• Nie Znaleziono Wyników

The Production Analysis by Dual Dynamic Programming

N/A
N/A
Protected

Academic year: 2021

Share "The Production Analysis by Dual Dynamic Programming"

Copied!
11
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 152, 2000

I w o n a N o w a k o w s k a *

T H E P R O D U C T IO N ANA LYSIS BY DUA L D Y N A M IC P R O G R A M M IN G

Abstract. The aim of this paper is to present a concept of a duality theory for dynamic production processes with constraints i.e. production processes described by nonconvex dynamical mathematical models (models depending on time).

1. INTRODUCTION

I he p ro d u c tio n function plays the crucial role in econom ics. E nterprises aim to m inim ize their costs (for a given level o f p ro d u ctio n ), b u t the m ain m o tiv a tio n o f their action is to m axim ize the profits. A n analysis o f the co st p ro d u c tio n is very often led by the p ro d u c tio n fun ctio n. In static econom y, if we are going to analyse costs th ro u g h a p ro d u c tio n fu nction and prices then a du ality theorem is especially useful (see e.g. L e i d l e r , E s t r i n, 1989). T h e essence o f duality theory is th a t all elem ents o f the p ro d u c tio n technology (available for enterprises) which are im p o rta n t for econom ists can be sim ply placed in the cost function. T his statem en t has im p o rta n t consequences for the choice o f the q u a n tity o f ex p en d itu re and the level o f p ro d u ctio n . F o r exam ple, optim al q u a n tity o f p ro d u c tio n facto rs we can gain directly from the cost function. E m pirical inv estigations also acknow ledge a great interest in the study o f d u ality theories, fo r instance: very often it is difficult to collect credible in fo rm atio n co n cerning the p ro d u c tio n factors (capital, labour). All available d a ta con cern in g the lab o u r expenditure take into account the num ber o f the w orkers, b u t they d o no t tak e in to account their qualifications and their intensity o f w ork. Such problem s are m uch m o re serious in the case o f capital. A capital value is difficult to be m easured and in fo rm atio n co ncerning usefulness o f

(2)

the capital is alm ost unavailable. T h e enterprises have m uch m ore inform ation a b o u t th eir costs. T he duality theo ry allows us to infer p ro p erties o f the p ro d u c tio n fu n ctio n from th e co st fu n c tio n , w here the in fo rm a tio n is available, m o re readable and reliable. A b o u t the relation o f th e costs with p ro d u c tio n we can think in tw o ways: 1) we find m axim ized level o f p ro d u c tio n , when the cost p ro d u ctio n is con stan t, 2) we find m inim ized level o f the cost, when the p ro d u c tio n is co n stan t. In each case we have the sam e result. T h e analysed cost function has a du al form with relation to the p ro d u c tio n function. O f course, such a d uality theorem exists, up to now , but only for p ro d u c tio n processes described by static (linear or convex) m athem atical m odels i.e. m odels which do n o t d epend on tim e.

T h e aim o f this no te is to present a concept o f a du ality theo ry for dynam ic p ro d u c tio n processes i.e. p ro d u ctio n processes described by non- convex dynam ical m ath em atical m odels (m odels d epending on tim e). In th at dual m odel the co n stra in ts ap p e ar, which ca n n o t be tak en into ac co u n t in prim al m odel. Such co n stra in ts ap p ear every tim e in each p ro d u c tio n process. T h e com panies which are interested in their ow n p ro fits know , th a t they do n o t possess inexhaustible resources and th a t they do n o t have endless and unlim ited funds. T h eir scale o f p ro d u c tio n is co n stra in e d , like all th eir possibilities.

2. DUAL APPROACH

Let us consider the cost functional: T

J( x, u) = j L ( t 9 x)(t), u(t))dt + l ( x ( T ) ) (1) 0

d ependin g on the state x(t) an d con tro l u(t) which m easure th e level o f a cost o f a p ro d u c tio n or a q u a n tity o f the p ro d u c tio n (d epending on the w ay we th in k ab o u t the relations betw een the cost and th e p ro d u ctio n ). T h e state x (i) denotes the ex penditure o f an en terprise d ep en din g o n tim e i.e. they m ay change w ith tim e. W e adm it a possibility to c o n tro l by u(t) the types o f tran sitio n s o f x(£) in time. It is n a tu ra l to require, th a t state x (i) varies dynam ically, i.e. th a t x( t ) and u(t) are subject to som e differential equatio n:

