• Nie Znaleziono Wyników

Prezentacja pt. "Konsole architektura" - autor Damian Kałużny

N/A
N/A
Protected

Academic year: 2021

Share "Prezentacja pt. "Konsole architektura" - autor Damian Kałużny"

Copied!
62
0
0

Pełen tekst

(1)

Konsole - architektura

Konsole - architektura

PlayStation

PlayStation

,

,

PlayStation

PlayStation

2,

2,

PlayStation 3

PlayStation 3

, X-Box, X-Box II 360, Nes,

, X-Box, X-Box II 360, Nes,

Super Nintendo, Game Boy, Nintendo 64,

Super Nintendo, Game Boy, Nintendo 64,

GameCube, Dreamcast, Sega Saturn

(2)

PLAYSTATION

PLAYSTATION

Producent:

Producent: Sony Sony

Procesor:

Procesor: 32 bity (R3000A) Zegar 33,85Mhz, 32 bity (R3000A) Zegar 33,85Mhz, Cache 4Kb, Bus 132MB/sek

Cache 4Kb, Bus 132MB/sek

Pamięć:

Pamięć: Operacyjna 2mb graficzna 1mb Operacyjna 2mb graficzna 1mb Dżwiękowa 0,5mb Systemowa 0,5mb Dżwiękowa 0,5mb Systemowa 0,5mb

Układ graficzny:

Układ graficzny: 1,5 mln polygonów na 1,5 mln polygonów na sekundę (przy pświetleniu i teksturach 500 sekundę (przy pświetleniu i teksturach 500 tyś.), 16,7 mln kolorów, mapping, cieniowanie tyś.), 16,7 mln kolorów, mapping, cieniowanie Gourauda

Gourauda

Dźwięk:

Dźwięk: 24 kanały - 44,1 Khz (MIDI)(44,1 lub 24 kanały - 44,1 Khz (MIDI)(44,1 lub 48 KHz)

48 KHz)

Odtwarzacz:

(3)

Procesor główny (CPU)

Procesor główny (CPU)

Symbol : R3000A (SGI) LSI Logic Technologies

Symbol : R3000A (SGI) LSI Logic Technologies

Architektura : RISC z 32 bit szyną danych

Architektura : RISC z 32 bit szyną danych

Taktowanie zegara : 33.8688 Mhz

Taktowanie zegara : 33.8688 Mhz

Szybkość : 30 Mips (1 mips = 1 milion operacji na sekundę)

Szybkość : 30 Mips (1 mips = 1 milion operacji na sekundę)

Pamięć podręczna Instuction Cache : 4 KB

Pamięć podręczna Instuction Cache : 4 KB

Pamięć podręczna Data Cache : 1 KB

Pamięć podręczna Data Cache : 1 KB

Przepustowość szyny : 132 Mb/sek (Nintendo 64 ok. 500 Mb/sek.)

Przepustowość szyny : 132 Mb/sek (Nintendo 64 ok. 500 Mb/sek.)

(4)
(5)
(6)

RISC (ang. Reduced Instruction Set Computer) – ograniczenie listy

rozkazów procesora do niewielu błyskawicznie wykonywanych

instrukcji, których realizacja jest wynikiem odwołania się do

wyspecjalizowanego układu elektronicznego. Tłumaczeniem kodu

zajmuje się kompilator. Prędkość przetwarzania w tych systemach jest

bardzo duża, ale wymaga bardzo dużej przepustowości magistrali, ze

względu na fakt, że przetłumaczony przez kompilator kod znajduje się

w pamięci operacyjnej i każdy mikrorozkaz musi być pobrany stamtąd

przez procesor. Wszystkie mikrorozkazy mają tutaj stałą długość.

Problem szybkiego dostępu do pamięci rozwiązuje się obecnie poprzez

(7)

Cechy procesora

Cechy procesora

RISC

RISC

Zredukowana liczba rozkazów, ich liczba wynosi kilkadziesiąt, podczas gdy

Zredukowana liczba rozkazów, ich liczba wynosi kilkadziesiąt, podczas gdy

w procesorach CISC sięga setek. Upraszcza to znacznie dekoder

w procesorach CISC sięga setek. Upraszcza to znacznie dekoder

rozkazów.

rozkazów.

Redukcja trybów adresowania, dzięki czemu kody rozkazów są prostsze,

Redukcja trybów adresowania, dzięki czemu kody rozkazów są prostsze,

bardziej zunifikowane, co dodatkowo upraszcza wspomniany wcześniej

bardziej zunifikowane, co dodatkowo upraszcza wspomniany wcześniej

dekoder rozkazów. Ponadto wprowadzono tryb adresowania, który

dekoder rozkazów. Ponadto wprowadzono tryb adresowania, który

ogranicza ilość przesłań.

ogranicza ilość przesłań.

Ograniczenie komunikacji pomiędzy pamięcią, a procesorem. Przede

Ograniczenie komunikacji pomiędzy pamięcią, a procesorem. Przede

wszystkim do przesyłania danych pomiędzy pamięcią, a rejestrami służą

wszystkim do przesyłania danych pomiędzy pamięcią, a rejestrami służą

dedykowane instrukcje, które zwykle nazywają się

dedykowane instrukcje, które zwykle nazywają się loadload (załaduj z pamięci), (załaduj z pamięci), oraz

oraz storestore (zapisz do pamięci); pozostałe instrukcje mogą operować (zapisz do pamięci); pozostałe instrukcje mogą operować

wyłącznie na rejestrach. Schemat działania na liczbach znajdujących się w

wyłącznie na rejestrach. Schemat działania na liczbach znajdujących się w

pamięci jest następujący: załaduj daną z pamięci do rejestru, na zawartości

pamięci jest następujący: załaduj daną z pamięci do rejestru, na zawartości

rejestru wykonaj działanie, przepisz wynik z rejestru do pamięci.

