• Nie Znaleziono Wyników

The lateral dynamic stability of a ground effect wing

N/A
N/A
Protected

Academic year: 2021

Share "The lateral dynamic stability of a ground effect wing"

Copied!
12
0
0

Pełen tekst

(1)

1

11 \0

\<0

CoA R E P O R T AERO No. 207

n!cw>mcH? H06ESCBOOI D a n

VLtóGTUIGBOUW ICUNDE

BIBLIOTHEEK

I;. nu-! fj

Klüvverweg 1 - 2 6 2 ^ H S DELFT

THE COLLEGE OF AERONAUTICS

CRANFIELD

THE LATERAL DYNAMIC STABILITY OF A GROUND

E F F E C T WING

by

(2)

CoA Report A e r o No. 207 November, 1968.

THE COLLEGE OF AERONAUTICS CRANFIELD

The L a t e r a l Dynamic Stability of a Ground Effect Wing

by

P , E. K u m a r . B, Sc. (Eng), A. C. G. I.

SUMMARY

The equations of l a t e r a l motion of a wing in ground effect have been developed and the rolling r e s p o n s e r e s u l t i n g from a g r o u n d - s h a p e forcing function h a s been obtained. L i n e a r i s e d d e r i v a t i v e s at a fixed height above ground w e r e obtained from p r e v i o u s wind-tunnel t e s t s and substituted into the equations.

It was concluded that the rolling r e s p o n s e of a GEW to a h a r m o n i c forcing function, such a s a b r o a d s i d e on s e a - s t a t e , was of the s a m e frequency a s the function and that the amplitude r a t i o was dependent mainly on the values of 1 and i .

(3)

CONTENTS

S u m m a r y

1.0 Introduction

2. O G e n e r a l equations of l a t e r a l nnotion

2. 1 L i n e a r i s e d equations in ground effect

3. 0 Stability c r i t e r i a

3. 1 E x t r a c t i o n of d e r i v a t i v e s 3. 2 The coefficients of the quintic

3. 3 Case of a single wing with endplates

4. 0 Rolling with yawing s u p p r e s s e d

5. 0 Conclusions R e f e r e n c e s

(4)

L i s t of m a i n s y m b o l s — m m a s s of c r a f t

U, V, W v e l o c i t i e s in x, y, z, d i r e c t i o n s .

p, q, r angular velocities about x, y, z, wind a x e s . U, p e t c . l i n e a r and angular a c c e l e r a t i o n s r e s p e c t i v e l y . X, Y, Z f o r c e s in x, y. z d i r e c t i o n s

L , M , N m o m e n t s about x, y, z d i r e c t i o n s . y^, Ip e t c . a e r o d y n a m i c d e r i v a t i v e s .

A2, B2 e t c . coefficients of l a t e r a l stability quintic. ^A' ^c ^*^' n o n - d i m e n s i o n a l i n e r t i a s .

initial incidence.

ip yaw angle

^

bank angle

s i d e s l i p angle, (ground shape in section 4. 0).

A T t / t t m/p SU P a i r density. S wing plan a r e a . l a t e r a l r e l a t i v e density p a r a m e t e r .

^ L ' ^ D o v e r a l l lift and drag coefficients r e s p e c t i v e l y . w frequency of forcing function.

(5)

1

-1. o Introduction

Ground effect wings, if they should prove to be a p r a c t i c a l proposition, will o p e r a t e over t e r r a i n s the shapes of which will i m p a r t both longitudinal and l a t e r a l a e r o d y n a m i c loads on the craft itself. Such a condition might e a s i l y o c c u r if a GEW w e r e to fly diagonally a c r o s s oncoming waves. Reference 3, c o n s i d e r e d the longitudinal dynamic stability of a ground effect wing. This p r e s e n t note t a k e s a brief look at the l a t e r a l stability. The motions envisaged h e r e might o c c u r if the craft m e t waves b r o a d s i d e on,

2. 0 G e n e r a l equations of l a t e r a l motion.