* 0 ) = /(* » x(t), u(t)) a.e. in [0, T ] (2) w here / :[0, T ] x R" x R m—* R n is to m easure the speeds o f changes o f the expenditu re x(f) in time. We assum e th a t / , L :[0 , T ] x R n x R m—+ R and l : R n—* R are co n tin u o u s function and the con tro ls u :[0 , T ] —* U c R m are

(3)

m easu rab le fu nctions, r e [0 , 7]. W e shall also assum e th a t th e expen diture at tim e t = 0 has a given value с i.e.

x(0) = c, c e R n (3)

M oreo ver, we shall ad m it th a t the expenditure x(r) is also subject to som e constraints:

g ( x ( ) ) = 0 (4)

w here g : R n—* R k. A pair x(t), u(t) satisfying the co n stra in ts (2), (4) will be called admissible and co rre sp o n d in g x ( t) an admissible state o r an admissible trajectory, see ( F l e m i n g , R i s h e l , 1975).

O u r goal is to m inim ize the functional (1) in the space o f abso lutely c o n tin u o u s states x (i) and m easurable contro ls u(t) subject to th e co n stra in ts (2), (3), (4).

T h e classical m eth o d to study such problem s is to define in som e open set G<=R" + 1 o f the variables (t, x) , the value function o f o u r p roblem . T h e value function S(t, x ) in the classical ap p ro ach is defined as follows:

S(t, x ) = i n f |j L ( r ,

x(x),

u(z))dx +

/(x(T)) j,

w here the inferior is tak en over all pairs x ( t ) , u ( t ) , т е [ £ , Г ], w hose states sta rt at the p oin t (t, x ) e G and their graph s are co ntained in G. T h e next step is the following: if S(t, x ) is continuously differentiable then it m u st satisfy the partial differential equation o f Hamilton-Jacoby-Bellman type:

S,(t, x) + H(t, x, Sx(t, x)) = 0 (t, x ) e G,

w here H(t, x, y) = yf(t, x, u(t, x)) - y ° L ( t , x , u(t, x)), y, y° are m u ltipliers and u(t, x ) is an optim al control. T h e value functio n satisfies also the partial differential equation o f dynamic programming:

inf{S,(i, x) -1- S x(t, x) f( t, x, u) - y ° L ( t , x, u ) : u e U} = 0.

T his ap p ro ach has m any disadvantages. F irst o f all, it is a very ra re case th a t the value fu nction is contin uously differentiable in som e open set G when the co n stra in ts (especially state co n strain ts) are included in o p ­ tim ization problem s. T he second is th a t there is n o suitable d u ality th eo ry for p ro d u c tio n analysis with the above app ro ach . In fact th a t ap p ro ach c a n n o t be in general applied to the problem (1), (2), (4) ju st because o f (4).

(4)

A non-classical m ethod to study the problem (1), (2), (4) by d y n a m i­ cal ap p ro ach is to carry o u t all ex plorations co ncerning dynam ic p ro ­ gram m ing from the (t, x) - space to the space o f m ultipliers ( ( t , y ° , y ) - space). Let us explain it briefly. Let be given an open set P c j?"+2 o f the d u al space o f the variables (t, y°, y) = (í, p), y° 0 an d a function x ( t , p ) , defined in P, x ( t , p ): P cz R n + 2- * R n, such th a t x ( - , p ) satisfies (4) for each p, such th a t (t , p ) e P . T hen in the set P we define a dual value function'.

T> x ( t ) , u ( i) ) á t — y ° l ( x ( T ) ) j (5)

w here the inferior is tak en over all pairs x ( t ) , u ( r ) , t e [ i , 7], w hose states

sta rt at (t, x(t, p)) and th eir graphs are contained in the set o f values o f the m ap p in g (t, p ) —*(t, x(t, p)), (t , p ) e P . N ext we define a new function:

V(t> P) = - s b0> P) - x (i, p)y,

a b o u t w hich we assum e th a t it is subject to satisfy the co nd ition :

V(t, p) = Vy° (Г, p)y° + Vy(t, p)y = Vp(t, p)p (6)

where: - SD(t, p) = Vy°(t, p)y° , - x (i, p) = Vy(t, p), (t , p ) e P .