(8)

Zwiększenie liczby rejestrów (np. 32, 192, 256, podczas gdy np. w

Zwiększenie liczby rejestrów (np. 32, 192, 256, podczas gdy np. w

architekturze x86 jest zaledwie 8 rejestrów), co również ma wpływ na

architekturze x86 jest zaledwie 8 rejestrów), co również ma wpływ na

zmniejszenie liczby odwołań do pamięci.

zmniejszenie liczby odwołań do pamięci.

Dzięki

Dzięki przetwarzaniu potokowemuprzetwarzaniu potokowemu (ang. (ang. pipeliningpipelining) wszystkie rozkazy ) wszystkie rozkazy wykonują się w jednym cyklu maszynowym, co pozwala na znaczne

wykonują się w jednym cyklu maszynowym, co pozwala na znaczne

uproszczenie bloku wykonawczego, a zastosowanie

uproszczenie bloku wykonawczego, a zastosowanie superskalarnościsuperskalarności także także na zrównoleglenie wykonywania rozkazów. Dodatkowo czas reakcji na

na zrównoleglenie wykonywania rozkazów. Dodatkowo czas reakcji na

przerwania

przerwania jest krótszy. jest krótszy.

Pierwszym procesorem zaprojektowanym w oparciu o architekturę RISC był

Pierwszym procesorem zaprojektowanym w oparciu o architekturę RISC był

RCA1802

(9)

PRZETWARZANIE POTOKOWE – technika stosowana w celu zwiększenia

przepustowości. Czas pracy (potok przetwarzający, ang. pipeline) nad pojedynczym rozkazem jest podzielony na konkretne fazy. Potok pracuje jednocześnie nad kilkoma rozkazami, każdy z nich znajduje się w innej fazie wykonania. Czas przetwarzania każdego z nich wynosi pewną wielokrotność

okresu zegara taktującego, ale w każdym cyklu potok opuszcza zakończony rozkaz.

M.in. ilość stopni potoku decyduje o szybkości pracy procesora, większa

ilość stopni pozwala na zwiększenie częstotliwości taktującej i ogólnej wydajności. Problemy w przetwarzaniu potokowym: stwierdzenie błędu w jednym wykonywanym rozkazie oznacza konieczność oczyszczenia całego potoku; wzrost wydajności ograniczają również konflikty w wykorzystywaniu zasobów zewnętrznych – problemów jest tym więcej im większa jest liczba

(10)

Idea potokowego przetwarzania danych

(11)

Pamięć wirtualna w architekturze MIPS wspiera

stronicowanie, poprzez obecność rejestrów TLB. Umożliwia

także ochronę obszarów pamięci dzięki identyfikatorom

obszarów pamięci:

identyfikator procesu musi się zgadzać z identyfikatorem

zapisanym w tablicy TLB.

Architektury R2000 oraz R3000 zapewniają 64 takie

identyfikatory, architektura R10000 zapewnia 256.

Zmusza to, by w przypadku, gdy jest więcej uruchomionych

procesów, niektóre z nich dzieliły przestrzeń adresową.

(12)

W architekturze MIPS32 logiczna przestrzeń adresowa jest 32-bitowa,

podzielona na 5 segmentów, zorganizowanych w następujący sposób:

Segmenty opisane jako „Mapped” są stronicowane. Przy dostępie do

nich adres logiczny tłumaczony jest przy pomocy tablicy TLB (lub

przez inną jednostkę tłumaczącą ) na adres fizyczny. Segmenty

„kseg0”, oraz „kseg1” nie są stronicowane. Umożliwia on wgląd w

najniższą część adresowej przestrzeni fizycznej, zaczynającą się od

adresu 0. Segment „kseg1” dodatkowo umożliwia ominięcie

(13)

Procesor w architekrurze MIPS może działac w trzech trybach: jądra,

superużytkownika oraz użytkownika. Każdy segment ma przypisane tryby,

w których można z niego korzystac, tak jak w tabelce. Dodatkowo tryby te

mają różne poziomy uprzywilajowania: najwyższy jest tryb jądra, najniższy

użytkownika. Wyższy poziom uprzywilejowania oznacza zezwolenie na

dostęp do wszystkich segmentów do których jest dostęp na niższym

poziomie. Przykład: z segmentu „kseg" można korzystac tylko w trybach

jądra i superużytkownika. W trybie użytkownika próba odwołania się do

segmentu spowoduje Address Error Exception.

(14)

Pojedynczy wpis w rejestrze TLB zawiera pola:

Pojedynczy wpis w rejestrze TLB zawiera pola:

Mask

Mask

VPN2 - Numer wirtualnej strony (podzielony przez dwa)

VPN2 - Numer wirtualnej strony (podzielony przez dwa)

ASID, G - Identyfikator przestrzeni adresowej i bit ogólnego

ASID, G - Identyfikator przestrzeni adresowej i bit ogólnego

dostępu

dostępu

PFN0, C0, D0, V0 - Numer strony fizycznej, oraz bity valid, dirty,

PFN0, C0, D0, V0 - Numer strony fizycznej, oraz bity valid, dirty,

cache coherency

cache coherency

PFN1, C1, D1,

PFN1, C1, D1,

V1

V1

- Jak wyżej

- Jak wyżej

Warto zauważyć, że jedna strona wirtualna skojarzona jest z dwoma stronami fizycznymi. To, która strona fizyczna zostanie wybrana zależy od adresu, oraz pola Mask.