T h e s e equations can be found in r e f e r e n c e 1, and a r e r e s t a t e d h e r e , r e l a t i v e to wind a x e s , for the s a k e of c o m p l e t e n e s s . The notation u s e d is a s given in r e f e r e n c e s 1 and 2. m { y - r V + <ÏW) = X m(V-pW + rU) = Y m(W- qU+ pV) = Z Ap - (B-C)qrfD(r2-q2) - E(pq+r) + F ( p r - q ) = L Bq - (C-A)pr+E(p2-r2) - F(qr+p) + D(pq-r) = M (1) C r - (A-B)pq+F(q2-p2) . D(pr+q) + E ( q r - p ) = N

Since we a r e only c o n c e r n e d with the l a t e r a l a s y m m e t r i c motion in t h i s p r e s e n t r e p o r t the longitudinal equations of X, Z and M will hitherto be ignored. F u r t h e r , a s s u m i n g that the GEW is s y m m e t r i c a l about its longitudinal a x i s , we can neglect the u, w and q d e r i v a t i v e s appearing in the Y, L and N equations.

The sideforce Y c o n s i s t s of gravitational and a e r o d y n a m i c components Yg and Ya r e s p e c t i v e l y , given by

Yg = mg(!/)Sine + , ^ o s e ) . . Ya = vYv + pYp + rYj. + ,^Y^ ^ ' Y J i s the contribution to sideforce due to the bank (^ in ground effect,

F r o m (1) and (2)

m(V+rU) = vYy + pYp + rY^ + (/•Y^ + mg( i^SinG + </iCose) Dividing by ft^ S and using the n o n - d i m e n s i o n a l i s e d l a t e r a l stability d e r i v a t i v e s , we get

„, d ,r N ^ ^ Pt" r b ^ , C L 4C1. ^ ( ^ - - y j + r - ^ y p - - g ^ y ^ - ^ y ^ - ^ - 2 — t a n e - 1 . ^ "

}lGn.C6

-ff-fö^v-l^p-^y^-^^^^- " ' ^ - ^ ( ^ ^ ^ = 0 (^)

The rolling m o m e n t L c o n s i s t s of a e r o d y n a m i c components only given by La = vLy + pLp + r L j . + ({L, where L r i s the rolling m o m e n t due to bank in ground effect.

Along s i m i l a r lines a s before but dividing by pU'S_b_ y^e get 2

(6)

2

-«^

ÏA dp + r iD - ^ iE + P^ i F " ^^v - pb lp - r b Ir - (fl^ = O JÜ2 dr M^ jT^ iT^ ~Tü 2TJ

S i m i l a r l y the yawing m o m e n t equation i s

ie d r - p i p - r p ijj - dp i-g - ^ny - pb np - r b nj, * n ,

(4; O (5)

2 . 1

^^2 dT ^2 ^2 dT M2 2U

L i n e a r i s e d equations in ground effect

2U

Neglecting second o r d e r t e r m s in equations (3), (4) and (5), i, e. a s s u m e s m a l l amplitude m o t i o n s r e l a t i v e to wind a x e s , we get

d^ - ^Yv - p yp - *y^ - 0 C L dr ^2 2 dp - _ l g _ ^ . ^ ^ 1 ^ . i g d-d'" ^A iA l ^ d T - i E d£_ - np ^ . ^ 2 gnv + d ? IC dT ic i c dT t a n e I r P -iA - % r • i c «^CL + 2 iA ic f ^ = O

o

(6)

F u r t h e r m o r e , by definition p =_d^ and r = dip (7) dT dT

Combining (6) and (7) we get the u s u a l 3 x 3 c h a r a c t e r i s t i c stability d e t e r m i n a n t a s below, w h e r e Xs d / d r

