• Nie Znaleziono Wyników

WNIOSKI

W dokumencie Index of /rozprawy2/10604 (Stron 99-117)

 W badaniach przeprowadzonych w niniejszej rozprawie potwierdzono antyopioidowe działanie kryptein pochodzenia mysiego, oraz ich pegylowanych odpowiedników.

 Potwierdzono również zmianę właściwości farmakodynamicznych pegylowanych peptydów poprzez zwiększoną odporność na działanie proteaz oraz wydłużenie czasu latencji w testach analgetycznych w wyniku podania, zarówno dokomorowego, jak i obwodowego.

 W pracy przedstawiono po raz pierwszy przebieg procesu metabolizmu kryptein wywodzących się z prekursora NPFFA w homogenacie mózgu szczura oraz w rozdzielonych frakcjach. Zidentyfikowano także enzymy, które potencjalnie biorą w tym procesie udział.

 Zbadano wpływ modyfikacji chemicznej kryptein polegającej na przyłączeniu do C- końca analizowanych peptydów różnej długości glikoli polietylenowych na przebieg procesu metabolizmu. Wykazano, że w wyniku proteolizy pegylowanych kryptein znacznie zmniejszono efektywność ich trawienia, w wyniku czego powstały tylko 2 produkty - N-końcowe tripeptydy.

Streszczenie

100

STRESZCZENIE

Jednym z ważniejszych wyzwań współczesnej medycyny jest efektywne leczenie bólu. Najczęściej stosowanymi związkami do leczenia bólu ostrego i przewlekłego są opioidy, głównie morfina. Ważną rolę w kontroli bólu i analgezji, poprzez interakcje z układem opioidowym, odgrywa także system NPFF. W ostatnim czasie wzrosło zainteresowanie peptydami wywodzącymi się z tego układu, ze względu na ich antyopioidowy charakter. Prekursor NPFFA zwiera kilka biologicznie aktywnych peptydów: NPFF, NPSF i NPAF. Ostatnio wykazano istnienie jeszcze jednej biologicznie aktywnej sekwencji – fragmentu 85-99. Krypteina ta, podobnie jak neuropeptyd FF, hamuje analgezję podanej obwodowo morfiny u myszy i szczurów, a zatem może być sklasyfikowana jako peptyd o działaniu antyopioidowym. Sekwencja ta może więc mieć istotne znaczenie w opracowaniu nowych terapii lekowych.

Celem pracy doktorskiej było zbadanie farmakologicznych funkcji kryptein w mechanizmach bólu. Dodatkowo, porównano działanie tych sekwencji z pegylowanymi analogami. W pracy zbadano również wpływ modyfikacji kryptein na ich właściwości biologiczne, poprzez przyłączenie do ich C-końca różnej długości glikoli polietylenowych. Przy użyciu metod in vitro określono wpływ długości łańcucha polimerowego na szybkość procesu hydrolizy enzymatycznej. Wykazano, że modyfikacja kryptein na C-końcu redukuje liczbę fragmentów peptydowych uwalnianych podczas proteolizy do dwóch N-końcowych tripeptydów.

Dowiedziono również, że mysie koniugaty NPSS-PEG3000, jak i NPSA-PEG3000 hamują analgezję wywołaną obwodowym podaniem morfiny w testach analgetycznych, oraz że efekt ten jest odwracany przez RF9 – selektywnego antagonistę receptora NPFF. Badania te porównano z niemodyfikowanymi krypteinami oraz peptydem NPFF. Antynocyceptywne właściwości peptydu NPSS-PEG3000 zbadano poprzez podanie związków zarówno dokomorowo, jak również obwodowo, za pomocą testu zanurzenia ogona. Ze względu na właściwości farmakodynamiczne, pegylowane peptydy stanowią obiecujące związki, które można wykorzystać podczas opracowywania nowych terapii lekowych.