Dla

każdej strony wirtualnej mamy zatem dwa wpisy

w tablicy TLB.

Dodatkowo mamy możliwość zezwolenia na dostęp wszystkim procesom (bit G przy polu ASID).

(15)

Rejestry

Rejestry

Posiada 32 rejestry całkowitoliczbowe oraz 32 rejestry

zmiennoprzecinkowe. Pierwszy rejestr całkowitoliczbowy jest

pseudorejestrem zawierającym zawsze 0 ($zero), co w praktyce

upraszcza wiele operacji. Trzydziesty pierwszy rejestr ($ra)

całkowitoliczbowy jest adresem powrotu przy wywołaniach funkcji.

Kolejne adresy są kładzione na stosie. To nietypowe rozwiązanie

rozdziela operacje skoku powrotnego oraz pobranie adresu z

(16)

Numer rejestru Kod rejestru w asemblerze Funkcja Odpowiednik w x86

1 $at zarezerwowana dla makr asemblera brak

2-3 $v0-$v1 rezultat wykonania funkcji %eax i %edx

4-7 $a0-$a3 argumenty do funkcji, ewentualne dalsze argumenty są odkładane na stosie

odkładane na stosie, w pewnych

przypadkach, takich jak syscalle do jąder

Linuksa czy Windowsa wykorzystywane są rejestry %eax,%ebx,%ecx,%edx,%esi,%edi a w Linuksie 2.4 również %ebp

8-15 oraz

24-25 $t0-$t9 ogólnego przeznaczenia, zachowywane przez wywołującego %eax,%eax,%ebx,%ecx,%edx,%esi,%edi

16-23 $s0-$s7

ogólnego przeznaczenia, zachowywane przez wywoływanego

niektóre z powyższych, zależnie od ustawień

kompilatora

26-27 $k0-$k1 wykorzystywane w procedurach przerwań brak

28 $gp wskaźnik danych globalnych brak, w trybie rzeczywistym był do tego wykorzystywany rejestr segmentowy %ds

29 $sp wskaźnik stosu %esp 30 $fp lub $s8 wskaźnik ramki %ebp

(17)

Układ graficzny:

Układ graficzny:

Pozwala wyświetlić grafikę w następujących trybach:

Pozwala wyświetlić grafikę w następujących trybach:

256 x 480

256 x 480

320 x 480

320 x 480

512 x 480

512 x 480

640 x 480

640 x 480

384 x 480

384 x 480

512 x 480

512 x 480

Dostępna paleta kolorów układu graficznego: Tryb pracy, Liczba kolorów

4 bit clut, 16 8 bit clut, 256 15 bit direct, 32768 24 bit, 16777216

Efekty 2d Sprites:

Najmniejszy możliwy sprite : 1 x 1 pixel

(18)

Efekty Specjalne Sprites: Rotacja Skalowanie góra/dół Kolizja Przeźroczystość Fading

Przesuwanie w pionie i poziomie

Układ geometrii 3d (GTE):

Szybkość : 66 Mips

Liczba obrabianych poligonów: Cieniowanych płasko : 1.5 ml/sek.

Cieniowanych Gouardem, texturowanych i oświetlonych : 500 tys/sek. Układ jest przystosowany do szybkiego tablicowania danych.

(19)

Układ Dekompresji Danych (MDEC):

Szybkość : 80 mips

Podłączony bezpośrednio do szyny procesora

Zastosowanie: Wszelakie rozpakowywanie danych odczytywanych z płyty do VRAM. Może pracować jako pseudo dekoder Mpeg .

Compatybilny z MPEG 1, standart H.261 plików graf.

Renderowanie polygonów sprzętowo ( GPU ):

Sprzętowe renderowanie - do 360 tyś/polygonów na sekundę. Cieniowanie metodą Gouarda, teksturowanie.

(20)

Pamięć:

Pamięć:

Główna pamięć - Ram : 2 Megabytes (16Mbits)

Pamięć graficzna - Video Ram : 1 Megabyte (8Mbits) Pamięć dzwiękowa - Sound Ram : 512 kbytes (4Mbits) CD ROM Buffer : 32 kbytes (256Kbits)

OS Rom : 512 kbytes (4Mbits) RAM Cards : 128 kbytes (1Mbit)

Pamięć zapisu danych:

128kb Flash Memory ( Memory Card ) Dwa gniazda Memory card

System supportuje operacje zapisu, kopiowania i usuwania danych z Memory Card.

Procesor Muzyczny:

Liczba kanałów : 24

Częstotliwość próbkowania : 44.1 Khz

Efekty sprzętowe : Envelope, Looping, Digital Reverb 512 kb próbek instrumentow

(21)

Napęd CD-ROM:

150 KB/sec. (1x) 300 KB/sec. (2x)

Maksymalna pojemność płyty CD : 660 MB

(22)

Producent: Sony Procesor: 300 MHz Pamięć: 32 MB

Przepustowość szyny: 3,2 GB/s Układ graficzny: 150 MHz

Maks. liczba przet. wielokątów: 75 mln/s Dźwięk:48 kanałów (44,1 lub 48 KHz) Odtwarzacz: DVD-ROM

Dysk twardy: Opcja Internet: Opcja

Karta sieciowa: Opcja USB: Tak

(23)

Procesor: 128-bitowy "Emotion Engine"

Częstotliwość zegara systemowego: 300MHz

Pamięć podręczna, Instrukcje: 16kB, Dane: 8kB + 16kB (ScrP) Pamięć główna: Direct Rambus (bezpośrednia RDRAM)

