• Nie Znaleziono Wyników

The problem of degrees of maximality. (A survey)

N/A
N/A
Protected

Academic year: 2021

Share "The problem of degrees of maximality. (A survey)"

Copied!
21
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

POLU PHILOSOPHICA 3 , 1905 i

Grzegorz K alinow ski

THE PROBLEM OF DEGREES OF MAXIMALITY (A s u rv e y )

The р з р е г i s a com plete survey o f th e methods f o r p r o v i n g theorem s on deg rees o f m exlm ality and o f th e r e s u l t s o b ta in e d up to 1979 by th e a u th o rs working in th e a re a . In th e f i r s t twô sec-tio n s th e re a d e r w ill f in d th e whole co n ce p tu al and n o ta sec-tio n e l ap-p a ra tu s n e c e ssa ry f o r th e f u r t h e r d is c u s s io n o f th e problem o f s tre n g th e n in g s and, in p a r t i c u l a r , o f d eg rees o f m oxiniality o f s e n t e n t i a l c a l c u l i .

^1. P r e lim in a r ie s . L et L be a s e t1 o f fo rm u las formed by means o f s e n t e n t i a l v a r ia b le s p , q , r , . . . and a f i n i t e number o f con-n e c tiv e s f 1 , f 2 , . . . » f con-n. Then th e a lg e b ra

(1 ) L » (L , f •]»^2* • • • V

i s c a lle d a s e n t e n t i a l la n g u ag e. Endomorphisms e o f L a re c a lle d s u b s t i t u t i o n s (e « End(L) ) . F or every XcL we s e t Sb(X) »' j e a s a e X and е е EndC^)}» By a consequence o p e r a tio n on o r sim ply з con-sequence on L, we u n d erstan d an o p e r a tio n С d e fin e d on 2. (th e po-wer s e t ) o f L such t h a t f o r any X, Y £ L

X E CÍX) - C(C(X)) and X C Y —*-C(X) £ C<Y).

A consequence С i s s a id to be s t r u c t u r a l p ro v id ed t h a t f o r any s u b s t i t u t i o n eeE nd(L), and f o r any X c L , eC(X ) £ C(eX).

Every r e l a t i o n

(2)

за

i s r e f e r r e d to as a r u le o f in fe re n c e o f L, o r sim ply a r u l e . When " ' " "" 1 Г... " "r 11 xr

X C L and a e L, in s te a d o f R( X, a) we s h a l l sometimes w rite / a e R, у

and c a l l /tu a seq u en t o f R. Any r u le o f th e form ( 2 ) Sb(X/ a ) » | eX/e o i j e i s a s u b s t i t u t i o n o f L

j

w ill be c a lle d se q u e n tia l* A ll r u le s o f th e form ( 2 ) where X i s th e empty s e t , X - 0 , i . e . r u le s o f th e form S b ( ^ / a ) w i l l be c a l le d a x io m a tic . In th a t c a se th e elem ents o f th e s e t j e a t е е End ( L) J a re c a lle d axioms.

Given a s e t o f r u le s o f in f e re n c e й o f a g iv e n s e n t e n t i a l la n -guage L, l e t us d e f in e an o p e r a tio n Cn^ on 2** as fo llo w s : f o r every X £ l , Cn0( X ) i s th e l e a s t s u p e r s e t o f X c lo s e d under th e ru -le s in 6. Cne i s a consequence o p e ra tio n on L, and, m oreover, f o r every consequence o p e r a tio n on Ł* th e r e e x i s t s a s e t r u le s в , such t h a t С « Cn^, c f . [ 4 ] , Any such в w ill be c a lle d a b a s is f o r C. We a ls o have

LEMMA 1. ( c f , [ 2 6 ] ) , A consequence С on i s s t r u c t u r a l i f and o n ly i f i t has a s e q u e n tia l b a s is .

Given a s e n t e n t i a l language J. • ( L , f1#f 2 , . . . » f n ), any couple M • ( Aj^ Ij^),

, • ' . • ' ' . ' i

'

i

\ • • • • • ■ _

where Ajj, - ( A ^ , f j , f2, **»f f a ) I s an a lg e b ra s im i la r to ^ and I С A..,, i s c a lle d an (e le m e n ta ry ) m atrix co rresp o n d in g to L, and th e elem ents o f 1M a r e sometimes c a lle d th e d is tin g u is h e d v a lu e s o f M, o f . [ 5 ] . In t u r n , l e t ue u se th e symbol HOM(fc,^,) to deno-t e deno-th e c l a s s o f a l l homorphisms o f L in deno-to A.^ - th e elem en ts o f Hom(L, Aj,j) a re c a lle d v a lu a tio n s o f J. in M. F or ev eiy X c L l e t us pu t

( 4 ) Cn^(X) * ^aeL í f o r every h e Hom(i.,AM), h ctcl^ wherever h U ) с

Cn^ i s a s t r u c t u r a l o p e ra tio n on Ł, I f К i s e o la s s o f m a trlc e a co rresp o n d in g to a g iv e n language L, th e n by a consequence opera-t i o n deopera-term ined by К on it« we s h e l l u n d erstan d th e o p e ra tio n Cn^ d e fin e d aa fo llo w s ( o f , [2 в ]){ F o r evexy X c L , 7

(3)

I t tu r n s o u t, c f . [ 2 9 ] , t h a t f o r every s t r u c t u r a l consequence С th e r e i s a s e t o f m a tric e s К such t h a t С - Cn^.

•Given a consequence С d e fin e d on L, deno te by M atr (C ) th e s e t o f . a l l m a tric e s co rresp o n d in g to L such t h a t C^Crij,,. We th e n have

LEMMA 2 ( c f . [ 2 8 ] ) . Each s t r u c t u r a l consequence С i s u n iq u ely determ ined by M atr(C ), i . e . f o r any two s t r u c t u r a l consequen-ce o p e ra tio n s С, C*defined on L,C - C ' i f and only i f K atr(C ) « - M a tr iC ) .

Two m a tric e s M, N co rresp o n d in g to th e same language a re eq u i-v a l e n t . M~N, p roi-v id ed t h a t th e consequence o p e ra tio n s which th e y d e fin e a re i d e n t i c a l , i . e . i f Cn.^ - CnfJ. I f - la a con-gruence o f the a lg e b ra ^ such t h a t I a I S IM f o r any a e IM, th e n i t i s c a lle d a congruence o f t he m a trix M » ( *Ц, 1{.) . I t t u m b o u t t h a t f o r any m atrix congruence w o f M, th e q u o tie n t m a trix

*M/*^ i s ^ u iv a l ^ n t to M} ~ M . Any couple

(6) S - ( L,C ),

where L i s a s e n t e n t i a l language and С i s a s t r u c t u r a l consequence o p e r a tio n on L, i s c e lle d a s e n t e n t i a l c a lc u lu s . In th e seq u el th e elem ents o f th e c la s s Matr(C ) f o r a g iv e n c a lc u lu s S ■« (l^ C ) w ill be c e l le d S -m a tric e s c f . [ 2 8 ] . >'

D ealing w ith th e c a l c u l i Im p lic a tiv e in th e sen se o f R a-5 1 o w a [1 7] Ccf. a ls o [ 2 8 ] ) , one can improve Lemma 2 re p la c in g th e c l a s s o f S - m a tric e s , M atr(C ), by a c l a s s o f q u o tie n t m a tri-c e s . Assume t h a t S • ( L , C ) i s an im p lic a tiv e c a lc u lu s . L et—►de-n o te th e im p lic a tio et—►de-n co et—►de-n et—►de-n e c tiv e o f L, Then f o r every M « M atr(C ) th e r e l a t i o n d e fin e d on AM as fo llo w s:

( 7 ) а b i f and o n ly i f a —»-b, b —*-a e

i s a congruence o f M, and th e r e f o r e M, ~ M. L e t us p u t

. • H :

(8 ) » M « M a tr(C )|.