Dalsza część projektu obejmowała proces degradacji kryptein w homogenacie mózgu szczura oraz zidentyfikowanie enzymów regulujących ten proces. Wykazano istnienie proteaz hydrolizujących szczurzą krypteinę do krótszych, ściśle określonych fragmentów. Za pomocą inhibitorów proteaz metodą in vitro oraz przy użyciu platformy proteomicznej,

101 zidentyfikowano również potencjalne enzymy, które mogą być zaangażowane w te procesy. Opisano 5 proteaz zaangażowanych w proces uwalniania metabolitów krypteiny.

Abstract

102

ABSTRACT

One of the major challenges for modern medicine is an effective pain treatment. The most popular compounds used for the treatment of acute and chronic pain are opioids, especially morphine. Recently, it was demonstrated that also NPFF system play an important role in the control of pain and analgesia by interaction with opioid system. The interest in peptides derived from this system has substantially increased, due to their antiopioid properties.

Rat precursor NPFFA, besides known peptides: NPFF, NPSF and NPAF, contains a yet another bioactive sequence, spanning between positions 85-99. This peptide possesses NPFF-like behavioral activity in rats and mice, and can be classified as an anti-opioid peptide. Thus, a novel cryptic peptide can provide new insights into acute and chronic pain development.

The main aim of this study was to investigate the pharmacological function of crypteins in the pain mechanisms.

The objective of this thesis was also to examine the effect of poly(ethylene glycol) (PEG) conjugation to C-terminal of crypteins, on their biological properties. For this purpose polyethylene glycols of various lengths were attached to the crypteins. The effect of PEG size on the resistance to proteolytic cleavage and pharmacological potency was investigated by in vitro methods. It was shown that modification of crypteins at their C-termini increases resistance to proteolytic attack and reduces the number of peptide fragments released.

It was also observed that both mouse peptides NPSS-PEG3000 and NPSA-PEG3000 inhibit morphine antinociception and this effect was reversed by RF9, a selective antagonist of NPFF receptor. The effects of both pegylated crypteins were compared with unmodified sequences and NPFF itself. The antinociceptive profile of NPSS-PEG3000 was determined via two routes of administration. Evaluations of their activity was performed using a tail immersion test. The pharmacodynamic properties of pegylated compounds make them a promising target that can be used for the rational design of pain treatment.

Further aims of this project were to investigate degradation of crypteins in the rat brain cortex homogenate and to indentify enzymes regulating this process. This study provide an evidence on the existence of proteases, converting crypteins to the shorter, well-defined, bioactive fragments. The possible enzymes involved in this process were identified by inhibitory studies in vitro and by proteomic tools. Finally 5 differential enzymes were described as potential proteases releasing cryptein metabolites.

103

LITERATURA

Abuchowski A, van Es T, Palczuk NC, Davis FF, Alteration of immunological properties of

bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem.

1977;252:3578-81

Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF, Effect of covalent attachment

of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol

Chem 1977;252:3582-6

Araki H, Li Y, Yamamoto Y, Haneda M, Nishi K, Kikkawa R, Ohkubo I, Purification,

molecular cloning, and immunohistochemical localization of dipeptidyl peptidase II from the rat kidney and its identity with quiescent cell proline dipeptidase. J Biochem.

2001;129:279-88

Autelitano DJ, Rajic A, Smith AI, Berndt MC, Ilag LL, Vadas M, The cryptome: a subset of

the proteome, comprising cryptic peptides with distinct bioactivities. Drug Discov Today

2006;11:306-14

Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung WJ, Porter JE, Ehrlich GK, Pan W, Xu ZX, Modi MW, Farid A, Berthold W, Graves M, Rational design of a potent, long-lasting

form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug Chem. 2001;12:195-202

Ballantyne JC, Shin NS, Efficacy of opioids for chronic pain: a review of the evidence. Clin J Pain. 2008;24:469-78

Banks WA, Characteristics of compounds that cross the blood-brain barrier. BMC Neurol.