Wielkość pamięci: 32MB

Przepustowość magistrali pamięci: 3,2 GB/s

Koprocesor FPU (jednostka zmiennoprzecinkowa): Akumulator mnożenia zmiennoprzecinkowego x1 Akumulator dzielenia zmiennoprzecinkowego x1

Jednostki wektorowe VU0 i VU1:

Akumulator mnożenia zmiennoprzecinkowego x9 Akumulator dzielenia zmiennoprzecinkowego x3 Wydajność zmiennoprzecinkowa: 6,2 GFLOPS Przekształcenia geometryczne 3D CG: 66 mln wielokątów na sekundę

(24)

Emotion Engine - podstawowe parametry i funkcje:

Procesor główny 128-bitowy RISC (podzbiór MIPS IV) Częstotliwość zegara: 300 MHz

Jednostka stałoprzecinkowa: 64-bitowa (dwudrożna superskalarna)

Rozszerzone instrukcje multimedialne: 107 instrukcji przy szerokości 128 bitów TLB: 48 podwójnych pozycji

Pamięć podręczna instrukcji: 16kB (dwudrożna) Pamięć podręczna danych: 8kB (dwudrożna) Pamięć RAM Scratch Pad: 16kB (dwuportowa)

Pamięć główna: 32MB (Direct DRAM, 2 kanały po 800MHz) Przepustowość pamięci: 3,2 GB/s

Geometria:

+ transformacja perspektywy: 66mln wielokątów/s + oświetlenie: 38mln wielokątów/s

+ mgła: 36mln wielokątów/s

Generacja powierzchni krzywoliniowej (Bezier): 16mln wielokątów/s Procesor obrazu: Makroblokowy dekoder warstwowy MPEG2

(25)

Emotion Engine i Graphic Synthesizer

Grafika: "Graphic Synthesizer"

Częstotliwość zegara: 150 MHz

Przepustowość magistrali DRAM: 48 GB/s

Obudowa procesora i układu graficznego

(26)

Liczba urządzeń przetwarzających piksele: 16 (praca równoległa)

Osadzona pamięć DRAM: 4 MB wieloportowej pamięci DRAM (synchronizowanej przy 150 MHz) Łączna przepustowość pamięci: 48 GB/s

Łączna przepustowość wewnętrznej magistrali danych: 2560 bitów Odczyt: 1024 bity

Zapis: 1024 bity Tekstura: 512 bitów

Głębia wyświetlanych kolorów: 32 bity (RGBA : po 8 bitów) Z bufor: 32 bity

Funkcje odwzorowywania (rendering): Mapowanie tekstur, mapowanie występów, mgła,

mieszanie alfa, filtracja dwu-i trzyliniowa, MIPMAP, Antialiasing, wieloprzejściowe odwzorowywanie.

(27)

Wydajność odwzorowywania:

Prędkość wypełniania pikseli 2,4 mld pikseli na sekundę (przy Z-buforze i mieszaniu alfa) 1,2 mld pikseli na sekundę (przy Z-buforze , mieszaniu alfa i teksturach)

Prędkość rysowania cząstek 150 mln/s

Prędkość rysowania wielokątów 75 mln/s (mały wielokąt) 50 mln/s (czworokąt 48 pikseli z Z i A)

30 mln/s (trójkąt 50 pikseli z Z i A)

25 mln/s (czworokąt 48 pikseli z Z ,A i T)

Prędkośc rysowania obiektów sprite 18,75 mln/s (8x8 pikseli) Wyjście obrazu NTSC / PAL + Digital TV (DTV)

Łączna liczba tranzystorów 43 miliony

(28)

Dźwięk "SPU2 + CPU":

Liczba głosów ADPCM : 48 kanałów na SPU2 plus głosy definiowane programowo. Częstotliwość próbkowania 44,1 kHz lub 48 kHz (do wyboru).

Pamięć: 2 MB

Procesor WE/WY

Procesor główny - Procesor PlayStation (obecny) Częstotliwość zegara 33,8 MHz lub 37,5 MHz Magistrala pomocnicza: 32 bity

Rodzaje łącz: FireWire/i-Link IEEE1394, uniwersalna magistrala szeregowa (USB)

(29)

Urządzenie dyskowe:

CD-ROM (24x) DVD-ROM (4x)

(30)

PlayStation 3

Sercem PlayStation 3 będzie układ o kodowej nazwie CELL. W jego tworzenie zaangażowane są trzy firmy - Sony, Toshiba i IBM. Koszt zaplanowanych na cztery lata prac nad tym układem wstępnie oszacowano na pół miliarda dolarów. Dzięki zaangażowaniu tak dużych środków powstać ma procesor, który będzie mógł wykonywać trylion operacji na sekundę (1 teraflop), co jest wynikiem około 100 razy lepszym od P4 z zegarem 2,53 GHz! Tak ogromna wydajność

osiągnięta ma być dzięki wykorzystaniu w pojedynczym procesorze od 16 do 32 niezależnych jednostek centralnych (Attached Processing Unit - APU),

pogrupowanych w ośmiordzeniowe bloki (Processor Element - PE).

Obsługa całego układu ma być w pełni programowalna, co więcej, zarówno poszczególne rdzenie, jak i całe bloki da się łączyć w grupy w zależności od wykonywanych zadań.