W e shall require th a t V[t,p) satisfies the dual partial differential equation o f Hamilton-Jacoby-Bellman type'.

V,(t, p) + H(t, - Vy(t, p ) , p ) = 0, (t, p ) e P (7)

an d the state co nstraint:

9( - vy ( ' , p ) = 0,

w here H( t , x, p) = y f ( t , x , u ( t , p)) + y ° L ( t , x , u ( t , p)), y, y ° are m u ltip liers and u(t, p) is a d u al optim al co n tro l. T h e function V(t, p) m u st satisfy also the dual partial differential equation o f dynamic programming-.

sup{K/£, p) + yf(t, - Vy(t, p), u) + y°L(t, - Vy(t, p),u) : u e U } = 0 (8) an d the state co n strain t:

S|>(i-P) = i nf ] - y ° $ L (

(5)

T h e non-classical ap p ro ach has several advan tag es. N o w we need n o t require th a t the set G has a n onem p ty interior. W e d o n o t req u ire the value function S(t, x ) to be differentiable in G. T h e sta te co n stra in ts are in a n atu ra l way included in the dynam ic p rogram m ing eq u a tio n . T h e m o st im p o rta n t ad v an tag e is th a t we have a duality th eo ry which associates the value functions: prim al an d dual.

3. A VERIFICATION THEOREM

In this section we will give the m ain theorem a b o u t th e d u al sufficient co n d itio n s o f optim ality.

Let G c ü" +1 den o te a set covered by the graph s o f all adm issible trajectories.

Let P t = i? " +2 be a set o f variables (i, p), te [ 0 , T], w ith y ° ^ 0 and have a n o n em p ty in terio r. T a k e a fu n c tio n x ( t , p ) d efined in P su ch th a t ( t , x ( t , p ) ) e G , (t , p ) e P and g ( x ( , p ) ) = 0.

Let the function x(t, p) satisfy the follow ing assum ptions:

1) for each adm issible trajectory x(t) lying in G th ere exists an abso lu tely co n tin u o u s functio n p(t) = (y°, y (t)), lymg in P such th at: x (t) = x(t, p(t)),

2) if all trajectories x(t) sta rt a t the sam e (t0, x 0), th en all the co rre s­ p o n d in g them trajectories p(t) have th e sam e first c o o rd in a te y°.

L et S D(t, p) be as in (5). W e see that:

S „ ( t , p ) = - y°S(t, x(r, p)), (t, p) e P.

N ow we will give the p roposition, w hich will be used in th e p ro o f o f the m ain theorem o f this section.

Theorem 1. Let W ( t , p ) = * — y ° Z ( t , x(t, p)) be a real-valued fu n c tio n in P such th a t W ( T , p ) — — y°l(x(T, p)). Let (£0, x 0) e G be given initial condition. S upp o se th a t fo r each abso lu tely c o n tin u o u s fu n ctio n p (i) = (y°, y( t) ), t e [ i0, T ] , w ith grap h lying in P, the fun ctio n x (i) = x(t, p(t)), i e [ i 0, T], x ( t 0) = x 0, is an adm issible trajecto ry lying in G and that:

W (t , p(t)) + y ° } L ( t, x ( t ) , u(x))dz

t

is non-decreasing on [t0, Т]. If p ( t ) = ( y ° , y ( t ) , t e [ t 0, T ] is abso lu tely co n tin u o u s function and if x ( t ) = x ( t , p ( t ) ) , t e [ t 0, T ] , x ( t 0) = x0 is an adm issible trajecto ry in G and is such that:

(6)

W (r, p (i)) + y ° JL ( t , x (t) , u(x))dx

(

is c o n s ta n t in [t0, T ], th en x ( t ) is an o p tim a l tra je c to ry an d W (t 0, p( t o) ) = S D( t 0, p ( t 0)), w here u ( t ) is an op tim al c o n tro l co rresp o n d in g to x ( t ) .