The elem ents o f A lg ^ C ) w i l l be c a lle d S -a lg e b ra s ( c f . [ 1 7 ] , [28]). LEMMA 3 ( c f . [.1 7]). A consequence С o f im p lic a tiv e S e n te n tia l -. c a lc u lu s S «' (Ł» C) i s u n iq u e ly determ ined by th e c l a s s

(4)

§2. Two k in d s o f s tr e n g th e n ings o f a s e n t e n t i a l c a lc u lu s . The n o tio n o f deg re e o f maxima l l t y v ers u s th e __ no tio n o f degree o f com pleteness. Given a s e n t e n t i a l language t , th e o la s s o f a l l . str u c tu r a l consequence o p e ra tio n s on L, to be denoted h e re au C(L), forms a com plete l a t t i c e w ith th e o r d e r < d e fin e d не f o l

-low s: • ;

( 9 ) G1 < C2 i f and only i f C1 (X ) S C2(X) f o r every X C L,

c f . [ 2 9 Í . In th e p a p e r th e symbols sup (C.j,C2 ) and i n f (C^,CZ ) w ill be used to denote th e supremum and i n f Длил o f C, and C2 , r e s -p e c tiv e ly . In th e case when $ c2 ^ ,C2* C L ) , C2 i s c a lle d a s tre n g th e n in g o f СЦ. I f , m oreover, f o r some X s L, C.j(X)$C2 (X), th e n we say t h a t C2 i s a p ro p e r s tre n g th e n in g o f C.j, and w r ite ' G-j < C2 . In th e seq u el th e symbol L w il l a ls o be used to denote th e s o - c a lle d in c o n s is te n t consequence d e fin e d as fo llo w s:

(Ю ) L(X) * Ĺ f o r every X E L.

O bviously, L i s th e g r e a t e s t elem ent o f C (L). Every consequence o p e ra tio n on L which i s n o t in c o n s is te n t i s c e lle d c o n s is te n t. F in a lly , a consequence С * C(L) w il l be s a id to be maximal p ro v i-ded t h a t i t does n o t have p ro p e r c o n s is te n t stre n g th e n in g s«

Very o f te n th e n o tio n s in tro d u c e d in th e l a s t p arag rap h r e f e r a lso to s e n te n t i a l c a l c u l i th e correspondence between s t r u c t u -r a l consequence o p e -ra tio n s o f a g iv e n language L and s e n te n t ia l c a l c u l i fo rm alize d in t h a t language i s , un d er th e d e f i n i t i o n , q u it e o b v io u s. Thus, g iv e n a c a lc u lu s S ■ (Ł , C ), we s h a l l say t h a t a c a lc u lu s S' - (L , C') i s a s tre n g th e n in g o f S p ro v id ed t h a t С < C‘, and so o n . . . In t h i s aenar a l l n o tio n s which we e re

s t i l l going to in tro d u c e w ill a lso be uaed am biguosly. .

A ccording to Lemma 1 , ev ery s tre n g th e n in g o f a s e n t e n t i a l c a lc u lu s S - (L , С ) can be o b ta in e d from $ by adding to ther s e t o f r u le s o f С some s e t o f s e q u e n tia l r u le s в - t h i s s tre n g th e n in g w ill be denoted as S& - (JL, C®) and i f в • { r } a ls o as sP

• (L , C*). When a l l r u le s i n ö a r e a x io m a tic , JjP ( ( ^ ) w i l l = b*

c a lle d an axiom atic s tre n g th e n in g o f S ( o f C ). In t h a t ca se th e s e t C(A), where

(5)

i s an in v a ria n t systém o f C, i . e . the fo llo w in g holdst C(A) - Sb(C(A)) and C(C(A)) • C(A)

and*Cö can be d e fin e d as fo llo w a i f o r every XC L , C®(X) -• С (X U A).

Given a s e n t e n t i a l c a lc u lu s S - ( L» C ), th e c a r d in a l number o f a l l a x io n a tic s tre n g th e n in g s o f S i s c a l le d th e d eg ree o f comple» te n e s s o f S , d c ( s ) , c f . T a r 8 k i [ 1 в ] . On th e o th e r hand, by th e d egree o f m axlm allty o f S , dm(S), we s h a l l u n d e rs ta n d , f o l l o -wing W ó j c i c k i [2 7] , th e c a r d in a l number o f a l l stren g th e-n ie-n g s o f S, i . e . b o th ax io m atic ae-nd e-n o e-n -ax io m atic. O bviously, dm(S) i s a t l e a s t as g r e a t as th e d eg ree o f com pleteness o f 3 and i t tu r n s o u t t h a t in mony c a se s dm (s) > d c ( s ) .

Given a s e n t e n t i a l c a lc u lu s S ■ ( L , С ), from Lemma 2 i t fo l» lows t h a t any s t r u c t u r a l consequence o p e r a tio n С1 > С l a d e te rm i-ned by somo s u b c la s s o f M a tK c ). C o nsequ ently ,

(11) dm(S) < ca rd {k 1 K C Matr(C) ~ } o r , more p r e c i s e ly ,

( 1 2 ) dm(5) - card | Cn^ 1 K S r i a t r ( c V ~ ) «

And, according to Lemma 3, f o r th e ca se o f im p lic a tiv e senten* t l a l c a l c u l i th o l a s t fo rm u las can be improved to

(1 1 1) dm(S) «S c a r d [K 1 КС A18 Í 4 c V ~ }

and *

(12I ) dm(3) - oard { CnK 1 К С AlgR(C)/ ~ ) i

r e s p e c t iv e l y . v.y '• .V V '

F in a l ly , th e c o u n te rp a r ts o f (1 2 ) and (121) f o r th e n o tio n o f d egree o f com pleteness a re th e follow ing*

•Л •

(13)* d o (3 ) . c a rd I 0 0^ (0) t K c , ... JU, ■ i M (1 4 ) d c (S ) * o a r d j C i y í ŕ ) i K C A lgR (c)A } ,

• ■**.

Л

'

-V .. V, Л.. .‘w*- - *r Л •• __* *. ’ ,v* ‘ •!*•*< *“ía í §3. H le to r lc a l aocount o f p a r tic u la r a tu d l— o f th e problem o j • degrees o f m axlm allty. In th e p resen t s e c tio n e l l e x p lio t c o n tr

i-■ : : 1 г-" : ■.

г.щ

• \ v ; ,ľ ‘-ľ \ ' 5 »v ...

(6)

b u tio n s to th e to p io ar* l i s t e d I n th e c h ro n o lo g ic a l o r d e r and th e main methods f o r p ro ving theorem s on d eg rees o f m axim ality a re b r ie f ly re p o rte d . A ll u n d efin ed n o ta tio n con cern in g п-v alu e d Lu-kasiew icz s e n t e n t i a l c a l c u l i comes from [ 8 ] .

The paper by W ó j c i c k i , [2 7] , in which th e n o tio n o f degree o f m axim ality was in tro d u c e d was, a t th e same tim e , th e f i r s t c o n tr ib u tio n to th e s tu d ie s on th e problem . The main theorem o f [2 7] says t h a t th e d egree o f m axim ality o f th e th re e -v a lu e d Lu-kasiew icz s e n t e n t i a l c a lc u lu s - ( L , C ^)equals 4 , i . e .

Cl) - dm(Lj) « 4 . .