2009;Suppl 1:S3

Basser RL, Rasko JE, Clarke K, Cebon J, Green MD, Hussein S, Alt C, Menchaca D, Tomita D, Marty J, Fox RM, Begley CG, Thrombopoietic effects of pegylated recombinant human

megakaryocyte growth and development factor (PEG-rHuMGDF) in patients with advanced cancer.Lancet 1996;348:1279-81

Ben-Bassat J, Peretz E, Sulman FG, Analgesimetry and ranking of analgesic drugs by the

receptacle method. Arch Int Pharmacodyn Ther. 1959;122:434-47

Bentley MD, Roberts MJ, Polymer stabilized neuropeptides. Patent Nr.: US2004/0038899 A1 2004

Bierczynska-Krzysik A, Bonar E, Drabik A, Noga M, Suder P, Dylag T, Dubin A, Kotlinska J, Silberring J, Rat brain proteome in morphine dependence. Neurochem Int. 2006;49:401-6 Bodzon-Kułakowska A, Kułakowski K, Drabik A, Moszczynski A, Silberring J, Suder P,

Morphinome--a meta-analysis applied to proteomics studies in morphine dependence.

Literatura

104 Boer HH, Schot L, Veenstra JA, Reichelt D, Immunocytochemical identification of neural

elements in the central nervous systems of a snail, some insects, a fish, and a mammal with an antiserum to the molluscan cardio-excitatory tetrapeptide FMRF-amide. Cell Tissue Res.

1980;213:21-7

Bonini JA, Jones KA, Adham N, Forray C, Artymyshyn R, Durkin MM, Smith K E, Tamm JA, Boteju LW, Lakhlani PP, Raddatz R, Yao WJ, Ogozalek KL, Boyle N, Kouranova EV, Quan Y, Vaysse PJ, Wetzel JM, Branchek TA, Gerald C and Borowsky B, Identification and

characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem

2000;275:39324-39331

Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P; Delivery of peptide and

protein drugs over the blood-brain barrier. Prog Neurobiol 2009;87:212-51

Caiolfa VR, Zamai M, Fiorino A, Frigerio E, Pellizzoni C, d'Argy R, Ghiglieri A, Castelli MG, Farao M, Pesenti E, Gigli M, Angelucci F, Suarato A, Polymer-bound camptothecin:

initial biodistribution and antitumour activity studies. J Control Release. 2000;65:105-19

Camargo AC, Gomes MD, Reichl AP, Ferro ES, Jacchieri S, Hirata IY, Juliano L, Structural

features that make oligopeptides susceptible substrates for hydrolysis by recombinant thimet oligopeptidase. Biochem J. 1997;324:517-22

Chen JM, Barrett AJ, Dipeptidyl-peptidase III. Handbook of Proteolytic Enzymes, Elsevier, London 2004;809-812

Chen RH, Abuchowski A, Van Es T, Palczuk NC, Davis FF, Properties of two urate

oxidases modified by the covalent attachment of poly(ethylene glycol). Biochim Biophys

Acta 1981;660:293-8.

Chen Y, Liu L, Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012;64:640-65

Cole RL, Konradi C, Douglass J, Hyman SE. Neuronal adaptation to amphetamine and

dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron.

1995;14:813-23

Contet C, Kieffer BL, Befort K, Mu opioid receptor: a gateway to drug addiction. Curr Opin Neurobiol 2004; 14,370-378

Dando PM, Brown MA, Barrett AJ, Human thimet oligopeptidase. Biochem J.

1993;294:451-7

Davis S, Abuchowski A, Park YK, Davis FF, Alteration of the circulating life and antigenic

properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin

Exp Immunol. 1981;46:649-52.

