ε-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials 23:2143–2150

48. Larrañaga A, Aldazabal P, Martin FJ, Sarasua JR (2014) Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles. Polym Degrad Stab 110:121–128

49. Can E, Udenir G, Kanneci AI, Kose G, Bucak S (2011) Investigation of PLLA/PCL blends and paclitaxel release profiles. AAPS PharmSciTech 12:1442–53

50. Díaz E, Sandonis I, Valle MB, Valle M, Blanca A (2014) In vitro degradation of poly(caprolactone)/nHA composites. J Nanomater 2014:1–8

51. Lam CXF, Savalani MM, Teoh S-H, Hutmacher DW (2008) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological

B I B L I O G R A F I A | 65

conditions. Biomed Mater 3:34108

52. Chouzouri G, Xanthos M (2007) Degradation of Aliphatic Polyesters in the Presence of Inorganic Fillers. J Plast Film Sheeting 23:19–36

53. Idaszek J, Bruinink A, Święszkowski W (2016) Delayed degradation of poly(lactide-co-glycolide) accelerates hydrolysis of poly(ε-caprolactone) in ternary composite scaffolds. Polym Degrad Stab 124:119–127

54. Idaszek J, Bruinink A, Święszkowski W (2015) Ternary composite scaffolds with tailorable degradation rate and highly improved colonization by human bone marrow stromal cells. J Biomed Mater Res - Part A 103:2394–2404

55. Huda MK, Das PP, Baruah SD, Saikia PJ (2017) Polycaprolactone-blended gelatin microspheres and their morphological study. J Polym Res 24:72

56. Joo YH, Park JH, Cho DW, Sun D Il (2013) Morphologic assessment of polycaprolactone scaffolds for tracheal transplantation in a rabbit model. Tissue Eng Regen Med 10:65–70

57. Zhang H, Zhou L, Zhang W (2014) Control of scaffold degradation in tissue engineering: A review. Tissue Eng Part B Rev 20:492–502

58. Bohner M (2010) Resorbable biomaterials as bone graft substitutes. Mater Today 13:24–30 59. Gallo M, Tadier S, Meille S (2018) Resorption of calcium phosphate materials: Considerations

on the in vitro evaluation. J Eur Ceram Soc 38:899–914

60. Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31

61. Best SM, Porter AE, Thian ES, Huang J (2008) Bioceramics: Past, present and for the future. J Eur Ceram Soc 28:1319–1327

62. Abou Neel EA, Pickup DM, Valappil SP, Newport RJ, Knowles JC (2009) Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem 19:690–701

63. Knowles JC (2003) Phosphate based glasses for biomedical applications. J Mater Chem 13:2395 64. Abou Neel EA, Chrzanowski W, Knowles JC (2008) Effect of increasing titanium dioxide content

on bulk and surface properties of phosphate-based glasses. Acta Biomater 4:523–534

65. Kasuga T, Sawada M, Nogami M, Abe Y (1999) Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials 20:1415–1420

66. Salinas AJ, Vallet-Regí M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv 3:11116

67. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 55:151–7

B I B L I O G R A F I A | 66

dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465

69. Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM (2000) Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 67:321–329

70. Christodoulou I, Buttery LDK, Tai G, Hench LL, Polak JM (2006) Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products. J Biomed Mater Res - Part B Appl Biomater 77:431–446

71. Christodoulou I, Buttery LDK, Saravanapavan P, Tai G, Hench LL, Polak JM (2005) Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res - Part B Appl Biomater 74:529–537 72. Bielby RC, Pryce RS, Hench LL, Polak JM (2005) Enhanced derivation of osteogenic cells from

murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass. Tissue Eng 11:479–488

73. Bielby RC, Christodoulou IS, Pryce RS, Radford WJP, Hench LL, Polak JM (2004) Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng 10:1018–1026 74. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

75. Gorustovich AA, Roether JA, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: A review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207

76. Day RM (2005) Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 11:768–777

77. Dashnyam K, El-Fiqi A, Buitrago JO, Perez RA, Knowles JC, Kim H-W (2017) A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. J Tissue Eng 8:204173141770733

78. Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13:1199–1206

79. Dashnyam K, Jin G-Z, Kim J-H, Perez R, Jang J-H, Kim H-W (2017) Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials 116:145–157

80. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774 81. Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L (2015) Effect of ion substitution on

properties of bioactive glasses: A review. Ceram Int 41:7241–7251

B I B L I O G R A F I A | 67

83. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C 78:1246–1262 84. Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis P V (2012) The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 10:81

85. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

86. Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Reports 80:1–36

87. Dorozhkin S V. (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485 88. Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment,

proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466

89. Akay G, Birch MA, Bokhari MA (2004) Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials 25:3991–4000

90. Kuboki Y, Jin Q, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Jt Surgery-american Vol 83:105–115 91. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) State of the art and future

directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1:245–260

92. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

93. Park JH, Wasilewski CE, Almodovar N, Olivares-Navarrete R, Boyan BD, Tannenbaum R, Schwartz Z (2012) The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials 33:7386–7393 94. Hao L, Yang H, Du C, Fu X, Zhao N, Xu S, Cui F, Mao C, Wang Y (2014) Directing the fate of human and mouse mesenchymal stem cells by hydroxyl–methyl mixed self-assembled monolayers with varying wettability. J Mater Chem B 2:4794

95. McFarland CD, Thomas CH, DeFilippis C, Steele JG, Healy KE (2000) Protein adsorption and cell attachment to patterned surfaces. J Biomed Mater Res 49:200–210

96. Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4:45002

97. Gao C, Peng S, Feng P, Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 5:17059

B I B L I O G R A F I A | 68

by Adsorbed Proteins: A Review. Tissue Eng 11:1–18

99. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681

100. Biggs MJP, Dalby MJ (2010) Focal adhesions in osteoneogenesis. Proc Inst Mech Eng H 224:1441– 53

101. Deligianni D, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis Y (2001) Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241–1251

102. Liao H, Andersson AS, Sutherland D, Petronis S, Kasemo B, Thomsen P (2003) Response of rat osteoblast-like cells to microstructured model surfaces in vitro. Biomaterials 24:649–654 103. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NHJ (2006) Implant surface

roughness and bone healing: A systematic review. J. Dent. Res. 85:496–500

104. Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proc Inst Mech Eng Part H J Eng Med 224:1487–1507

105. Gentleman MM, Gentleman E (2014) The role of surface free energy in osteoblast–biomaterial interactions. Int Mater Rev 59:417–429

106. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029

107. Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M (2004) Roughness response genes in osteoblasts. Bone 35:124–133

108. You M-H, Kwak MK, Kim D-H, Kim K, Levchenko A, Kim D-Y, Suh K-Y (2010) Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 11:1856–1862

109. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–54

110. Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater 21:407–429

111. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int 2015:729076

112. Wang M, Joseph R, Bonfield W (1998) Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials 19:2357–2366 113. Beutner D, Hüttenbrink K-B (2009) Passive and active middle ear implants. GMS Curr Top

B I B L I O G R A F I A | 69

114. Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417– 2429

115. Romagnoli C, D’Asta F, Brandi ML (2013) Drug delivery using composite scaffolds in the context of bone tissue engineering. Clin Cases Miner Bone Metab 10:155–161

116. Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–27

117. Xue J, He M, Liu H, Niu Y, Crawford A, Coates PD, Chen D, Shi R, Zhang L (2014) Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials 35:9395–9405

118. Wong BS, Teoh SH, Kang L (2012) Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Deliv Transl Res 2:272– 283

119. Chen M, Le DQS, Hein S, Li P, Nygaard J V, Kassem M, Kjems J, Besenbacher F, Bünger C (2012) Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release. Int J Nanomedicine 7:4285–97 120. Johnson CT, García AJ (2015) Scaffold-based anti-infection strategies in bone repair. Ann

Biomed Eng 43:515–28

121. Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Molina A, Shirihai OS, Collins JJ (2013) Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci Transl Med 5:192ra85

122. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

123. Scotlandi K, Perdichizzi S, Manara MC, Serra M, Benini S, Cerisano V, Strammiello R, Mercuri M, Reverter-Branchat G, Faircloth G, D’Incalci M, Picci P (2002) Effectiveness of ecteinascidin-743 against drug-sensitive and -resistant bone tumor cells. Clin Cancer Res 8:3893–3903 124. Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G (2017)

Polyphenols delivery by polymeric materials: Challenges in cancer treatment. Drug Deliv. 24:162–180

125. Balmayor ER (2015) Targeted delivery as key for the success of small osteoinductive molecules. Adv Drug Deliv Rev 94:13–27

126. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181

127. Bu SY, Lerner M, Stoecker BJ, Boldrin E, Brackett DJ, Lucas EA, Smith BJ (2008) Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATC1 and inflammatory mediators. Calcif Tissue Int 82:475–488

B I B L I O G R A F I A | 70

and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14:806–814

129. Đudarić L, Fužinac-Smojver A, Muhvić D, Giacometti J (2015) The role of polyphenols on bone metabolism in osteoporosis. Food Res Int 77:290–298

130. Trzeciakiewicz A, Habauzit V, Horcajada M-N (2009) When nutrition interacts with osteoblast function: molecular mechanisms of polyphenols. Nutr Res Rev 22:68

131. Zagrajczuk B, Dziadek M, Olejniczak Z, Cholewa-Kowalska K, Laczka M (2017) Structural and chemical investigation of the gel-derived bioactive materials from the SiO2–CaO and SiO2 -CaO-P2O5 systems. Ceram Int 43:12742–12754

132. Liu J, Ren L, Wei Q, Wu JL, Liu S, Wang Y, Li G (2012) Microstructure and properties of polycaprolactone/calcium sulfate particle and whisker composites. Polym Compos 33:501–508 133. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674

134. Washburn NR, Yamada KM, Simon CG, Kennedy SB, Amis EJ (2004) High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 25:1215–1224

135. Cui H, Sinko PJ (2012) The role of crystallinity on differential attachment/proliferation of osteoblasts and fibroblasts on poly (caprolactone-co-glycolide) polymeric surfaces. Front Mater Sci 6:47–59

136. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

137. Dziadek M, Zagrajczuk B, Menaszek E, Wegrzynowicz A, Pawlik J, Cholewa-Kowalska K (2015) Gel-derived SiO2-CaO-P2O5 bioactive glasses and glass-ceramics modified by SrO addition. Ceram Int 42:5842–5857

138. Mohammadi MS, Ahmed I, Muja N, Almeida S, Rudd CD, Bureau MN, Nazhat SN (2012) Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites. Acta Biomater 8:1616–1626

139. Prabhakar RL, Brocchini S, Knowles JC (2005) Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass—polycaprolactone composites. Biomaterials 26:2209–2218

140. Silver IA, Deas J, Erecińska M (2001) Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials 22:175–185

141. Bosetti M, Zanardi L, Hench L, Cannas M (2003) Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res 64A:189–195

B I B L I O G R A F I A | 71

142. Di Luca A, Ostrowska B, Lorenzo-Moldero I, Lepedda A, Swieszkowski W, Van Blitterswijk C, Moroni L (2016) Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci Rep 6:22898

W dokumencie Index of /rozprawy2/11311 (Stron 60-70)

Powiązane dokumenty