The c r u c ia l p o in t o f th e o r i g i n a l method o f p ro o f a p p lie d by R. W ójcicki i s th e re d u c tio n o f th e whole problem to th e problem o f s tre n g th e n in g s o f L^ which can be o b ta in e d by th e use o f r u le s o f in fe re n c e determ ined by seq u en ts o f th e sublanguage o f L g e n e ra te d by a s in g le s e n t e n t i a l v a r ia b le p , * (L v , л , i ) . A ccor-d in g ly , th e f i r s t s te p was to prove th e fo llo w in g a s s e r tio n ;

( p ) F o r ev ery a * L, XCL, a « C3(X) i f and o n ly i f f o r every s u b s t i t u t i o n e t Ł - ^ Ł p o a • C^ieX ).

N ext, u sin g some p r o p e r ti e s o f C^, i t i s p o s s ib le to d e fin e an eq u iv alen c e r e l a t i o n ^ having th e two p r o p e r ti e s : (1) a (3 i f and o n ly i f h(oł) - h ( ( 3 ) f o r ev ery h: L —*A^ Ш ) I f а *^(3 th e n Cj(o») ■ C^((3).

I t tu rn e d o u t t h a t th e q u o tie n t s e t Lp/« ^ had 12 elem ents - in [2 7 ] t h e i r r e p r e s e n ta tiv e s were denoted as (fy, <f2 , . . . , <р12* Sub-s e q u e n tly , from th e p r o p e r ti e s o f i t fo llo w s t h a t every s tre n g th e n in g Lj o f L j by a s e q u e n tia l r u le R » Sb(X/<* ) determ ined by a seq u en t X/ a o f 1^ i s eq ual to some s tre n g th e n in g o f by a r u le o f th e f o r e 3b ( ^ V f y ) . Thus, th e f u l l in v e s t ig a t io n o f th e s e t o f a l l s e q u e n tia l r u le s o f L d eterm in ed by seq u e n ts o f ^ can be re p la c e d by a atudy o f th e s e t 'o f 144 r u l e s o f in f e r e n c e o f th e form 3b ( V<Pj). To do t h i s , th e a u th o r o f [2 7] used some m a trix methods and f i n a l l y reac h ed th e c o n c lu sio n t h a t each o f th e r u le s R o f th e form Sb( V«pj) f a l l « i n t o One o f th e c a te g o r ie s d e fin e d by th e fo llo w in g c o n d itio n s :

(7)

( a ) R la a ru le o f L^ thus L^ ■ ( b ) l£ . Ц

( c ) L * . Ц ( d ) » Ł * ,

where L* ■ (L , C*) w ith C* d e fin e d as fo llo w s: C3(X) 1Г C2(X) 4 L L o th e rw is e .

Thus Lj has a t l e a s t fo u r s tre n g th e n in g s : L^» Ł*, Ц - L. The f a c t t h a t th e s e a re th e only p o s s ib le s tre n g th e n in g s o f L^, and th u s t h a t dm(L,) » 4 , fo llo w s e a s i l y from th e fo llo w in g

re»-J \

s u i t s :

” C3 < C3 < C2 < L and t h e r e i o r e * ЬУ th e 'u s e o f ( p ) one can prove t h a t every p ro p e r s tre n g th e n in g o f C„ i^ n o t weaker th a n C*;

e

- Ц i s c o n s is te n t i f and o nly i f ö i s th e s e t o f пие& o f C^j - Ł* i s { ÍÍ } - com plete (Theorem 2 in [ 2 7 ] ) , and th e r e f o r e f o r every С > C * . C(0) ? Cj( 0 )í »

- ł~> i s th e o n ly proper c o n s is te n t s tre n g th e n in g o f L^ (Wajs- b e r g 's theorem on d eg rees o f com pleteness o f Ł* ),

N ext, u sin g th e f a c t t h a t Lukasiewicz s e n te n tia l c a l c u li Ln a re im p lic a tiv e ln the sen se o f h a s i o w a [1? ] , the a u th o r o f th e p r e s e n t review gave ln [1 0] an a lg e b r a ic p ro o f o f ( I ) and, mo-re o v e r, showed t h a t th e d eg ree o f m axim ality o f th e fo u iv v a lu e d Lukasiew icz c a lc u lu s L^ a ls o e q u a ls 4 ,

Both th e method a n l th e r e s u l t s o f [Ю ] were subsequently genera-liz e d In [ 1 1 1 f o r a w ider cla a a o f Lukasiewicz lo g i o s , namely, f o r th o s e c a l c u l i Ln f o r which n-1 i s p rim e. The main r e s u l t o f [11] says t h a t

The o r i g i n o f th e p ro o f o f ( i l l ) g iv e n i n [11] i s th e use o f

( I I ) dm(L^) • 4 .

(8)

some a lg eb ra ic stru c tu re s corresponding to »-valued Lukasiewicz m a trices, namely s o -c a lle d MVn-a lg eb ra a introduced by R. 3 . O ri- g o lia . Given f i n i t e n > 2 , MVn-a lg eb ra i s a stru ctu re n • . - ( A , 0, 1) o f th e type ( 2 , 2 , 1 , 0 , 0 ) f u l f l l i n g a number o f

eq u ation s, c f . [3] . The primary correspondence between Lukasie- vlo z m atrices and MVn algebras runs аз fo llo w s: For every Luka-siew icz m atrix MQ - U n , - * , V , л , T , {1}) one can d e fin e MVR a l -gebra

Ад * ( An , ♦ , • , - , 0 , 1)

p u ttin g x ♦ у - т х -+ у , x • у ■ i ( x - n y ) and 3c - i x , Moreover, t h is correspondence i s o n e-to -o n e, s in c e con versely: x-*y * 5 ♦ y f xvy - x • у ♦ y , x л у ■ (х + У) - у and, o b v io u sly , nx • x . Se-condly, we have ( c f . [3 ])»

• \ %

(R t) Every MVQ algebra w ith more than one element i s is o -morphic w ith a su b d irect product o f a number o f co p ies o f algebras Ąm, where m^n end »-1 i s a d iv is o r o f i>-1.

T h e re fo re , i t tu r n s o u t t h a t each MVR a lg e b ra n can be considered a s th e a lg e b ra o f th e form rt*- ( А , - * , и , 0 , - , 1 ) , w h e r e и , Л , - его th e n a tu r a l c o u n te rp a r ts o f -+, v , a , i , r e s p e c t iv e l y , defined in th e a p p r o p ria te a lg e b ra s Ад . In th e seq u el we s h a l l u se the symbol' CR to den ote th e consequence Сл * determ in ed on th e language L o f L ukasiew icz s e n t e n t i a l c a l c u l i by th e m a trix (rt*, 0 } ) »

Given n > 2 , l e t * be th e r e la tio n on L m ( L,*+,v,Af -») defined as fo llo w st For every a , (3 « L,

a «* ß i f and on ly i f e С ( 0 ) .

Using th e f a c t t h a t AR co rr ela ted w ith th e Lukasiewicz matrix i s an MVR a lg e b r a f one can e a s il y v e r if y th a t the j^ndenbatmi a l-gebra -/*»n i s en Win all-gebra, Now, r e c a ll th a t th e Lukasiewicz c a lc u lu s LQ - (L»Cn ) i e L a p lic a tlv e . Thus, as a p a r tic u la r ca se Of a g e n e ra l r e s u lt o f R e « 1 o v a o f . ( 1 7 ] , p* 184 we o b ta in th a t - / * n l e a fr e e algebra in th e c la sa AlgR(CQ) o f all" : l^ - a l - gebreb. Using t h is fa c t and th e rep resen ta tio n theorem (R t) oná cen prove th a t f o r a g iv en n > 2 , the d a * * o f a l l Ln-a lg e b r a s co in c id e s w ith th e c la s s ИУ o f e l l MY a lg e b ra s, i . e . th a t

(9)

(1 5 ) AIgą (Cn) - MVn.