(31)

CELL składać się ma bowiem z przeszło miliarda tranzystorów, planowana

(32)

Blok procesora w układzie CELL składa się ze sterującego modułu

głównego (jednostki przetwarzającej) i ośmu niezależnych rdzeni APU, które mogą wykonywać zadania bądź samodzielnie, bądź wspierać się nawzajem w celu przyśpieszenia obliczeń. Pod względem budowy każdy moduł APU jest tak naprawdę samodzielnym procesorem RISC

Co ciekawe, CELL może udostępnić swoją niewykorzystywaną moc obliczeniową innym maszynom podłączonym do domowej sieci, jak również w razie potrzeby skorzystać z ich zasobów - i nie chodzi tu wyłącznie o inne konsole do gier. W dalszej przyszłości naszego PS3 będzie mógł wesprzeć w obliczeniach telewizor czy też inne urządzenie RTV lub AGD, a nawet telefon komórkowy. Konstruktorzy przewidują produkcję "lżejszych" wersji kości CELL, przeznaczonych właśnie dla tego typu urządzeń powszechnego użytku.

(33)

Za grafikę w PlayStation 3 odpowiedzialny będzie drugi, także w pełni

programowalny CELL. W odróżnieniu jednak od wersji podstawowej graficzny

CELL będzie miał cztery bloki po cztery rdzenie ogólnego przeznaczenia i

kolejne cztery bloki odpowiedzialne tylko za obróbkę pikseli. Do tego dojść mają jeszcze odpowiednio pogrupowane banki pamięci cache.

W przypadku akceleratora 3D konsoli PS3 w odróżnieniu od pecetowych procesorów graficznych, które przetwarzają tylko niewielkie i niezbyt

skomplikowane programy, twórców gier ograniczać będzie już tylko

wyobraźnia i umiejętności programowania. Okazuje się, że efektywność kodu dla graficznego, w pełni programowalnego CELL-a zależy w

znacznym stopniu od optymalizacji przydziału zadań dla poszczególnych jednostek wykonawczych i elastycznym grupowaniu i rozgrupowywaniu rdzeni w trakcie wykonywania kolejnych rozkazów.

(34)
(35)

Pełna specyfikacja:

CPU: Cell Processor PowerPC-base Core @3.2GHz --1 VMX vector unit per core

--512KB L2 cache --7 x SPE @3.2GHz

--7 x 128b 128 SIMD GPRs --7 x 256KB SRAM for SPE

--*1 of 8 SPEs reserved for redundancy

--Total floating point performance: 218 gigaflops GPU RSX @ 550MHz

--1.8 TFLOPS floating point Performance --Full HD (up to 1080p) x 2 channels

--Multi-way programmable parallel Floating point shader pipelines --Sound Dolby 5.1ch, DTS, LPCM, etc. (Cell-based processing)

(36)

MEMORY

256MB XDR Main RAM @3.2GHz 256MB GDDR3 VRAM @700MHz

System Bandwidth Main RAM-- 25.6GB/s VRAM--22.4GB/s

RSX-- 20GB/s (write) + 15GB/s (read) SB2.5GB/s (write) + 2.5GB/s (read)

SYSTEM FLOATING POINT PERFORMANCE: 2 teraflops

STORAGE

--HDD Detachable 2.5" HDD slot x 1 --I/O--USB Front x 4, Rear x 2 (USB2.0) --Memory Stickstandard/Duo, PRO x 1 --SD standard/mini x 1

(37)

COMMUNICATION

--Ethernet (10BASE-T, 100BASE-TX, 1000BASE-T) x 3 (input x 1 + output x 2) --Wi-Fi IEEE 802.11 b/g

--Bluetooth--Bluetooth 2.0 (EDR) --ControllerBluetooth (up to 7) --USB 2.0 (wired)

--Wi-Fi (PSP)

--Network (over IP)

AV OUTPUT

Screen size 480i, 480p, 720p, 1080i, 1080p HDMI out x 2

AV multi out x 1

Digital out (optical) x 1

Sercem konsoli PlayStation 3 jest procesor Cell pracujący z

częstotliwością 3.2GHz, posiadający wydajność 2 Teraflopy. Wspiera

go 256MB pamięci XDR oraz 256MB GDDR VRAM pracującej z

(38)

Grafiką w tym monstrum zajmie się chip RSX "Reality

Synthesizer" stworzony przez firmę Nvidia. Jest on

128-bitowy, zbudowany z 300mln tranzystorów (to więcej niż

jakikolwiek procesor w zastosowaniach komercyjnych) i

zapewni wyświetlanie grafiki w rozdzielczości 2820x2280.

Wyposażony zostanie w 512MB pamięci graficznej, a jego

osiągi to 100mld operacji na shaderach (Xbox 360 "tylko"

48mln). Sony twierdzi, że moc chipa jest obecnie dużo

większa niż dwóch kart GeForce 6800 Ultra!!

(39)

Napęd PS3 jest w technologii Blu-Ray tak jak wcześniej

zapowiadano, a więc pojemność płytek jest o sześć razy większa niż

obecnych nośników DVD (25/50GB). Napęd obsługuje takie formaty,

jak: CD-ROM, CD-RW, DVD, DVD-ROM, DVD-R, DVD+R. Sony

zapewniło również, że PS3 jest kompatybilne w dół co powinno

ucieszyć posiadaczy obecnych platform oraz bogatych bibliotek gier.

Dużą wagę przywiązano do obsługi flashowych kart pamięci.

PlayStation 3 może używać ich w trzech rodzajach. Są to Memory

Stick Duo, SD oraz typowe kompaktowe karty flashowe. Ma

również slot dla 2.5" dysku twardego, choć jeszcze nie

sprecyzowano, czy będzie on standardowym wyposażeniem

konsoli.