1 ^

- ^ n ^ ic -^2 Iv iA (X-y^) !l' ic ic ic ,X -1 1./ ^o — ) - «' _£. lA - >-yp ^ CT ^^2 2 '^ lA X(X-'^r) ic -X, iEX + l r iA iA X ( l - y r ) . tang = 0 (8)

(8) i s identical to the s t a n d a r d a i r c r a f t l a t e r a l stability d e t e r m i n a n t except for the n ^ , 1^ and y^ t e r m s . It m u s t be s t r e s s e d that (1, n , y ) , v a r y n o n - l i n e a r l y with height above ground a s do all the o t h e r d e r i v a t i v e s a p p e a r i n g in (8), As mentioned in ref. 3, for the longitudinal c a s e s , we c a n investigate the stability of the l a t e r a l motion by examining the r o o t s of the quintic in X , obtained from (8). using v a l u e s of the d e r i v a t i v e s at specific heights above the ground,

w h e r e

The equation obtained from (8) is of the form A2 X ^ + Bg X'i + C2 X3 + Dg X^ + Eg X + Fg = O A2 = 1 - iE^ (9) lA ic B9, = - y v ( l - i E ) - Ip - n r - iE (np + Ir) lAic lA l A i c

(7)

3 -Ir + _M2nv ( 1 - y i l - i l yp)+ ^ 2 1 v , i E ( 1 - y r ) . y ic ^ iA ^2 T A ~ ic ^"2 Ttf" - M2_ ( ^ n ^ + 1^) iA ic D2 = y v ( ^ ( l r n p - l p n r ) . i ^ ( i E - ^ - l . ) . ^ v ^ _l£ + ïAic iA ic ic iA 4 - £ £ l t a n e + i E ( ^ + y , ^ ) + _ i ^ ( i ^ y p . i p y ^ ) j .^^2_l^^(i_ECL,^„e 2 iA 2 i^M2 i ^ ic 2 . j ^ ( i - y r ) + £ l ^ + y ( ^ - £ i j ^ ) + ^ n r 1^ _ ly n^ ic ^ 2 2 ic '^ 2 iA ic ic E2 = ^ ( ^ ; 2 ^ ( l 3 ^ ) l p C L t ^ „ e + ^ ( ^ ^ y ^ ) ) -ic iA ^^2 iA 2 iA 2 ^ I v n p C L . Mgn^ . l - y r . n r , CL^.y, _ P _ t a n e - _±_L'. ll)-^ ( _ + - ' 0 ) + iA ic 2 i c 2 ic 2 + ^ 2 y v ( l r n ^ - n ^ g i A i c 2 _ ^ l i l t a n e ( n v l ^ - l y n ^ ) (10) i A i c 2 3. O Stability c r i t e r i a

F o r positive stability we r e q u i r e the coefficients A2 F2 of equation (8) to be positive. This is a n e c e s s a r y but not sufficient condition for stability, The complete s e t of conditions a r e that the t e s t functions T i 5 a s defined in section 4, 0 of ref, 3, s h a l l be positive.

3,1 E x t r a c t i o n of d e r i v a t i v e s

The r o l l and yaw d e r i v a t i v e s , 1 J , UJ,^ y and ly, ny, yy r e s p e c t i v e l y , can be deduced from the r e s u l t s of ref. 4 for specific heights above ground. The r a t e of r o l l and r a t e of yaw d e r i v a t i v e s will for the p r e s e n t , have to be e s t i m a t e d using existing methods. It m a y be possible to obtain the r a t e of yaw d e r i v a t i v e s from t e s t s on the College of A e r o n a u t i c s Whirling A r m at a l a t e r date.