Now, l e t us assume t h a t n i s a n a tu r a l number such t h a t n-1 I s prim e. I f a o t has o n ly one n o rv -triv ia l su b alg eb ra - A2 . изing t h i s f a c t and ( R t ) one can prove c f . [1 1 3 t h a t f o r any MVn a lg e b ra n , th e consequence o p e ra tio n Cn c o in c id e s w ith one o f th e fo llo w in g consequence o p e ra tio n s :

CV CV “W

cV

where d en o tes th e d i r e c t p ro d u ct o f and Дп » In t u r n , we have L ■ Cn, > Cn. > Cn. „ . > Cn. . - 1 ~2 —2 ^ n ~n And th e r e f o r e ‘ . • Л, , < . w A »V

Á'

* l’ ’ \ ŕ • *.

•*

v-:lW

d’a n> ■ ( СгУ ' K

- "V.} - {cn4i.

c„v v

C»4J . T h is ends a sk e tc h o f th e p ro o f o f ( I I I ) .

REHAHK. T o-give a s im i la r p ro o f o f ( I ) and ( I I ) , ln [1 0 ] th e a u th o r usee th e s o - c e lle d th re e -a n d fo u i> v alu ed Lukasiew icz a l -g eb ras in tro d u ced by M o i s i 1 c f . e .g . [1 3 ]. I n c i d e n t a l y , ' i t can b i proved t h a t in th e ca se s n»3* and r* 4 , b o th th e n o tio n s - t h a t o f n-v alu ed L ukasiew icz ,H oisil a lg e b ra and th a t o f NVn a l-g eb ra - c o in c id e .

*

-

' .

'rt

-The exam in ation o f th e problem o f d e g re e s o f m axim ality in th e w hcle c l a s s o f n -v alu ed Lukasiew icz c a l c u l i was c a r r i e d o u t ’ by W ó j c i c k i ln [3 1]» where th e fo llo w in g r e s u l t was proved;

dm(Lft) i s f i n i t e f o r every f i n i t e n ^ Z ,

To g e t t h i s r e s u l t , W ójcicki m odified th e a lg e b r a ic te c h n iq u e o f [1 1] and in tro d u c e d a v ery handy n a tio n o f th e c h a r a c t e r i s t i c e le -ment o f an Ln- a lg e b r a . Below, a s k e tc h o f th e method used in [31] i s g iv e n .

F i r s t , u s in g p r o p e r ti e s o f th a consequence Ш I t i s p o s s ib le t o g iv e a p u re ly l o g i c a l p ro o f o f th e fo llo w in g e q u a lity )

(10)

k6 Or*« e»» U tl iim k l

where HSP(Mn) denote« th e v a r ie ty generated by th e »«valued ßiewloz matrix (th e le a s t c la s s o f matrice* con tain in g MJ1 and clo se d under th e op eration s o f fo rain g d ir e c t producta, subal-gebras and homomorphio im ages). N o tice , th a t (16) i s another v e r-ween sim ple MVn algebras AR and m atrices f^ , and the eq u atio- nal d e f in a b ilit y o f MVn a lg eb r a s, i t i s p o s s ib le to tr a n s la te C r ig o lia ’s rep resen ta tio n r e s u lt (R t) in to

Where a e A i s an element o f some algebra-A > (A,-% v , a , t , {1 )) in HSPÍMj^), l e t us denote by [ a ] the subalgebra o f A generated by a , f o r every Ln-a lg e b ra AeSp(Mn ) i t i s p o s sib le to fin d an e le -ment a* in A a " c h a r a c te r istic ele-ment" o f Ą, c f , [31]» with the fo llo w in g two p ro p erties)

Therefore, denoting b / Vr th e s e t o f a l l d ir e c t products o f the form * . . . * Hjj o f p airw ise d iffe r e n t su b o a trices o f Мд ,

i* may p a s s from (1 7) to ,

Jid s in c e Vn i s f i n i t e , dmtł^) i s f i n i t e . This ends the proof o f IV).

Now, we a re going to d iscu as [93» In which the s o lu tio n to ne di*-proble<n f o r some n o n -im p lica tiv e s e n te n tia l c a l c u li was g i - /en* As th e t i t l e o f [ 9 ] makes p la in , the paper concerns the so - - c a lle d dual counterparts Of n-valued Lukasiewicz c a l c u l i , o f . 2 6 ], and [ 1 2 ] . Where L -,(-*, v, л ,т) i s th e language o f Lukasiewicz - a l c u l i » M n > 2 , th e c a lcu lu s dual to L^, dt^ , i s a p a ir

sio n o f (1 5). In tu rn , u sin g th e one-to-ofie correspondence b

et-HüP(Mn) - SP(Hn) . n

Thus, c f , (1 2 * ), f o r every n > 2 (1 7 )

(11)

<łŁn - (L , Cn ).

where Čn ie th e consequence o p e r a tio n determ ined by th e m a trix Mn » (Ą ^, An - [1 j ) , c f . [1 2 ]. The f a c t t h a t th e c a l c u l i dL^ a re n o t im p lic a tiv e e a s i l y fo llo w s from th e d e f i n i t i o n o f th e c l a s s S o f R a s i o w a c f . [ 1 7 ] , p . 179. In s p i t e o f t h i s , th e main theorem o f [9] saying t h a t th e d eg ree s o f m axim ality o f a l l ca lc u -l i dL a re f i n i t e , i . e . n '

IV) dm(dLn ) i s f i n i t e f o r ev ery f i n i t e n > 2 ,

was o b ta in e d by th e u se o f m a tric e s analogous to S -a lg e b ra s ( ^ n- - a lg e b r a s ) o f Rasiowa. In th e seq u el th e c l a s s o f a l l such m a tri-ces w ill be denoted as Matr**(dCn ).

Given n > 2 , f o r every x « A n , l e t us p u t 0 i f x • 1 IX ■

. V * .. iy'

1 o th e rw is e .

Using th e c r i t e r i o n i n [1 ^ 3 , i t Í3 easy to v e r if y t h a t 4 i s defL - nab le in Afi. By th e same symbol, n , we s h a ll d enote a s e n t e n t i a l c o n n e c tiv e in L co rresp o n d in g to 1. Where M » (£вд» 1 ^ )« M atr (dC ^), l e t us p u t;

a b i f and o n ly i f ч ( а - * Ь ) , ч ( Ь - * а ) e 1^.

M • v

A i s a congruence o f th e m a trix И and th e r e f o r e M«y

Conse-q u e n tly , th e c l a s s .

MatrR(dCn ) - J M/* s M «M atr(dC ^)J

can be used to re p la c e Matr(dCn > in (1 1 ), and th u s we g e t: (1 8 ) da(dLn ) . c a rd { K i K C M atr^ ídCn )/~ } .

I t tu r n s o u t t h a t a l l m a tric e s in M atr (dCn ) h av e, among o th e r s , a v e ry s p e c ia l p r o p e r ty - In ev ery M«MatrR(dCn ) th e r e i s a s u b s e t V,^ such t h a t th e q u o tie n t s e t M/^ i s th e o n e e le -ment s e t , nam ely, VM/j{ " 1ц end t h * t (A^» 1 ц ) в ИЗР(1^) o f , p . 46. Using t h i s f a c t and th e r e p r e s e n ta tio n theorem f o r HííPÍM^), on», can prove t h a t

(12)

(19) M«tx^(dCn ) • HSPÍÍ^),

compare (1 6 ). M oreover, th ere l e • on e-to-on e correspondence between m a tric e s from HSP(Mn ) and th ose from HSPiM^i For every M m (ĄM, IM) e H SPi^) and M^ - ( ^ 1M) and fo r any <*«L, X SL ,

where ч X denotes th e s e t o f formulas r e s u ltin g fr o e X by prece-ding each o f i t s formulas by n . In tu rn , l e t Vn be th e "natural" counterpart o f th e s e t o f product n a tr lc e s used on p . 46. Then, using (1 9 ) and ( ♦ ) one oan prove th a t f o r every M*Mati^4dCn ) th ere I s a matrix Md « ? n such th a t Md ~ M, Consequently, (1 8 ) c a n ’ be improved to

and s in c e Vn i s f i n i t e , «*»(1^> l e f i n i t e .