(40)

Producent: Microsoft

Procesor: 733 MHz Intel PIII Pamięć: 64 MB

Przepustowość szyny: 6,4 GB/s Układ graficzny: 250 MHz nVidia

Maks. liczba przet. wielokątów:125 mln/s Maksymalna rozdzielczość:1920 x 1080 Dźwięk: 64 kanały (AC3)

Odtwarzacz: DVD-ROM (x2-5) Dysk twardy: 8 GB

Internet: Tak

Karta sieciowa: Tak USB: Tak

(41)

Xbox II 360

Informacje na temat zainstalowanego procesora IBM

- Częstotliwość 3,2Ghz trzech rdzeni symetrycznych - 2 sprzętowe potoki na rdzeń symetryczny

- 1 VMX-128 jednostka wektorowa na rdzeń - 1 MB L2 cache

Możliwości generowania procesora - 9 billionpunktór na sekunde

Custom ATI Graphics Processor - 500 Mhz

- 10 MB osadzonej pamięci DRAM

- 48-way parallel floating-point shader pipelines - Niezidentyfikowana architektura shader

(42)

Memory

-512 MB GDDR3 RAM - 700 MNz DDR

Memory Bandwidth

- 22.4 GB/s memory interface bus bandwidth - 256 GB/s memory bandwidth EDRAM

- 21.6 GB/s frontside bus

Audio

- Mulitchannel surround sond output - Supports 48khz 16-bit audio

- 320 independent decompression channels - 32 bit processing

Microsoft na dostawcę procesora do swojej konsoli nie wybrał

bowiem ani Intela, ani AMD, lecz firmę IBM. Co więcej, układ ten nie będzie zgodny z kodem x86! Wybór producenta jednostki centralnej dla nowego Xboksa nie jest przypadkowy, gdyż IBM ma bardzo

duże doświadczenie w produkcji procesorów na potrzeby konsoli. Wystarczy wspomnieć, że GameCube'a firmy Nintendo napędza procesor PowerPC Gekko właśnie autorstwa IBM-a. Firma ta

pracuje także nad procesorem dla GameCube 2 oraz nad układem dla największego rywala Xboksa - konsoli PlayStation 3 - kością o kodowej nazwie CELL.

(43)

We wnętrzu Xboksa 2 znajdzie się procesor bazujący na 64-bitowej rodzinie układów PowerPC 970/980. Nie będzie to jednak zwykły PowerPC - procesor ma przede

wszystkim umożliwić Xboksowi 2 niezwykle sprawne wykonywanie kilku

niezależnych zadań naraz. W tym celu IBM zamierza wyposażyć procesor Xboksa 2 w technologię podobną do Hyper-Threadingu. Ma ona jednak być nawet o 30%

efektywniejsza. Co więcej, mimo swojej 64-bitowej architektury procesor ten także zapewniać będzie bardzo dużą wydajność w aplikacjach 32-bitowych. Przetwarzanie zadań multimedialnych usprawnić ma natomiast zintegrowana z procesorem

jednostka wektorowa o nazwie Altivec, wykonująca operacje na macierzach.

Rozszerza ona zestaw instrukcji procesora PowerPC o 162 dodatkowych instrukcji typu SIMD (Single Instruction Multiple Data). Sam układ produkowany będzie w wymiarze 90 nm z wykorzystaniem technologii SOI (Silicon-on-Insulator), dzięki czemu częstotliwość jego pracy ma wynosić ok. trzech gigaherców

Kolejną niespodzianką, jaką przygotował Microsoft, jest zmiana producenta

układu graficznego. Firmę nVidia zastąpi ATI z akceleratorem o symbolu R500, a więc procesorem graficznym znacznie bardziej zaawansowanym aniżeli

zapowiedziane na pierwszy kwartał tego roku ATI R420 i nVidia NV40.

(44)

Konsole czwartej i piątej generacji

Xbox PS2 Xbox 2* PS3*

Moc obliczeni

owa 3,2 gigaflopa 6,2 gigaflopa brak danych 1 teraflop Procesor Intel Pentium III 733 MHz Sony Emotion Engine (300 MHz) IBM PowerPC (3 GHz) Sony CELL

Architekt

ura 32-bitowa 128-bitowa

64-bitowa, współbieżna wielowątkowość

(Hyper-Threading)

128-bitowa, w pełni programowalna (możliwość dowolnego łączenia jednostek wykonawczych w bloki)

Układ

graficzny nVidia X-Chip (300 MHz)

Sony Graphics Synthetizer (150

MHz) ATI R500

Sony CELL Visualiser - układ w pełni programowalny Pamięć operacyj na SDRAM 64 MB Rambus Direct-RAM 38 MB DDR2 Rambus XDR DRAM

(45)

Specyfikacja:

procesor - typ 6502 o prędkości 1,79 MHz lub (MOS 65C816 20MHz SNES) pamięć RAM - 2 Kb, 2Kb V-RAM

grafika - 256 x 240 przy 16 kolorach (paleta 52), 64 sprite 8x8, 8x16 dźwięk - 3 kanały mono PCM

nośnik - kartridż o pojemności od 16 Kb do 1 Mb wejścia/wyjścia - AV, RF, zasilanie

(46)

Najpopularniejsza w historii konsola 8-io bitowa zadebiutowała na runku

japońskim w 1983 roku. Po dwóch latach i pewnej modernizacji, konsola

trafiła także na rynek europejski i amerykański. Od początku cieszyła się

ogromną popularnością, a to głównie za sprawą przeogromnej biblioteki

gier. Sama konsola generowała bardzo przyzwoitą grafikę i dźwięk.

Oficjalnie sprzedano 66 milionów egzemplarzy, ale ta liczba będzie

znacznie wyższa, jeśli weźmie się pod uwagę fakt, że po dziś dzień

konsola ta, w nieco zmienionej formie, jest produkowana w Chinach i

innych państwach azjatyckich. W ten sposób powstał właśnie fenomen

Pegazusa, popularnej u nas w latach 90-tych podróbki NESa. Pegazus, w

różnych kształtach i formach, sprzedawany jest po dziś dzień na wielu

targowiskach. Katridże "pegazusów" różnią się od tych oryginalnych, ale

zapobiegliwi azjaci stworzyli specjalną przejściówkę, która umożliwia

uruchomienie pirackich kartów na oryginalnym NESie.