F o r a plain wing with constant sganwise loading, as m a y be expected for a wing with endplates, ref, 1 givesl^, Z ^ C L , and for constant spanwise d r a g I r "" - 3 C Q . The sideforce due to r a t e of yaw is a s s u m e d to be negligible for a p l a n a r wing. The contribution to y^. thus a r i s e s from the endplates. A s s u m i n g

(8)

that the lift c u r v e s l o p e s of the wing and the endplates is the s a m e then the o v e r a l l sideforce on endplates i s :

^Y = - PUQ r b Sg aj^ a g w h e r e suffix E r e f e r s to the endplates

, ' . 6Cy = _2 r b S E aq 0 ^ , 2 w h e r e S^ i s wing a r e a 2U^ S^ a ^ y = d( ^ ^ ) . (yr)E 2yr = Sw ^1 4 S E Sw °E ai «^E

and i s a function of height since a-^ is height dependent.

S i m i l a r l y the r a t e of r o l l d e r i v a t i v e s can be e s t i m a t e d and a r e a s follows! Ip -' - 0 . 2 ( a i ) c L ( a i ) c L = 0 _ np • - 0. 2 C L + 10, 'i'^D d a ° yp = 0

F o r a typical c a s e of a single wing with endplates at a height of ho = 2, 0 2 5 " the r e s u l t s of ref, 4 yield

C L = L 4 , a = 8 ° , (ai) _ = 0,213 and (ai) _ •, . = 0,097 p e r d e g r e e ^ L ~ 0 L " ' C D = . 0 1 5 5 , (dCD/doO) ^ 0 . C L tan = . 0 9 8 , S E = 0.04, a g = 2^ 2 SyV I r

¥

Iv

h

= = = = 0. -. -. -4, 467 091 135 18 n r = -,00517 np = - , 2 8 ny = +.0665 n , = - . 0 7 9 y r = -.0155 y p = 0 yv = 0 y^, = . 4 9 6 and

It should be noted that a t l a r g e r heights o r lower lift coefficients yy is negative and significajit in the c a l c u l a t i o n s ,

3, 2 The Coefficients of the quintic

In view of s o m e of the d e r i v a t i v e s being v e r y s m a l l , o r z e r o , in ground effect we can pick out the dominant t e r m s and a p p r o x i m a t e the r e l a t i o n s (10) to:

A2 = 1 B2 = -yv - i £

iA

^ 2 = y v l p - i r np + ' ^ n y - 1^ ^^2 and 1^ i s the l a r g e s t t e r m iA i A i c ic iA

(9)

5

-°2 =Ay^^<<>"-tlil ^^^^^^

iA ^A (11) E2 = - ^ 2 ^ n y l ^ - l r y y n ^ ^ 2 i A i c ^A ^c F , = - ^ 2 ^ C L ny U

—*-^ iiir

AU the coefficients A2 F2 a r e positive.

3. 3 Case of a single wing with endplates

The c h a r a c t e r i s t i c equation for this c a s e , using the a p p r o x i m a t e values of the coefficients a s given by (11), is

X^ 4 .09lX^ + 4,18>-^ + .1615^2^^ + . 278^2^+ .0273^^2 = 0 (12a)

iA I A ic ic

In view of the m a s s concentration at the wingtips due to the end-plates it is r e a s o n a b l e to a s s u m e that i^. s ic = 10 say, and n 2 = 10 say, then (12a) b e c o m e s

X^ + , 0 0 9 ^ ^ + 4. 18^^ + .1615>-^ + . 2 7 8 ^ . 0 2 7 3 = 0 (12b)

The solutions of polynomial equations of the above form have been investigated in ref. 5, Since [C^ | / ' ^ | B 2 x D 2 | then according to ref, 5 Cg is pivotal and the equation above has as an approximate factor (X^ +oX + ]D) where a = B2, /3 = C2. Defining V5 = F2 = . 0273 = , 00654 ^ 4,18 V4 = E2 - 0V5 = , 278 - , 009 (, 00654) = . 0665 0385 p 4,18 Vg = D2 - 0V4 - V5 = , 1615 - , 009 (. 0665) - . 00654 ^ 4.18 V2 s C2 - aVg - V4 = 4.18 - . 009(. 0385) - . 0665 = ^ gss