The method o f [9 ] d escrib ed in the l a s t sequence o f paragraphs was a ls o used to some ex ten t in [ 8 J to g iv e a ch a ra cte riz a tio n o f

w un auperaesJLgnatea l o g ic a l v a lu e si 1 « I , 0 $ I* The main r e s u lt o f [ 8 ] says th a t th e degree o f maximality o f any »-valued L u k a siew icz-lik e s e n t e n t ia l c a lc u lu s i f f i n i t e and equal to the degree o f maximality o f th e corresponding » .valu ed Lukasiewicz c a lc u lu s.

(V I) d a ( L ^ ) . d«(Ln ) every f i n i t e n > 2 , a v eiy I&An, v 1 « Z and О й l .

In h i s a b str a c t [ 6 ] , M a d u c h reproted b r ie f l y some re-s u l t re-s o f re-s tu d ie re-s on pure liq p U eation al re-s e n t e n t ia l c a lc u li o f toko* s ie w lc z . Given a f i n i t e n > 2 , th e »-valued Lukasiewicz L aplica- t io n a l c a lc u lu s i s th e p a ir (fc, C* ) c o n s is tin g / o f th e pu-re im p lic a tio n s! s e n te n tia l language ),* • <L*~+) and C* - Cr^#, where 1« th e I x p lic a t lo n a l reduct o f th e Lukasiewicz 1 matrix Mn. Among o th e r s , one can fin d in { é 3 th e fo llo w in g theorem: : ;

(♦ )

a e C i ^ i X ) i f and on ly i f •» a « Ci^ ( чХ) ч а е Cn^ ( *» X) i f end o n ly I f a e Cr^ ( X ),

(13)

( VI I ) dm(L*) - dc(L*) • n (Гог every f i n i t e n > 2 ) ,

The o r i g i n a l method o f p ro o f iß based on some r e s u l t s conoex*- nlng Lindenbaum'3 a lg e b ra s determ ined by th e s o - c a lle d ir r e d u c ib le th e o r ie s o f L*. U n fo rtu n a te ly , th e p ro o f c o n ta in s some gaps n o t easy to remove. The r e s u l t , how ever, i s c e r t a i n l y v a lie d - a v e ry sim ple p ro o f o f (VI I) w i l l be g iv e n in S e c tio n 4.

M. T o k a r z i n [2 0] examined th e problem o f s t r u c t u r a l s tre n g th e n in g s o f th e Donsequence o p e r a tio n s C® and C® determ in ed by th e s o - c a lle d S u glhara m a tric e s and M®, r e s p e c tiv e ly (m | •

• ( { - 1 , 0 , 1 } , - , v , A , - I , { o ,l} ) and mJ - ( { - 2 , - 1 , 1 , 2 ) , -*,V,A0 ,{ 1 ,2 ft

where ix ■ - x , x v y » m ax (x ,y ), x a у - m in (x ,y ), x - * y • - x v у i f

x ^ y and x-+y m - х л у o th e rw is e ) . The main r e s u l t o f [ 2 0 ] say s t h a t th e deg rees o f m axim ality o f C® and a re b o th eq u al to 4 , ( V I I I ) d m (c |) - dm( cj ) - 4.

The d e t c i i s o f p ro o f o f ( V I I I ) a re s tr o n g ly based on p a r t i c u -l a r p r o p e r ti e s o f S ugihara m a tric e s . The method, however, seen s to be more u n iv e r s a l - i t has some p o in ts o f c o n ta c t w ith Wójo lc - k i ’ s method o f p ro o f o f ( I ) . A cco rd in g ly , th e p ro o f f o r th e case o f c | can be sk etch ed so as to c o n s is t o f th e fo llo w in g fo u r s te p s :

Step 1. I f c®< C, where С i s a c o n s is te n t s t r u c t u r a l conse-quence o p e r a tio n , th e n C í Cg (Cg being th e c l a s s i c a l consequence o p e ra tio n - Lemma 2 in [ 2 0 ] ) .

Step 2. I f i s used t o denote t h e ,s t x u t u r a l l y com plete con-sequence c f . [1 5 ] f o r which

c|*(0)

- C j( 0 ) , th e n f o r ev ery C, C j< C<C2 we have C < C® * (a p a r t i o u l a r case o f th e g e n e ra l r f ts u lt concern in g s t r u c t u r a l co m p leten ess, c f . S e c tio n 4 , p . 521

S tep 3 . L et u s now assume a g a in t h a t C^< C< Cg, Then, i f f o r some a « L, XC L,cx • c(X ) anda*C® (X ), th e n by Lenaa 4 i n [20 ] we g e t CgiX) 4 L and t h i s to g e th e r w ith Lemma 8 i n [ 2 0 ] im p lie s t h a t f o r some s e n t e n t i a l v a r ia b le s p0 and p1# ? Qe С (p . n P l) , F in a l ly , th e s tre n g th e n in g ) o f c j by th e r u le £ - { p1 p1/ p J i s s tr u c -t u r a l l y co m p le-te, and -th u s - c | * (Lemma 7 o f (°20j>. So,

(14)

Stor- A. Steps 2 and 3 to g e th e r Imply t h a t C^* i s th e o nly stru ctu r a l consequence o p e r a tio n betv/een and C2 . On th e o th e r han-1, C'2 i s maximal and th c re f o r o Cy- and C’2 a re a l l c o n s is te n t stren gth en in gs o f c j . Thus, dra(Cj) «■ 4 .

As e a r ly as in [2 7 ] W ó j c i c k i posed th e fo llo w in g con-jectu res

(H ) The degree o f m axim ality o f any s tro n g ly f i n i t e s e n t e n t i a l c a lcu lu s i s f i n i t e .

R e ca ll, o f. [3 0] , t h a t a c a lc u lu s S - ( L , C) i s s tr o n g ly f i n i t e i f th ere i s a f i n i t e s e t o f f i n i t e m a tric e s К s tr o n g ly adequate to C, i . e . such t h a t С • Cn^. I n c id e n ta l ly , i t was proved in [ 2 5 ] th a t the degree o f co m pleteness o f a s tr o n g ly f i n i t e s e n t e n t i a l ca lc u lu s i s always f i n i t e .

The con jectu re (H ) appeared t p be n o t t r u e - T o k a r z sue- ceded [2 3] in c o n s tr u c tin g a s tr o n g ly f i n i t e l o g i c , whose degree o f mfcximallty i s i n f i n i t e ^ more e x a c tly , he showed t h a t th e con-sequence o p e r a tio n determ ined by th e fourw valued im p lic a tio n a l- -n e g a tio n a l S ugihara m atrix (INSA) has i n f i n i t e l y many s t r u c t u r a l stren g th en in g s. The b a s io T o k a rz 's id e a was su b se q u en tly m odified by W r o ń s k i , who i n [3 2] have a s i m i l a r counterexam ple to (H) by th e use o f a th re e -e le m e n t m a trix . From th e two exam ples, Wronski’ s i s much e a s i e r to d e s c r ib e . I t runs as fo llo w s;

Let A ■ ( { o ,1 ,2 } ,* ) ' be an a lg e b ra o f ty p e ( 2 ) , whose b in a ry operation • i s d e fin e d by th e c o n d itio n s : 0*0 = 2*2 * 2 , 1*1 * t . and x*y • 0 o th e rw is e . I t i s easy to see t h a t B - ( { o ,2 } ,* ) i s a . subalgebra o f A. In th e se q u e l we s h a ll c o n s id e r th e two m a tric e s

A * CA*{o}) and В . ( B ,{ o } ) .