(47)
(48)
(49)

Producent: Nintendo

Procesor: 65C816 3,58 MHz

Pamięć: 128 KB RAM, 64 KB V-RAM,

64 KB Audio RAM

MAX ILOŚĆ KOLORÓW NA

EKRANIE: 256

DOSTĘPNA ILOŚĆ KOLORÓW:

32,678

ROZDZIELCZOŚĆ: 512x448

SCROLLING Horizontal, Vertical,

Diagonal

Dźwięk: 8 kanałów

Odtwarzacz: kartridż

Dysk twardy: Nie

Internet: Nie

(50)

MOS 65C816 jest szesnastobitowym procesorem zgodnym

programowo `w dół` z zainstalowanym w Atari XL/XE (kosola NES)

procesorem 6502. Zgodność ta nie obejmuje nielegalnych

(niepublikowanych) rozkazów 6502. W zamian dodano 10 nowych

trybów adresowania i 44 nowe rozkazy, w tym np. operacje

przepisywania bloków pamięci.

Częstotliwość pracy: do 20 MHz Magistrala danych: 8 bitów Magistrala adresowa: 24 bity Przestrzeń adresowa: 16 MB

Wielkość stosu: 64 kB Liczba rozkazów: 90

(51)

Celem zachowania kompatybilności z aplikacjami pisanymi dla 6502

procesor ma, obok trybu 16-bitowego (tzw. native mode), również

tryb emulacji 6502 (emulation mode). W trybie tym funkcjonują

wszystkie rozkazy 65C816, jednak nie jest możliwe korzystanie z

szesnastobitowych operandów. Dla zachowania kompatybilności z

istniejącymi systemami operacyjnymi, procesor 65C816 `budzi się` w

trybie emulacji.

Szesnastobitowy akumulator bezpośrednio dostępny jest jedynie w trybie

natywnym, nawet jednak w trybie emulacji istnieje możliwość zamiany miejscami obydwu jego ośmiobitowych połówek. Wykonuje to rozkaz XBA. Niektóre rozkazy używają szesnastobitowego akumulatora niezależnie od bieżącego trybu pracy CPU i stanu bitu M. W takich wypadkach akumulator oznaczany jest jako rejestr C.

(52)

Rejestry indeksowe mogą być szesnastobitowe tylko w trybie natywnym.

Przełączenie CPU w tryb emulacji powoduje wyzerowanie ich starszych bajtów.

Wskaźnik stosu jest szesnastobitowy, jednak w trybie emulacji jego

starszy bajt jest ustawiony na stałe na $01

Transfery pomiędzy rejestrami uzależniają rozmiar operacji od

rozmiaru rejestru docelowego.

Rejestr znaczników ma 9 bitów. Najstarszy bit, E, odpowiedzialny za

kontrolę nad trybem pracy procesora (natywny lub emulacji) jest dostępny jedynie za pośrednictwem znacznika C i rozkazu XCE, który zamienia wartości tychże znaczników.

(53)
(54)

GameBoy/GameBoy Color

DANE TECHNICZNE:

Procesor: 8 MHz Z80 wykonany przez firmę Sharp, posiada dwa tryby pracy: pojedyńczy (4MHz) i podwójny (8MHz) (8-bit; podobny do

(55)

Ekran: kolorowy ciekłokrystaliczny wyświetlacz TFT (Thin-Film Transistor) firmy Sharp GBC może używać 8 palet po 4 kolory (jeśli wszystkie są różne daje

nam to 32 kolory na raz), sprite'y używają drugich 8 palet (jeden z kolorów w tym przypadku zawsze jest przezroczysty) czyli dalsze 8 x 3 = 24 kolory. 32 + 24 = 56 teoretyczna maksymalna liczba kolorów.

Ekran (witrualny) 256 x 256 punktów z czego widoczne jest 160 x 144. Pamięć RAM: 8 kB Pamięć Video: 16 kB

Dźwięk: 4 kanałowy generator stereo

Sterowanie: 8 kierunkowy D-Pad, 4 przyciski wyboru: A,B, Select, i Start Zasilanie: 13 godzin gry z dwóch baterii AA (R6), albo zasilanie z sieci (poprzez zasilacz 3 V - DC3V, 300mA)

(56)

Rozdzielczość: 160x144x 56 kolorów z 32.000 palety - inne tryby hi-color dostępne poprzez tweaking.

Sprite'y: 40 - 8x16, 8x8 (cztery kolorowe sprite'y-4 kolory- 1 przezroczysty)

Tiles: 512 na ekranie przy użyciu 16K pamięci VRAM Rozmiar cartrige'a: 256KBit - 16MBit dla gier kompatybilnych z GB.