Dhanda S, Singh J, Singh H, Hydrolysis of various bioactive peptides by goat brain

105 Dockray GJ, Reeve Jr JR, Shively J, Gayton RJ, Barnard CS, A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide. Nature 1983;305:328-30

Drabik A, Kraj A, Silberring J, Proteomika i metabolomika, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa 2010

Dupouy V, Zajac JM, Effects of neuropeptide FF analogs on morphine analgesia in the nucleus raphe dorsalis. Regul Pept 1995;10:349-56

Douglass J, McKinzie AA, Couceyro P, PCR differential display identifies a rat brain mRNA

that is transcriptionally regulated by cocaine and amphetamine. J Neurosci.

1995;15:2471-81

Dylag T, Kotlinska J, Rafalski P, Pachuta A, Silberring J, The activity of CART peptide

fragments. Peptides 2006a;27:1926-33

Dylag T, Pachuta A, Raoof H, Kotlinska J, Silberring J, A novel cryptic peptide derived from

the rat neuropeptide FF precursor reverses antinociception and conditioned place preference induced by morphine. Peptides 2008;29:473-8

Dylag T, Rafalski P, Kotlinska J, Silberring J, CART (85-102)-inhibition of

psychostimulant-induced hyperlocomotion: importance of cyclization. Peptides 2006b;27:3183-92

Egleton RD, Davis TP, Development of neuropeptide drugs that cross the blood-brain

barrier. NeuroRx 2005;2:44-53

Elhabazi K, Trigo JM, Mollereau C, Moulédous L, Zajac JM, Bihel F, Schmitt M, Bourguignon JJ, Meziane H, Petit-demoulière B, Bockel F, Maldonado R, Simonin F,

Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. Br J Pharmacol. 2012;165:424-35

Elshourbagy NA, Ames RS, Fitzgerald LR, Foley JJ, Chambers JK, Szekeres PG, Evans N A, Schmidt DB, Buckley PT, Dytko GM, Murdock PR, Milligan G, Groarke DA, Tan KB, Shabon U, Nuthulaganti P, Wang DY, Wilson S, Bergsma DJ and Sarau HM,

Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. J Biol Chem 2000;275:25965-25971

Fang Q, Wang YQ, He F, Guo J, Guo J, Chen Q, Wang R, Inhibition of neuropeptide FF

(NPFF)-induced hypothermia and anti-morphine analgesia by RF9, a new selective NPFF receptors antagonist. Regul Pept. 2008;147:45-51

Findeisen M, Rathmann D, Beck-Sickinger AG, RF-amide peptides: Structure, Function,

Mechanisms and Pharmaceutical Potential. Pharmaceuticals 2011;4:1248-1280

Fukasawa KM, Fukasawa K, Higaki K, Shiina N, Ohno M, Ito S, Otogoto J, Ota N, Cloning

and functional expression of rat kidney dipeptidyl peptidase II. Biochem J. 2001;15:283-90

Gaubert G, Bertozzi F, Kelly NM, Pawlas J, Scully AL, Nash NR, Gardell LR, Lameh J, Olsson R, Discovery of selective nonpeptidergic neuropeptide FF2 receptor agonists. J. Med. Chem. 2009;52:6511-6514

Literatura

106 Gault VA, Kerr BD, Irwin N, Flaut PR C-terminal mini-PEGylation of glucose-dependent

insulinotropic polypeptide exhibits metabolic stability and improved glucose homeostasis in dietary-induced diabetes. Biochem Pharmacol 2008;75:2325-2333

Gealageas R, Schneider S, Humbert JP, Bertin I, Schmitt M, Laboureyras E, Dugave C, Mollereau C, Simonnet G, Bourguignon JJ, Simonin F, Bihel F, Development of

sub-nanomolar dipeptidic ligands of neuropeptide FF receptors. Bioorg Med Chem Lett.