For every n - 1 , 2 , . . . d e fin e a p e t o f s e q u e n tia l r u le s

Rn * { í * » 01)* (A) x i s a f i n i t e s e t o f fo rm u las b u i l t up from a t most n s e n t e n t i a l v a r ia b le s p^, . . . , pn , ( U ) СПд(Х) * L}.

Subsequently, l e t us p u t Cn » Cn^nC^ i s th e s tre n g th e n in g o f Cn^ by th e s e t o f r u le s K^). One can p rove t h a t f o r any n •> 1 ,

(15)

CnA ** e n ^ £n+1*

c f . [3 2] - Lemma 1 .1 . T his im m ediately Im p lies t h a t Спл has i n f i -n i t e l y ma-ny s t r u c t u r a l s tre -n g th e -n i-n g s .

§4. Some r e l a t e d to p lc ą . In th e lo g i c a l l i t e r a t u r e th e re i s a number o f r e s u l t s which p ro vide из w ith very co n v en ien t methods of e s ta b lis h in g deg rees o f m axim ality o f some s p e c ia l s e n t e n t i a l c a l-c u l i . E s p e c ia lly im p o rtan t a re th e r e s u l t s concerning such no-ti o n s as m ax im ality, alm ost m axim ality and s t r u c t u r a l com plete-ness f o r th e extended d is c u s s io n o f t h i s s o r t o f th in g s see e , g . [ 2 1 ].

M axim ality. I f S > (L , С ) i s a maximal s e n t e n t i a l c a lc u lu s , i . e . i f С does n o t have p ro p e r s t r u c t u r a l s tre n g th e n in g s except L, th e n o b v io u sly dm(S) m 2 . In [ 2 2 ] one con f in d a v ery u s e fu l m a trix c r i t e r i o n o f m axim ality o f consequence o p e r a tio n .

M1 ( c f . [19] ) , I f every c o n s ta n t f u n c tio n o f A., i s d e fin a b lekvl i n th e m a trix M * th e n Cr^ i s maximal,

A very i l l u s t r a t i v e example o f th e u se o f th e c r i t e r i o n (M1) i s a p r e t t y s h o r t p ro o f o f m axim ality o f th e c l a s s i c a l s e n t e n t i a l c a lc u lu s Lg ■ (L , C2 ), A cco rd in g ly , we have t h a t th e matrLx A2 r-* ( { 0 , 1 ) »~ л » i s s tr o n g ly adequate f o r C2 , Cn4 * C2 and bo th th e c o n s ta n ts : 0 and 1 a r e d e fin a b le in M2 , e , g . as 0 *> • T ( x - * x ) and 1 » x -»x .

A lm ost-m axlm allty. Given a s e n t e n t i a l language L l e t us pu t

(19)

0 i f X - 0 L o th e rw is e .

H A* a ( s t r u c t u r a l ) consequence o p e r a tio n on L and i t i s c a l l e d ,

c f . [ 2 2 ] , a lm o s t- in c o n s is te n t. In t u r n , a consequence С on L w ill be c e lle d alm ost-m axlroal w henever f o r every s t r u c t u r a l consequence С ', C< С * im p lie s t h a t C* • L^ o r C ' • L, c f . [ 2 2 ] , From th e de-f i n i t i o n i t im m ediately de-fo llo w s t h a t th e d eg ree o de-f m axim ality o de-f any alm ost-m axim al s e n t e n t i a l c a lc u lu s S *> ( L , C ) eq u a ls 3 o r 2, The fo llo w in g m a trix c r i t e r i o n o f alm o st-m ax im ality can - be found

(16)

AM-)• I f M • ( Лм, { a} ), where ®*АМ 1* a m a trix *uch t h a t f o r every b « A H th e r e i s a fu n c tio n f b d e f in a b le in ĄM such t h a t f b ( a ) в b , th e n Cn^ i s alm ost-m axim al.

A nother c r i t e r i o n , w hich, o r i g i n a l l y , was s t a t e d e a r l i e r by WdJ- c io k i and Wro iís k i, oan be t r e a t e d as a c o r o lla r y to AM^j

AM2 ( Wójc ic k i-W ro ria k i, u n p u b lish e d ). L et A^ have no p ro p e r su b alg eb ra and l e t a e A M. Then la alm ost-m axim al.

N otice t h a t i f a consequence o p e ra tio n С i s almost-maximal and C ( 0 ) i 0 , th e n С i s maximal. Thus, any maximal s e n t e n t i a l ca'lcu- lu s can se rv e as an example o f alm ost-m axim al c a lc u lu s w ith th e d eg ree o f m axim ality 2 . F in a l ly , th e fo llo w in g theorem seems to be o f some i n t e r e s t :

THEOREM 1 . (W roński, unpublished)« I f M i s a tw o-elem ent ma-t r i x , ma-th en Cn^ i s alm osma-t-m axim al.

A p ro o f o f Theorem 1 can be foiled in [ 2 1 ] .

S tr u c t u r a l com p leteness. Given a s e n t e n t i a l language L, a ru-l e o f In fe re n c e R o f L i s c a ru-lru-le d s t r u c t u r a ru-l i f and o n ru-ly i f f o r

v y “ --- aV '

every seq u en t л/а » A/c< e R im p lie s t h a t eA/ e a e R f o r every sub-s t i t u t i o n e e E n d ( L ) . Where С i s a consequenoe o p e r a tio n on L, R i s c a lle d p e rm is s ib le ln C(0) i f and o n ly i f f o r every X/oi e R, a e c ( 0 ) whenever X с C (0 ). A s e n t e n t i a l c a lc u lu s S - ( L , С ) i s s t r u c t u r a l l y com plete, c f . [ 1 8 ] , i f and o n ly i f ev ery s t w c t u r a l r u le which i s p e rm is s ib le in C(0) i s a r u le o f C.

A v e ry u s e f u l c r i t e r i o n o f s t r u c t u r a l - com pleteness was g iv e n by D. Makinson:

SC ( c f . [ 7 ] ) . S - (L , C) i s s t r u c t u r a l l y com plete i f and o n ly i f f o r ev ery s t r u c t u r a l consequence o p e r a tio n C* on L, С Ч 0 ) •

m c ( 0 ) im p lie s t h a t c ' < C*

The p ro p e rty m entioned i n SC can sometimes be used f o r e s t a b l i s -h ig th e d egree o f m axim ality - i n th e s e q u e l t h i s problem w ill be d is c u s s e d i n two exam ples, namely f o r re v a lu e d G ödel’« c a l c u l i end f o r n -v alued p u re im p lic a tio n a l Lukasiew icz c a lc u li*

(17)

Given a f i n i t e n > 2 , th e n -v alu e d m a trix o f Gödel i s defined- as fo llo w s c f . e . g , [ 2 ] t gn » ( { l , 2 , . # . , n } , - ^ , $ , A » 4»» {1}) , where f o r every x ,y « { l , . . , , n j

I

n i f x<n f 1 ♦ x - ^ y - j 1 i f x - n { у i f x>y у i f x<y

and xvy • max(x, y), x k y • mi n( x, y) . Where L i s th e a p p ro p ria te s e n te n t ia l lan g u ag e,

d e fin e d as th e p a i r

s e n te n t ia l la n g u ag e, th e n-v alu ed G ö d e l's c a lc u lu s , Gn , can be

S„ - C b,o„)

w ith G ■ Cn , c f . [30] p. 65. I t i s im m ediately seen t h a t f o r

n e n

every n > 2 ,

( . ) Gn < ^ Og ^ • L

and, in p a r t i c u l a r , a lso

( • •) G^i 0 ) <* . < . ф Ggi 0 )?G^ (0 ) •> L.