^ ~ iTTs

e J = B 2 - a V 2 - V 3 = . 009 - . 009 (, 985) - , 0 3 8 5 = - , 0 3 8 4 So Ï 1-V2 = 1 - , 985 = ,015 . ' . factors of (12b) a r e (X^+, 009X+4.18)(,985X^+. 0 3 8 5 X \ 0665X+. 00654)-.0384X^+. 015X^ = 0 ignore t h e s e for an a p p r o x i m a t e solution,

(10)

Hence r o o t s of q u a d r a t i c factor a r e

X, „= - , 0 0 4 5 - 2, 045i

i, Z

and the r o o t s of the cubic a r e

X„ = - , 0 6 8 3 , X4 5= +0.0146 t 0,263 i ,

It can be s e e n thus that one p a i r of complex r o o t s c o r r e s p o n d s to a damped oscillation (in r o l l ) whilst the o t h e r p a i r with a positive r e a l p a r t c o r r e s p o n d s to an undamped oscillation (in yaw). The negative r e a l root

c o r r e s p o n d s to positive s p i r a l stability. All motions a r e for s m a l l angles only.

4, 0 Rolling with yawing s u p p r e s s e d

Since a GEW will in g e n e r a l , be flying o v e r a flat t e r r a i n o r over c a l m w a t e r it would be of i n t e r e s t to e s t a b l i s h its r e s p o n s e to a v a r i a t i o n in the ground (or w a t e r ) s h a p e . In view of the waves o c c u r r i n g on the w a t e r surface we s h a l l take a p e r i o d i c change in the bank angle of the s u r f a c e , r e l a t i v e to the h o r i z o n t a l , a s the forcing function F ( T )

The r o l l equation i s

^ - ^ P = J^ E^*^) (13) dT iA iA

If the bank angle of the wing r e l a t i v e to the horizontal, i s 4. and that of the ground is ^, then

F ( T ) = ( ^ ^ ) 1 ^ (14) Hence (1) b e c o m e s dT iA iA • • • Defining ^ = dp - Ip è dT iA ^ 0 S i n WT - <^1* ^^2^ -^1(^^2 1 A iA we finally get _ d ^ - ^ p - «^1,^ _ ^ = -Aol<^. Sin WT ^ (15) dT I A iA iA T h i s c a n be r e w r i t t e n in t e r m s of 4 a s

V-_lp 'i-J^i^ = - A^ jSo ^Sin WT iA iA iA

G e n e r a l i s i n g

V+ 2k(^*+ n^4 = ^o n^Sin wr (16)

(11)

7

-Equation (16) i s the s t a n d a r d equation for a s p r i n g - m a s s s y s t e m , with v i s c o u s damping, subjected to a forcing function, and its solution is well known, conditions w h e r e Putting we get 4 = g n n ^ S i n ( w T -& ) -kT rj(n2-w2)^+ 4 k 2 w 2 ' -1 2 2 / 2 2^ e = tan 2kw/(n -w ) and x = /yn -k

e ( A Cos XT + B Sin XT )

(18) K = n 2 / ^(n^ 2>^, .._2__-2.

w ) + 4k w with the boundary

(i) at T = 0, (^ = 0 (ii) T=0, ' ^ - = 0 A = K^oSinG B = KjSoSine (w +k -x ) 2kx (19) Hence 4 = KSin(wT-6 ) + K S i n 6 e " ^ ( C o s x T + (w^+k - x ^ ) S i n x T ) (20) ^o 2kx

Equation (20) i n d i c a t e s that the motion of the GEW will be always be o s c i l l a t o r y asympoting to 4 = K S i n ( w T - b). Since Ip <^< 1^ the damping is low