Aż do 64MBit ROM oraz 128KBytes RAM dla gier przeznaczonych dla GBC, największe z aktualnie produkowanych to 32Mbit ROM / 64K RAM. DMA: Dwa nowe tryby DMA. Transfer danych jest stały i niezależny od obciążenia

procesora. Nowe tryby pozwalają na wymianę danych z ROM lub RAM do VRAM na poziomie 16 bajtów na jeden H-Blank. Jest to konieczne, ponieważ tyle

wymaga kolorowy obraz oraz zapewnia to szybką i płynną animację. Szybkość portu szeregowego: 512 Kbps

(57)

Producent: Nintendo

Procesor: MIPS R4300i / 93,75 MHz (64 bitowy procesor RISC)

Pamięć: 4 MB "Rambus" DRAM (wspólna dla wszystkich komponentów konsoli: grafika, dźwięk, kod programu)

Układ graficzny: Rozdzielczość max 640x480 pikseli, 32 bitowy "RGBA pixel color frame buffer", liczba kolorów

zdefiniowana w 21 bitach

(58)

Gry wprowadzane są do urządzenia za pomocą specjalnych kasetek (cartridge)

wstawianych w specjalne złącze (slot). Sygnał obrazu i dźwięku wyprowadzony jest na zewnątrz za pomocą standardowych wtyczek (cinch) co umożliwia podłączenie do

dowolnego zestawu wideo. Nintendo 64 jest 64-bitowym urządzeniem opartym na

procesorze RISC MIPS R4300 taktownym z częstotliwością 93.75 MHz,

wspomaganym przez 64-bitowy koprocesor graficzny RISC "Reality Immersion" pracujący z częstotliwością 62,5 MHz.

W koprocesor wbudowany został specjalny procesor do obróbki tekstur i generowania efektów trójwymiarowych. Pozwala to na uzyskanie w czasie

rzeczywistym takich efektów jak: wygładzanie krawędzi brył, z których składają się wyświetlane obiekty (anti-aliasing); nakładanie tekstur na zdefiniowaną

powierzchnię (texture mapping); stosowanie kilku identycznych tekstur, przeskalowanych wg wielkości, co poprawia wygląd teksturowanych powierzchni w momencie zbliżania (MIP-mapping; łac. multi in partem);

cieniowanie polegające na rozmyciu krawędzi dwóch sąsiadujących obiektów pokrytych różnymi teksturami (Gouraud shading); poprawne użycie perspektywy zapobiegające przekłamaniom podczas obracania tekstur wokół dowolnych osi (perspective correct texture mapping); ustalanie kolejności wyświetlania

obiektów znajdujących się w różnej odległości od obserwatora (z-buffering); uzyskanie całkowitej lub częściowej przezroczystości obiektu (alpha channel); obracanie oraz skalowanie obiektów.

(59)

Konsola generuje stereofoniczny dźwięk 16-bitowy z jakością CD (44.1 kHz), przy czym może być on tworzony przy użyciu maksymalnie 100 kanałów, obraz

wyświetlany jest z rozdzielczością 256x224 lub 640x480 punktów. Nintendo 64 wyposażone jest w 4 MB pamięci operacyjnej.

(60)

Producent: Nintendo

Procesor: 485 MHz IBM Power PC Pamięć: 40 MB

Przepustowość szyny: 2,6 GB/s

Układ graficzny: 162 MHz ATI/Nintendo Liczba przetw. wielok±tów: 6-12 mln/s DĽwięk: 64 kanały (48 KHz)

Odtwarzacz: CAV (3 calowe dyski 1.5GB) Dysk twardy: Nie

Internet: Tak

Karta sieciowa: Nie USB: Nie

(61)

Producent:Sega Procesor: 200 MHz Pamięć 26 MB

Układ graficzny: 100 Mhz NEC PowerVR2Maks.

liczba przetw. wielokątów: 3mln/s

Maksymalna rozdzielczość: 640 x 480 Dźwięk: 64 kanały (48 KHz)

Odtwarzacz GD-ROM (x12) Dysk twardy: Nie

Internet:Tak (56 kB/s) Karta sieciowa: Nie

(62)

Producent: Sega

Procesor: Hitachi SH-4 / 200 MHz (128-bitowy procesor RISC, 360 MIPS, 1,4 GFLOPS)

Pamięć: 16 MB RAM, 8 MB Video RAM, 2 MB Audio RAM;

Układ graficzny: Standardowa

rozdzielczość standardów NTSC i PAL, paleta 16,7 mln. kolorów,

sprzętowe wsparcie dla zaawansowanych technik 2D i 3D

Dźwięk: 64 kanały, wsparcie dla dźwięku przestrzennego

Odtwarzacz: Wbudowany napęd GD-ROM (pojemność 1024 MB, prędkość odczytu 1,8 MB/s)

Cytaty

Powiązane dokumenty

Budynki, tworzące zespół dworca kolejowego Gdynia Wielki Kack, powstały pod koniec lat dwudziestych XX wieku i służyły do obsługi magistrali węglowej, łączącej Górny Śląsk

Miejscowość Ulica / nr Nazwa Określenie Zespół Data powstania Nr

Instrukcje Akcjonariusza dotyczące sposobu głosowania przez Pełnomocnika w sprawie podjęcia powołanej uchwały, dotyczącej udzielenia absolutorium Aleksandrowi Leszowi z

Parametry wyszukiwania kończy zakres danych – program zwróci dane w sposób opisany w rozdziale „Baza danych” (osoby będące mieszkańcami po 1 marca 2015

Niezależnie od podstaw odstąpienia wynikających z obowiązujących przepisów prawa Zamawiający zastrzega sobie prawo odstąpienia od umowy w całości lub w części w

W przypadku złożenia rezygnacji przez członka Rady Nadzorczej albo wygaśnięcia mandatu członka Rady Nadzorczej z innej przyczyny Zarząd niezwłocznie zwołuje

Z dniem 13 lutego 2018 r. weszły w życie przepisy art. o zmianie niektórych ustaw w związku ze skróceniem okresu przechowywania akt pracowniczych oraz ich elektronizacją. Jak wynika

Ostroróg - rozwijanie, propagowanie i stałe podnoszenie poziomu sportu, kształtowanie u członków Klubu wysokich wartości moralnych i estetycznych, zapewnienie członkom Klubu i