Secondly, A n d e r s o n proved i n [1 ] th o t th e d egree o f com-p le te n e s s Of Gn eq u als n , dc(Gn ) ■ n , what to g e th e r w ith ( . . )

im p lie s t h e t th e c a l c u l i G^ w ith k < n a re th e o n ly axiom atic s tre n g th e n in g s o f Gn. On th e o th e r hand, a l l G ödel' s c a l c u l i Gn ore s t r u c t u r a l l y com plete, c f , [ 2 ] , a n d -th u s , acco rd in g to_(SC) th e number o f s t r u c t u r a l s tre n g th e n in g s o f G^ i s n o t g r e a t e r th a n

n. F in a lly , u sin g ( • ) we o b ta in

(IX) dm(Gn ) - dc(Gn ) • n f o r every f i n i t e n > 2 ,

An extended v e rs io n o f th e method a p p lie d f o r th e p ro o f o f ( I X) can a lso be used f o r p ro v in g Maduch’s r e s u l t ( VI I ) , p . 49. Now, we s h a l l a lso u se some r e s u l t by P. W ojtylak, namely, th e fo llo w in g :

THEOREM 2 ( c f , [ 2 4 ] ) . Let M be a m a trix co rresp o n d in g t o » g iv e n s e n t e n t i a l language L. Then, f o r every XCL, ".

(18)

СПц(ЗЬ(Х)) r O [ c n jj( 0 ) : M i& n submatrix o f M and X S Сп^(0)}. Given o f i n i t e n > 2 , one can c o s ily v e r if y th a t the purely i m p l i c a t i o n Lukasiewicz matrix M* has the fo llo w in g submatriceej M*. M*- 1 , « . . , kJ*, ln turn, one can a lso v e r if y that

Cn < cr£*1 < • • • < **2.. < C1 “ L

c n(^ )

9

cn-1(r>)

9 ••• 9 cz ^ ) 9

m

L,

Making u se o f Theorem 2 , from th e l a t t e r in c lu s io n we o b ta in t h a t any in v a r i a n t system o f Cn must be equal to one o f th e fo llo w in g Cn( 0 ) , • • • » L. Thus, d c ( L * ) » n . F in a lly , a l l Lns a re s t r u c t u r a l l y com p lete, c f . [1 6 ], s o , by th e same ty p e o f argument as f o r Gödels c a l c u l i we o b ta in dmO.,*)» n.

N£t£> The n o tio n o f s t r u c t u r a l com pleteness o f a s e n t e n t i a l c a lc u lu s can be u n d erstan d i n two waya, acco rd in g to how th e no-tio n s o f a r u le o f in fe re n c e i s d e fin e d . F i r s t , i f we r e s t r i c t th e n o tio n o f a r u le to i t s f i n i t e r y sen se assuming th e r u le to be a s u b s e t o f Ln x L f o r some f i n i t e n , th e n we o b ta in th e n o tio n o f s t r u c t u r a l com pleteness i n th e f l n i t a r y s e n s e . And, i f th e r u le i s assumed as in o u r p a p e r, as a s u b s e t o f 2L, we o b ta in th e noti o n o f s t r u c t u r a l com pleteness in th e i n f i n i t a r y se n se . An e x te n -ded d is c u s s io n o f t h i s d i s t i n c t i o n can be found e . g . in [ 7 ] . I would l i k e to s t r e s s t h a t th e n o tio n o f s t r u c t u r a l com pleteness was used h e re in th e l a t t e r s e n s e . I n c id e n ta l ly , one can show by an easy argument t h a t th e two n o tio n « c o in c id e in th e c ase o f s tro n g ly f i n i t e s e n t e n t i a l c a l c u l i - J u s t f o r t h i s re a so n we could u se th e r e s u l t s o f Dzik-Wrońaki and P ru cn al concerning f i n i t a r y s t r u c t u r a l com pleteness o f C ödel' s and Lukasiew ioz c a l c u l i .

[1 ] A n d e r s o n J . G ., The d eg ree o f com pleteness o f Dummet

Ul and Thomas LC^, "The J o u r n a l o f th e London M athem atical

So-c i e t y " , 3 (1 9 7 1 ), pp. 558-569.

[ 2 ] D z i к W., * r o ń s k i A ., S tr u c tu r a l, com pleteness o f Gödel * s and Dummet* a p r e p o s itio n a l c a l c u l i , »S tudia L o g ica", 3 2 (19 73 ), PP. 69-73»

(19)

[3 ] G r i g o l i a R. S . , A lg eb raic a n a ly s is o f Lukaaiew icz- - T a r s k i ’ s n -v alu ed lo g ic a l c a l c u l i ( I n R u ssia n ), "P roceedings .of T b i l i s i U n iv e rs ity " , A 6 - 7 , 149-150. T b i l i s i 1973, pp.

•121- 1 3 2 .

[4 ] Ł o ś J . , S u s z k o R ., Remarks on s e n t e n t i a l ч lo g i c s , " In d a g a tio n e s K ath em aticae", 20 (19 58 ), pp. 177-103.

[5 ] L u k a s i e w i c z J . , T a r s k i A ., U ntersuchungen ü b e r den A ussagenk elk ul, "C ouptes-rondus des s ta n c e s de l a S o c ie té des S cien ces e t de L ettres de V arso v ie", C l. I I I , 23 . (19 30 ), pp. 30-50.

[6] M a d u c h H ., On Lindenbaum’s a lg e b ra s o f f i n i t e im p lic a - t i o n a l Lukasiew icz l o g i c s , " B u lle tin o f th e S e c tio n o f Lo-g i c " , 5 (1 9 7 6 ), No 1 , pp. 29-&Lo-gt;2.

[ 7 ] M a k i n s o n D ., A c h a r a c te r i z a ti o n o f s t r u c t u r a l com-p le te n e s s o f a s t r u c t u r a l consequence o com-p e r a tio n s , "R ecom-ports on M athem atical L o g ic", 6 (1 9 7 6 ), No 4 , pp. 99-102.

[ e j M a l i n o w s k i G ., Degrees o f m axim ality o f L u k asie- w ic z - lik e s e n t e n t i a l c a l c u l i , "S tu d ia L o g ica", 36(19 77 ), No 3 , PP. 21 > 2 2 8 .

[ 9 ] M a l i n o w s k i G«., M atrix r e p r e s e n ta tio n s f o r th e d u al c o u n te rp a rts o f Lukasiew icz n -v alu e d s e n t e n t i a l c a l o u l i and th e problem o f t h e i r deg rees o f m a x im ality , "P ro ceedin gs o f th e V -th I n te r n a tio n a l Symposium on M ultip le-V alu ed Lo-g i c s " , . In d ian a U n iv e r s ity , Bloom inLo-gton, May 1975, pp. 252- -2 6 1 .

СЮ] M a l i n o w s k i G ., S -a lg e b ra3 and th e d eg rees o f оахЬ» m a lity o f th r e e and f o u r v alu ed lo g ic s o f L u kasiew icz, "Stu-d ia L o g ic a V 33(19 74 ), No 4 , pp. 20C2I3.

[1 1 ] M a l i n o w s k i G ., S -a lg e b ra s f o r n -v alu e d s e n t e n t i a l c a l c u l i o f L u kasiew icz. The d eg rees o f m axim ality o f some L u k asiew icz’s lo g i c s , [ i n : ] S e le c te d p a p e rs on Lukasiew icz s e n t e n t i a l c a l c u l i , Ed. R. W ó j c i c k i , G. M a l i -n o w s k i , Ossolineum 1977, pp. 149-159.