2012;22:7471-4

Gelot A, Francés B, Roussin A, Latapie JP, Zajac JM, Anti-opioid efficacy of neuropeptide

FF in morphine-tolerant mice. Brain Res 1998;2:166-73

Gerrits MA, Lesscher HB, van Ree JM, Drug dependence and the endogenous opioid system. Eur Neuropsychopharmacol. 2003;13:424-34

Gicquel S, Mazarguil H, Desprat C, Allard M, Devillers JP, Simonnet G, Zajac JM,

Structure-activity study of neuropeptide FF: contribution of N-terminal regions to affinity and activity. J Med Chem 1994;37:3477–81

Goldstein A, Lowney LI, Pal BK, Stereospecific and nonspecific interactions of the

morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci

USA 1971;68:1742-7

Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1-13), an

extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A. 1979;76:6666-70

Gouardères C, Jhamandas K, Sutak M, Zajac JM, Role of opioid receptors in the spinal

antinociceptive effects of neuropeptide FF analogues. Br J Pharmacol 1996;117:493-501

Gouardères C, Mazarguil H, Mollereau C, Chartrel N, Leprince J, Vaudry H and Zajac JM,

Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPgammaS binding.

Neuropharmacology 2007;52:376-386

Greenberg MJ, Painter SD, Doble KE, Nagle GT, Price DA, Lehman HK, The molluscan

neurosecretory peptide FMRFamide: comparative pharmacology and relationship to the enkephalins. Fed Proc 1983;42:82-6

Greenwald RB, PEG drugs: an overview. J Control Release. 2001;74:159-71

Grun J, Revell JD, Conza M, Wennemers H, Peptide-polyethylene glycol conjugates:

Synthesis and properties of peptides bearing a C-terminal polyethylene glycol chain.

Bioorganic and Medic Chemistry 2006;14:6197-6201

Guerrini R, Calo G, Rizzi A, Bianchi C, Lazarus LH, Salvadori S, Temussi PA, Regoli D,

Address and message sequences for the nociceptin receptor: a structure-activity study of nociceptin-(1-13)-peptide amide. J Med Chem. 1997;40:1789-93

107 Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M, et al., New

neuropeptides containing carboxyterminal RFamide and their receptor in mammals. Nature

Cell Biol 2000;2:703–8

Ho DH, Brown NS, Yen A, Holmes R, Keating M, Abuchowski A, Newman RA, Krakoff IH, Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metab Dispos.

1986;14:349-52.

Huang EY, Li JY, Tan PP, Wong CH, Chen JC, The cardiovascular effects of PFRFamide and PFR(Tic)amide, a possible agonist and antagonist of neuropeptide FF (NPFF). Peptides

2000;21:205-10

Hui KS, Saito M, Hui M, A novel neuron-specific aminopeptidase in rat brain synaptosomes.

Its identification, purification, and characterization. J Biol Chem. 1998;20:31053-60

Huber JD, Campos CR, Egleton RD, Witt K, Guo L, Roberts MJ, Bentley MD, Davis TP,

Conjugation of Low Molecular Weight Poly(ethylene glycol) to Biphalin Enhances Antinociceptive Profile. J Pharmaceut Science 2003;92:1377-1385

Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR, Identification

of two related pentapeptides from the brain with potent opiate agonist activity. Nature

1975;258:577-80

Jhamandas K, Milne B, Sutak M, Gouarderes C, Zajac JM, Yang HY, Facilitation of spinal

morphine analgesia in normaln and morphine tolerant animals by neuropeptide SF and related peptides. Peptides 2006;27:953-63

Kajiya A, Kaji H, Isobe T, Takeda A, Processing of amyloid beta-peptides by neutral

cysteine protease bleomycin hydrolase. Protein Pept Lett. 2006;13:119-23

Kamata Y, Itoh Y, Kajiya A, Karasawa S, Sakatani C, Takekoshi S, Osamura RY, Takeda A,

Quantification of neutral cysteine protease bleomycin hydrolase and its localization in rat tissues. J Biochem. 2007;141:69-76