P ro o f. F o r an y fu n c tio n p(t), £б[£0, T ] d esc rib ed ab ov e: T

- y ° Z ( t 0, x 0) ^ - у ° \ Ц х , х ( х ) , u ( x ) ) d x - y ° l ( x ( T ) ) , w here u(t) is a c o n tro l

to _

feasible for x(t). F o r the fu nction p(t):

- y ° Z ( t 0, x 0) = - 7 0J L ( z , x(x), v ( x) ) d x - J ° № T ) ) to

so W{to> p0o)) = S D(t0, p ( t 0)) and x ( t) , u(t ) is an optim al pair for the problem г

i n f { - y0j L ( t , x ( T ) u ( r ) ) d r - y ° l ( x ( T ) ) : x(t), u(t), t e [ i0, T ] , are adm issible (

pairs with x(£0) = x 0 and x ( t ) lying in G}.

N ow we will form ulate the m ain theorem (sufficient optim ality conditions) w hich is a c o u n te rp a rt for the dual version o f the verification th eo rem from ( F l e m i n g , R i s h e l , 1975, T heo rem 4.4, p. 87).

Theorem 2. Let V ( t , p ) , ( t , p ) e P , te [0 , T ], be a continuously differentiable solution o f (8), (9) with the b o u ndary condition: y°Vy0( T , p ) = y ° l ( - Vy(T,p) ), (T, p)P, an d satisfying the relation:

V ( t , P) = Vp( t ,p)p, ( t , p ) e P (10)

L et x ( t ), u(t) be an adm issible pair w hose grap h o f the trajecto ry x(t) is contain ed in G = {(I, x ) : x = - V y(t , p) , (t , p ) e P } and such th a t th ere exists an absolutely co n tin u o u s function p(t) lying in P an d satis­ fying: x ( t ) = - V y( t , p( t )) (11) T hen: W ( t , p ( t ) ) = - y°Vy0( t , p( t )) + y ° \ L ( r , x ( t ) , u(x))dx (12) Г is a non-decreasing function o f t.

(7)

L et now T ( t ) , tf(t), te [ 0 , Г ], 7 (0 ) = с be an adm issible pair w ith Y ( t ) lying in G and let p(t), te [ 0 , T], be a non zero absolutely c o n tin u o u s fu nction lying in P such that: Y(C) = — Vy( t , p ( t ) ) , t e [ 0 , Т]. L et fo r all r e [ 0 ,7 ] :

v , ( t , m )

+

y a m . - щ m , ш + y ° w

. -

w ш , m

) = о аз)

T h en x ( t) , ü ( t ) , te [ 0 , T ] is an optim al pair for the problem (1), (2), (4) relative to all adm issible pairs x (í), i/(t), ŕ e [0, T], x(0) = с w hose g rap hs o f trajectories x (t) are contained in G .

M o re o v er: S D( t , p ( t ) ) = - J ° S ( t , x ( t , p ( t ) ) ) = - y 0Vy0( t , j r ( t ) ) w ith x (l, p) — - V y(t, p) is the dual value function along p{t ).

P roof. L et us differentiate b o th sides o f (10) with respect to t alo n g p(t): V,(t, p(t)) = y°(d/dt)Vy„(t, К О ) + y(t)(d/dt)Vy(t, p(t)).

F ro m (2) and (11) we receive:

(d/dt)Vy( t , p ( t ) ) = - / ( г , - V y(t , p(t )), u(t)), and from (1 2) we have:

( d/ dt )y°V yo(t,p(t)) = — ( d / d t )W ( t , p(t)) — y ° L ( t , - V y( t , p( t )) , u(t)). H ence and from (8) we o b tain th a t ( d / d t ) W( t , p(t)) ^ 0 fo r alm o st all ie [ 0 , Т]. T h e above relations w ritten for p ( t ), to gether w ith eq u a tio n (13), im ply th a t fo r all r e [0 , T]:

- y ° V A t , m ) = - 7 °ÍL (t, ЗГ(т), ü ( r ) ) d r - у ° К - V , ( Т , п т ))). r

H ence we get th a t W { t , p ( t ) ) = — y ° l ( x ( T ) ) for all te [ 0 , Г ], i.e. W ( t , p ( t ) ) is a c o n sta n t fun ction. T h is togeth er w ith T h eorem 1 im plies the assertions o f the theorem .