[1 2] M a l i n o w s k i G. , S p a s o w s k i M., Dual couo- t e r p a r t s o f L uk asiew icz’s s e n t e n t i a l c a l c u l i , "S tu d ia Logi-c a " , 33(19 74 ), NO 2 , pp. 153-162.

[1 3] M o i s i 1 Gr. C ., E s s a is s u r l e s lo g iq u e s non c h ry s ip - p ie n n e s , E d itio n s de l ’Académie de l a Republique S o c i a l i s t « ' de Roumania, Q u eerest 1972.

(20)

[1 4 ] M c t l a u g h t o n , A theorem about in f i n ite - v a lu e d sen-t e n sen-t i a l lo g i c , "Jo u rn a l o f Symbolic L og ic", 16(19 51 ), pp. 1- “13»

[ 1 5 ] P o g o r z e l s k i W. A ., S tr u c t u r a l com pleteness o f th e p r e p o s itio n a l c a lc u lu s , " B u lle tin de l'A c a d e u le P o lo n ąise dea S c ie n c e s " , S é rie de m athem atiquea, aatronom iquee e t phy-s iq u e phy-s , 19(1971), No 5 , p p . 349-351.

[1 6 ] P r u c n a 1 T ., P ro o f o f s t r u c t u r a l com pleteness o f a c e r t a i n c l a s s o f im p lic a tiv e p r e p o s itio n a l c a l c u l i , "S tu d ia L o g ica", 32(1973), PP. 93-98 ,

[ 1 7 ] f l a s i o w a H ., An a lg e b r a ic approach to n o n - c la s s ic a l l o g i c s , N orth H olland P u b lis h in g Company, Amsterdam, P o lis h S c i e n t i f i c P u b lis h e r s , Warszawa 1974,

[1 8 ] T a r s k i A ., Fundamentale B e g riffe d e r M ethodologie d e r d ed u k tiv en W issen sch aften , “M onatshefte f ü r Mathematik und P h y sik ", 37(19 30 ), pp. 361-404.

[ 1 9 ] T o k a r z M., C onnections between some n o tio n s o f com-p le te n e s s o f s t r u c t u r a l com-p r e com-p o s itio n a l c a l c u l i , "S tu d ia Logi-c e " , 3 2(1 97 3), pp. 77-89;

Г й ] T o k a r z M., Degrees o f m axim ality o f th r e e - and f o u r - - v a lu e d - RM -extensions, "R eports on M athem atical L ogio", 9(1 97 7), pp. 63-69.

[21 J T o k o r z M., M axim ality, p o stco m p lete n esa and s t r u c t u -r a l co m p leten ess, "T echnical R e p o -rt", No 2 / e f , I n s t i t u t e o f P h ilo sop hy and S o cio lo g y , P o lis h Academy o f S c ie n c e s , Wroc-law , F ebruary 1978.

[2 2 ] T o k a r z M., A remark on maximal m a trix consequences, " B u lle tin o f th e S e c tio n o f L o g ic ", 6(1977)» No 4 , pp. 150- -1 9 2 .

[2 3] T o k a r i M., A s tr o n g ly f i n i t e lo g ic w ith i n f i n i t e de-g re e o f m ax im ality , " S tu d ia L o g ic a ", 35(1976), No 4 , pp. 447-451.

[2 4] V o J t у 1 a к P . , On s t r u c t u r a l com pleteness o f many-va-lu e d l o g i c s , "S tu d ia L o g ica", 37(1978), No 2 , pp . 139-147. [ 2 5 ] 'e ó J c i c k i R „ The d eg ree o f o o q p le ten ea s o f th e f i n i -

te -v a lu e d p r e p o s it io n a l c a l c u l i , Z eszyty Naukowe ü . J , f P race z L o g ik i, г . 7 , Kraków 1972, p p . 77-85.

(21)

[2 6 ] W ó j c i c k i R ., Dual c o u n te rp a rts o f consequence opera-t i o n s , " B u lle opera-tin o f opera-th e S e c opera-tio n o f L o g ic", 2 (1 9 7 3 ), No 1 , pp. 55-57.

[2 7 ] H j c i c k 1 R ., The lo g i c s s tr o n g e r th a n th re e -v a lu e d s e n t e n t i a l c a lc u lu s . The n o tio n o f d eg ree o f m axim ality vex*, sus th e n o tio n o f degree o f co m p leten ess, " S tu d ia L o g ica", 33(1974), No 2 , pp. 2 01 -2 1 4 .4

[2 0] W ó j c i c k i R ., M atrix approach i n methodology o f sen -t e n -t i a l c a l c u l i , " S -tu d ia L o g ica", 32 (1973)» PP. 7 -3 7 .

[2 9] W ó j c i c k i R ., Some remarks on th e consequence opera-tio n s In s e n t e n t i a l lo g i c s , "Fundamente M ethem atlcae", 58(1970), pp. 269-279.

[3 0] W ó j c i c k i R ., S tro n g ly f i n i t e s e n t e n t i a l c a l c u l i , [ i n i ] S e le c te d p a p e rs o f Lukasiew icz s e n t e n t i a l c a l c u l i , Ed. R. W ó j c i c k i , G. M a l i n o w s k i , Ossolineum 1977, pp. 53-77.

[3 1] W ó j c i c k i R ., A theorem on th e f i n i t e n e s s o f th * d eg ree o f m axim ality o f th e nvalueď Lukasiew icz l o g i c s ," P r o -ceed in g s o f th e V - th e n te m a tio n a l Symposium on M u ltiple-V a-lu e d L o g ica", In d ian a U n iv e rs ity , Bloom ington, May 1975, pp . 240-251.

[3 2] W r o ń s k i A ., On f i n i t e l y based consequence o p e r a tio n s , "S tu d ia L o g ic e " , 3 5 (1 9 7 6 ), No U, pp. 453-458.

C hair o f Logic and Methodology o f S lencea Łódź U n iv e rs ity

Grzegorz Malinowski

ZAGADNIENIE STOPNI MAKSYMALNOáci (P r z e g lą d )

A rtyk uł j e s t celnym przeglądem metod dowodzenia tw ie rd z e ń o sto p n ia c h maksymainoéci 1 re z u lta tó w uzyskanych w t e j d z ie d z in ie do 1979 r .

Cytaty

Powiązane dokumenty

The completeness theorem for G says that the theorems of G are precisely the modal propositions valid in all models in which R is transitive and well-capped.. This theorem can

[8] Barnard, R.W., A variational technique for bounded starlike functions, Canadian Math. Lewis, On the omitted area problem, Mich. Lewis, Subordination theorems for some classes

K. In our paper [5] a sharp upper bound was given for the degree of an arbitrary squarefree binary form F ∈ Z[X, Y ] in terms of the absolute value of the discriminant of F.

Współczynnik regresji cząstkowej, wyrażający zależność pomiędzy kredytem ogółem i środkami własnymi a dochodem ogółem badanych dużych spółdzielni, przy eliminacji

N a­ leży ponadto uwzględnić i to, że starowierstwo za Piotra w znacznym stopniu zm ieniło swój skład, w chłaniając prze­ ciwników Piotra; stąd późniejsza

„Tymczasem w teraźniejszej epoce świata smutnie się w y­ tarły na łokciach owe Ubrania Kościelne; źle mówię, to co daleko gorsze, w iele z nich stało

Concrete itself is a composite material and the different components will influence the overall behaviour. In order to reduce the effects due to the variability of the

Although this paper discussed cooling systems in which the ram intake was utilised to give a source of high pressure air, much of the work wouid be applicable to systems using a high