Kamata Y, Taniguchi A, Yamamoto M, Nomura J, Ishihara K, Takahara H, Hibino T, Takeda A, Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of

deiminated filaggrin into amino acids. J Biol Chem. 2009;284:12829-36

Kavaliers M, Inhibitory influences of mammalian FMRFamide (Phe-Met-Arg-Phe)-related

peptides on nociception and morphine tolerant animals by neuropeptide SF and related peptides. Peptides 2006;27:953-63

Kersanté F, Mollereau C, Zajac JM, Roumy M, Anti-opioid activities of NPFF1 receptors in

a SH-SY5Y model. Peptides 2006;27:980-989

Kersanté F, Wang JY, Chen JC, Mollereau C, Zajac JM, Anti-opioid effects of neuropeptide

Literatura

108 Kivipelto L, Majane EA, Yang H-YT, Panula P, Immunohistochemical distribution and

partial characterization of FLFQPQRFamide like peptides in the central nervous system of rats. J Comp Neurol 1989;286:269–87

Knudson V, Farkas T, McGinley M, Investigations into Improving the Separation of

PEGylated Proteins Phenomenex: Technical Note TN-1034, 2006

Koob GF, Animal models of drug addiction. Handbook of Food and Addiction. New York, Oxford University Press, 2011

Koob GF, A role for brain stress systems in addiction. Neuron 2008b;59:11–34

Koob GF, Le Moal M, Neurobiology of addiction. Elsevier Academic, Londyn 2006, 1-67, 121-171

Koob GF, Neurobiology of Addiction. Textbook of Substance Abuse Treatment. Galanter M, KleberHD (red). Washington, DC, American Psychiatric Publishing 2008a;3–16

Kotlinska JH, Gibula-Bruzda E, Koltunowska D, Raoof H, Suder P, Silberring J, Modulation

of neuropeptide FF (NPFF) receptors influences the expression of amphetamine-induced conditioned place preference and amphetamine withdrawal anxiety-like behavior in rats.

Peptides. 2012a;33:156-63.

Kotlinska JH, Gibula-Bruzda E, Suder P, Wasielak M, Bray L, Raoof H, Bodzon-Kulakowska A, Silberring J, Crypteins derived from the mouse neuropeptide FF (NPFF)A

precursor display NPFF-like effects in nociceptive tests in mice. Peptides 2012b;36:17-22

Kotlinska J, Pachuta A, Bochenski M, Silberring J, Dansyl-PQRamide, a putative antagonist

of NPFF receptors, reduces anxiety-like behavior of ethanol withdrawal in a plus-maze test in rats. Peptides. 2009;30:1165-72

Kotlinska J, Pachuta A, Dylag T, Silberring J, Neuropeptide FF (NPFF) reduces the

expression of morphine- but not of ethanol-induced conditioned place preference in rats.

Peptides. 2007;28:2235-42

Kotlinska J, Pachuta A, Silberring J, Neuropeptide FF (NPFF) reduces the expression of

cocaine-induced conditioned place preference and cocaine-induced sensitization in animals.

Peptides. 2008;29:933-9

Kotlinska J, Suder P, Legowska A, Rolka K, Silberring J, Orphanin FQ/nociceptin inhibits

morphine withdrawal. Life Sci. 2000;66:119-23

Kotlinska J, Wichmann J, Rafalski P, Talarek S, Dylag T, Silberring J, Non-peptidergic OP4

receptor agonist inhibits morphine antinociception but does not influence morphine dependence. Neuroreport 2003;14:601-4

Kreek MJ, Opioids, dopamine, stress, and the addictions. Dialogues Clin Neurosci.