R em ark 1. Solving (8), (9) we o b tain m u ch m o re in fo rm a tio n a b o u t o u r problem th a n in the classical dynam ic program m ing. T h e function: — Vy(t, p ) defines the whole space o f admissible states where our problem m athem atically m a k e s sense. T h e c o n d itio n (10) extrem ely im p o rta n t in physics an d m ath em atics, in econom y was n o t included into co n sid eratio n u p to now . It show s the real p ro d u c tio n costs, dynam ically ch an gin g in tim e, n o t only tho se w hich are placed into the cost functional. T h is co n d itio n tells us th a t the m ultipliers (y°, - y) arc o rth o g o n al to the epigraph o f th e m inim ized cost functional S(t, x) at. the p o in t (x(t, p), S(t, x(, p))). It m ay be in terpreted econom ically as follows: m ultiplier y, which is equal to: — S x(t, x (r, p))

(8)

(w hen S(t, x ) is differentiable w ith respect to x) equ als th e m arg in al cost in tim e t (or m arginal p ro d u c t) (com pare ( L c i d l e r , E s t r i n , 1989) in the static case).

In o rd e r to u n d ersta n d w hat the new fu nction V ( t , p ) m ean s let us com e back to the static problem o f p ro d u ctio n analysis. T h en the cost function al (1) reduces to the function l(x), we have not dy nam ical eq u a tio n s (2) bu t we have c o n stra in t (4). U sually to m ak e an analysis o f p ro d u c tio n through the costs and the level o f production the Lagrange function is formed:

and then suitable calculations on this function are m ade. O u r new fun ction fo r this sim ple case h as the form :

w here p = (y °, у ) and x(p) is a p aram etric description o f th e co n stra in t (4), b u t th e p a ram eter is ju st the m ultiplier p. In fact (15) is a d u al fun ctio nal exactly in the sam e sense as it is in linear p ro g ram m in g pro blem s (see A u b i n , (1979, 1997), S c h i l l e r (1989)).

U sually in d u a lity th eo ries m u ltip lier у m ean s th e prices o f som e q u a n tity x. B ecause у = ( y l , y"), so the d u al variable y*(i = 1, n) denotes (according to neoclassical theory o f econom y) the marginal productivity o f the i-th resource o f p ro d u c tio n . In (15) у can be in terp reted as a price o f the q u a n tity x(p), like for exam ple in L e i d l e r , E s t r i n (1989). T h a t is why: — V (p) is ju st a full cost o f the w hole p ro d u c tio n process. We observe th a t studying (14) we c a n n o t derive this type o f d u ality results (see L e i d l e r , E s t r i n (1989)).

3.1. Conclusions

b ( x , у) = К*) + yg(x) (14)

V (P) = y°Kx(p)) - yx(p) (15)

4. EXAMPLE

L et us consider the problem o f m inim izing th e cost functional: n

(9)

where:

l(x)n)) = 0, if x ( n ) = 0,

-boo on the co n tra ry , (17)

bu t we assum e, th a t expenditure o f an enterprise changes in tim e and we ad m it a co n tro l o f them . E xp en d itu re is described by the follow ing dynam ic:

T h e co n stra in ts (21) are defined as follows:

Let g be an in d icato r function o f the set D, i.e. it eq uals zero o n th e set D an d equals one o u t o f D (on the plane R 2), w here the set

It m eans th a t if the grap h o f x(t), ie[0 ,rc] lies in D, then g(x( )) = 0. I he co n d itio n (17) m ean s th a t all adm issible tra je c to rie s (fo r o u r p roblem ) m u st be in the p o in t я equal zero.

T o find an op tim al co n tro l we can use P o n try a g in ’s M ax im um Principle (necessary optim ality co nditions) for a problem (16)-(20) - c o m p are ( F l e ­ m i n g , R i s h e l , 1975) - we can also sim ply guess a certain fam ily o f the trajectories, which we “ su spect” o f the extrem e, which is d ep e n d en t on changing initial conditions.

So, we receive the follow ing functions: x(t), u(t), p(t) = (y°,y(t)) 1) x(t, Cj) = Cjsint, u(t, C |) = CjCosf, y° = — e, y(t, e c j) = eCjCOSi,

x (t) = B(t)u(t) a.e. in [0, л] (18) where: fo r ie [ 0 , 7t], for t = 0, u ( t ) e [ 0,1], t e [0, n] (19) x (0) = с (

20

) g(x( •)) = 0

(

21

)

where 2) x (t, e) = 0, u(t, e) = 0, y ° = - e, y(t, e) = 0, w here

(10)