" ^ 2 and in the limiting c a s e of Ip ^ 0, k _ ^ 0 and '^ = n

'-0 n -w Resonance o c c u r s when w = n

i. e, when w = ^A

(12)

8

-5,0 Conclusions

The full l a t e r a l equations of motion of a GEW have been developed and it h a s been shown that, in g e n e r a l , both rolling and yawing oscillations will o c c u r a s a r e s u l t of a l a t e r a l change of ground shape, o r a l a t e r a l displacement, Whether t h e s e o s c i l l a t i o n s a r e damped o r not depends upon the height and incidence of the craft. Since the a e r o d y n a m i c c h a r a c t e r i s t i c s a r e n o n - l i n e a r with height, only the rolling (or yawing) motion at a fixed height h a s been c o n s i d e r e d in o r d e r to u t i l i s e the l o c a l i s e d v a l u e s of the stability d e r i v a t i v e s obtained from wind-tunnel t e s t s .

The rolling motion of the single wing in ground effect is o s c i l l a t o r y and of the s a m e frequency a s the forcing function (waves over w a t e r e t c . ) and the amplitude r a t i o depends upon the v a l u e s of Ip and 1^ . N e a r the ground Ip <[< l,f and the neglect of the damping t e r m in the r o l l equation yields the amplitude r a t i o a s being dependent on

, 2 l / ( l + w i A )

^ 1,^

In p r a c t i c e a GEW will probably be in the form of a tandem wing and consequently the d e r i v a t i v e s used in the p r e s e n t analysis will differ, r e s u l t i n g in a different r e s p o n s e , A fuller study using an analogue c o m p u t e r and the n o n - l i n e a r a e r o d y n a m i c c h a r a c t e r i s t i c s of the GEW would probably be beneficial once the basic configuration of the craft had been fixed.

in ground effect.

One significant fact e m e r g i n g is the n e c e s s i t y to evaluate Ip s a t i s f a c t o r i l y

R e f e r e n c e s

1. B a b i s t e r ,

Bryant and Gates

A i r c r a f t stability and control, P e r g a m o n P r e s s , 1961

Nomenclature for stability coefficients. A. R. C. R. & M. 1801 1937,

P . E, K u m a r , On the longitudinal dynamic stability of a G. E. W.

CoA r e p o r t a e r c 202, 1968.

4, P . E, K u m a r .

Hopkin

An e x p e r i m e n t a l investigation of the a e r o -dynamic c h a r a c t e r i s t i c s of wings, with and without endplates, in ground effect.

C o A r e p o r t a e r o 201, 1968.

Routine computing methods for stability and r e s p o n s e investigations on l i n e a r s y s t e m s . R. & M, 2392, 1950.

Cytaty

Powiązane dokumenty

Słowa kluczowe: hodowla, jęczmień, mączniak prawdziwy, odporność Mlo, źródła odporności Since the years 1990–2000 Mlo resistance of barley (Hordeum vulgare L.) has

Er ist nur dann möglich, wenn die Funktion unter dem Integral gleich Null ist, da im entgegengesetzten Fall eine so geringe Größe t gewählt werden kann, daß im Bereich von O bis t

Het gas kan gemakkelijk vloeibaar gemaakt worden door afkoelen en samenpersen. Reeds in sterke verdunning werkt het dodelijk op alle insecten, terwijl de ermee

Overwog e n moet worden reeas onmiddellijk het gehele verval Htotaal te benut- ten door ~én centrale bij D &#34; (aanne m ende dat tussen A en D geer, zijrivieren in de ho o

W dziedzinie: nauka ogłaszają się szkoły, za- kłady, biura nauczycieli, a także osoby prywatne, gotowe przyjąć uczniów na praktykę.. Przedstawiciele danego

[r]

[r]

mieszkań chronionych (hosteli), ośrodków rehabilitacji i pomocy społecznej czy środowiskowych domów samopomocy. Także w tych badaniach istotną rolę w rozkładach