109 Kreek MJ, LaForge KS, Butelman E, Pharmacotherapy of addictions. Nat Rev Drug Discov.

2002;1:710-26

Laguzzi R, Nosjean A, Mazarguil H, Allard M, Cardiovascular effects induced by the

stimulation of neuropeptide FF receptors in the dorsal vagal complex: an autoradiographic and pharmacological study in the rat. Brain Res. 1996;711, 193–202

Lameh J, Bertozzi F, Kelly N, Jacobi PM, Nguyen D, Bajpai A, Gaubert G, Olsson R, Gardell LR, Neuropeptide FF receptors have opposing modulatory effects on nociception. J. Pharmacol. Exp. Ther. 2010;334:244-254

Larrinaga G, Gil J, Meana JJ, Ruiz F, Callado LF, Irazusta J, Aminopeptidase activity in the

postmortem brain of human heroin addicts. Neurochem Int. 2005;46:213-9

Laursen SE, Belknap JK, Intracerebroventricular injections in mice. Some methodological

refinements. J Pharmacol Methods. 1986;16:355-7

Lefrere I, De Coppet P, Camelin JC, Le Lay S, Mercier N, Elshourbagy N, Bril A, Berrebi-Bertrand I, Feve B and Krief S, Neuropeptide AF and FF modulation of adipocyte

metabolism. Primary insights from functional genomics and effects on beta-adrenergic responsiveness. J Biol Chem 2002;277:39169–78

Lévy F, Burri L, Morel S, Peitrequin AL, Lévy N, Bachi A, Hellman U, Van den Eynde BJ, Servis C, The final N-terminal trimming of a subaminoterminal proline-containing HLA class

I-restricted antigenic peptide in the cytosol is mediated by two peptidases. J Immunol.

2002;169:4161-71

Liu Q, Guan XM, Martin WJ, McDonald TP, Clements MK, Jiang Q, Zeng Z, Jacobson M, Williams DL, Yu H, Bomford D, Figueroa D, Mallee J, Wang R, Evans J, Gould R and Austin CP, Identification and characterization of novel mammalian neuropeptide FF-like

peptides that attenuate morphine-induced antinociception. J Biol Chem 2001;276:36961–9

Lord JA, Waterfield AA, Hughes J, Kosterlitz HW, Endogenous opioid peptides: multiple

agonists and receptors. Nature. 1977;267:495-9

Majane EA, Panula P, Yang H-YT, Rat brain regional distribution and spinal cord neuronal

pathways of FLFQPQRF-NH2, a mammalian FMRF-NH2-like peptide. Brain Res

1989;494:1–12

Majane EA, Yang H-YT, Distribution and characterization of two putative endogenous

opioid antagonist peptides in bovine brain. Peptides 1987;8:657–62

Majane EA, Yang H-YT, Mammalian FMRF-NH2-like peptide in rat pituitary: decrease by

osmotic stimulus. Peptides 1991;12:1303-8

Malin DH, Lake JR, Leyva JE, Hammond MV, Rogillio RB, Arcangeli KR, Ludgate K, Moore GM, Payza K, Analog of neuropeptide FF attenuates morphine abstinence syndrome. Peptides 1991;12:1011-1014.

Literatura

110 Malin DH, Lake JR, Hammond MV, Fowler DE, Rogillio RB, Brown SL, Sims JL, Leecraft BM, Yang HY, FMRF-NH2-like mammalian octapeptide: possible role in opiate dependence

and abstinence.Peptides 1990;11:969-72

Malin DH, Lake JR, Smith DA, Jones JA, Morel J, Claunch AE, Stevens PA, Payza K, Ho KK, Liu J, et al., Subcutaneous injection of an analog of neuropeptide FF prevents

naloxone-precipitated morphine abstinence syndrome. Drug Alcohol. Depend. 1995;40:37-42.

Mazarguil H, Gouardères C, Tafani JA, Marcus D, Kotani M, Mollereau C, Roumy M, Zajac JM, Structure-activity relationships of neuropeptide FF: role of C-terminal regions. Peptides

2001;22:1471–8

Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dollé P, Tzavara E, Hanoune J, Roques BP, Kieffer BL, Loss of

morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996;383:819-23

Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL,

W dokumencie Index of /rozprawy2/10604 (Stron 99-117)

Powiązane dokumenty