B ecause o u r trajectories m ust satisfy co n stra in ts (21) so, th e ab ov e (unctions x (i), u(t), p(t) reduce to:

1) x(t, Cj) = c j siní, u(t, Cj) = cycost, y° = - e, y(t, e c ,) = e r b o s t , w here í e ^ C j ) , л], c xe ( —1,1), » - \

w here t( c ,) is a solution o f e q u a tio n c , siní = í2 with respect to í in [0,7t] d ep en d in g on c ,;

2) x (i, e) = 0, u(l, e) = 0, y° = - e, y(t, e) = 0, where t e [0, я], е е

W e can easily check th a t the trajectories:

1) x(i, c t ) = c t sini, where t e [t(ct ), к], c , e ( — 1, 1), 2) x (t, e ) = 0, w here í g [0, л ] , е е

satisfy co n stra in ts (2 1).

Let us define a co n tro l (tak in g into account above functions):

f - y / y ° ) , if t e [0,n ], | y | < ^ | c o s t | ,

u(t, У0, У) =

J

/ 3 1\ У (22)

0, if t e [0,rt], y ° Gí - - . - - J , у = 0.

N ow we will define x ( t , y ° , y ) and V(t , y ° , y ) in the sam e set o f variables t and (y°, y) respectively as:

Х (£ ,У ° ,У ) = j ^ /y ° )tg i’ (23)

V ( t , y ° , y ) = i ^ 2l2y0)tgt’ (24)

S ub stitu tin g x ( t , y ° , y ) and K (£,y°, >;) to the assertions o f the T h eorem 2 we see th a t V( t , y°, y) defined by (24) and Vy (£, y°, y) = - x ( t , y ° , y ) defined by (23) satisfy these assertio n s, an d also th ese asse rtio n s arc satisfied by the p air x (t) = 0, u(t) = 0. So, from th e T h eo rem 2, this pair is optim al.

T h e abov e statem ent d enotes th a t, if expenditure sta rts from th e value zero and after tim e m u st be also equal zero in th e problem (16)—(21), so they m u st be all the tim e equal zero, w ith o u t actio n o f a c o n tro l i.e. a c o n tro l m u st be equal zero. Intuitively this fact is obv io us, b u t this exam ple proves th a t m ath em atically there is n o o th er possibility.

(11)

S. REFERENCES

A u b i n J. P. (1979), Mathematical Methods o f Game and Economic Theory, North-Holland, Amsterdam.

A u b i n J. P. (1997), Dynamic Economic Theory, Springer Verlag, Berlin.

F l e m i n g W. H., R i s h e l R. W. (1975), Deterministic and Stochastic Optimal Control, Springer Verlag, Berlin.

L e i d l e r D., E s t r i n S. (1989), An Introduction to Microeconomics, Simon & Schuster International Group, Hamel Hemptstcad, Hertfordshire.

Cytaty

Powiązane dokumenty

High-producing fumaric acid strains of Rhizopus not only produce fumaric acid but also other carboxylic acids like malic, lactic, acetic, succinic, and citric in smaller amounts

Dylatometryczne krzywe spiekania jasnoszarej (próbka 1318; a) i ciemnoszarej (próbka 1319; b) odmiany surowca ilastego ze złoża Rozwady

Figure 2 (a) Contact angle of CO 2 /water/shale system as a function of pressure at a constant temperature of 318 K, and (b) Advancing and receding contact angles of quartz in

O bok pracy nad organizacją U niw ersytetu astronom ow ie zaczęli się krzątać wokół orga­ nizacji ich w arsztatu pracy, czyli obserw atorium astronom icznego.. Jej

wa walka rzeźb przedstawiających wrogie sobie światy: nagi Adam. Obie grupy rzeźb dzieli brązovse rondo z reliefem ofiarnego pelikana... Role pasterzy grają

W szystkie wym ienione stanowiska, a zwłaszcza dwa pierwsze i ostatnie, przedstaw ione zostały jako próby nowego rozwiązania podstawowych trudności dzisiejszej

Dzięki temu czuję się lepiej, swobodniej: nie martwię się, że gdy zostawię brudną szklankę, to ktoś się będzie czepiał, jeśli mam ochotę coś ugotować, to mogę to zrobić

first order non-linear DAE model has intemal state constrainls equations, then these equations can be detected for any maximum degree inputs set assignment. In this thesis a