• Nie Znaleziono Wyników

On some generalization of α-convex functions

N/A
N/A
Protected

Academic year: 2021

Share "On some generalization of α-convex functions"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L 0 D 2 I E N S I S FOLIA MATHEMATICA 1, 1984

' /

J a nu a» Zyakoweki

ON SOME GENERALIZATION OF a-CONVEX FUNCTIONS

Let a «£ [p,ao) and 0 e (0,13 be any numbers. Let Ma (8) de-note the family of all functions f holomorphic in the unit disc U, such that z f’(z) f(z) j0 for z e U, and satisfying the condi-tion

larg ((1 - a ) * f ^ ♦ a(i + f r ÿ ÿ ) ) I < p f, z € u.

Certain relatibns between functions from the particular familict- Ma (0) are obtained; also, some functional defined on M (fl),

depend-ing on the coefficients of the expansion of the function in a Tay-lor series, is estimated.

1. In the present paper the notions of a set, a family, and ft class of functions will be regarded as eguivalent. By C, U, °o we shall denote the complex plane, the disc {z e C : Izl < 1} and the ring (z e

c

: O < |zI < 1}, respectively.

Let a e [O,oo), 0 « (O, 1] be fixed numbers. One knows the families S*(B), ([1], [8]), and Mq , ([6]), of function; ho-lomorphic in the disc U, defined, respectively, by the condi-tions

" I . '“ 9 - f f î P 1 < ‘ I ' * * " '

larg J(a, z ; f)I < f , z e u, z"’ f ( z ) f ' ( z ) * o , where

(2)

(2) J (a, z ; f) - (1 - a) + a(1 + , * e U.

Functions of these classes are called, respectively, strongly starlike functions of order fl and a-convex ones.

Let Ma (fl), a e [ 0 , oo), fl e (0, 1] stand for the family of all functions f, f(0) * f '(0) - 1 « 0, holomorphic in U, such that z- 1 f'(z) f(z) ♦ 0 for z e UQ , and satisfying the condi-tion

larg J (a, z ; f)I < fl z e U.

Note that this condition is equivalent to the fact that J (a,

a

z ; f) « p (z) for some Caratheodory functions, i.e., for a function p holomorphic in U, p(0) * 1 and Re p(z) > 0 for z e u.

2. It is obvious that MQ (fl) = S*(fl). Moreover, the following, theorem takes place.

Theorem I. For any fixed a > 0 and fl e (0,1], each func-tion of the family Ma (fl) is a strongly starlike function of or-der fl.

P r o o f . For a ■ 0, the theorem is self-evident. So, let us assume that a > 0. Let f be any fixed function of the fa-mily Ma (fl). Put r 1 1 - 1 (3) q(z) = \ f(z) J , z e u. I . 1 fl .

where by (z f'(z) f <z)) we mean that unique branch of the power which, for z * 0, takes the value 1.

The function q is meromorphic in D, q(0) ■ 0, and q(z) + 4= -1. We shall show that lq(z)l < q for z e u. To this effect, suppose that there exists a point £ e U for which

max Iq(z)I ■ lq(?) I * 1. I z K l t l

(3)

** lq(£), <[3]# lemma 1). Consequently, taking account of (2) and (3), we shall obtain

IZ

J<a, C J f) “ + 2afll----q(5 " 1 - q (£)

Denote A fl ■ {w e C : larg w| < B }. The function q is holomorphic in the disc IzI < I SI, and lq(z)l < 1 in this disc. So, the function <1 + q(z)) (1 - q(z) ) ~ 1 transforms the disc 121 < l£l into the half-plane Re w > 0. In consequence, the values of the function

1

[ ( 1 + q (z) ) ( 1 - q(z)) 1] for Izl < l£|

belong to At the same time, at the point z = £, it takes the values lying on the boundary of the set Since 2 a B l > > O, therefore J(a, £ { f) $ Hence we get a contradiction since f e Ma (B). Consequently, lq(z)| < 1 for all z e U.

t

Finally, from (3) we have chat the function f satisfies condition (1), which proves that f is a strongly starlike func-tion of order B, q.e.d.

The above theorem will enable us to prove the following

Theorem 2. If, for any fixed B 6 (0,1], 0 < a 1 < a 2> then Ma ^(B) c Ma (B).

P r o o f . Suppose that there exist a.!, a 2 , o < a1 < a,, and a function f of the family M (B), which does not belong

2

to M (B). Consequently, for every z e U, J(a~, z : f) e a „,

•f * n

and there exists a point £ e u for which J (<*.,,£ ; f) * a6 . Put w1 = J (a2' 5 J f)» w2 = J^a i' S l f) and w * ~a iw i f + a2w 2 . It is evident that w1 e & B , w2 * and

(4)

It follows from theorem 1 that £ f“1(£)f '(£) « A fl. Consequently, in view of a2 - a1 > 0, the point w e A fl. Since °2W2 - w + + a1w1 and > 0 , therefore * 2 e A g , which contradicts our supposition that w 2 * A fl. Thus, the th eorem has been proved.

Note that, if 0 < fl2 < 6 1 < 1, then Afl_^ c A fl . Consequ-ently, for any fixed a > 0, Ma (B2) c Ma (B1>. So, the following corollary takes place.

Corollary. If 0 < a } < a 2 and 0 < Bj < B1 < 1, then

M (B.) c M (B1 ).

a2 2 i

It can be shown, ([7]), that a function f holomorphic in U belongs to the class MQ (B) if and only if 'a n a o n j . y n ' there exists a Cara-theodory function p such that

z

f (z) « z exp J (pfl(5> - 1)£ 1 d£ 0

In particular, the function

f*(z) - z exp j " 1 S ' 1 d£, IE! - 1

belongs to the family Mo (0). At the same time, for z * -Z g, C < g < 1,

\

J(a, - tS ; f«) = + 2a B j. •

*• 1 - £

/ Hence it appears that:

i lim J (a, - Zg ; f# ) = = -oo,

s

-which neans that f# does not belong to any family for a > 0 and 0 < s ( 1. This example shows that is a fa-mily essentially wider than < u > 0.

(5)

3. Our further considerations will concern mutual relations *een func

shall prove

between functions of the classes Ma (fl), a > 0, and We

Leona. For any fixed a > 0, fie (o,1] and every function f e Ma (fl), the function

V ” ■ £ “ ’ • (t t î t(z )”)’'

belong to the class Mq (8) for all y, 0 < y < a. P r o o f . Let f c M (fl), a > 0. Then

-- — _ s (1 - y ) - -i. -i-?J + Y (1 + - * '.ii) ) = J (v 7 • f )

F^(Z) Y f {2) + £ (z) 1 l t } .

Since O < y ^ a, it follows from Theorem 2 that f e M ^ (ft ) , i.e., J(y, z ; f) » p fl(z) for some Caratheodory function p. Con-sequently, F^ belongs to Mo <0), q.e.d.

The following theorem is also true.

Theorem 3. For any fixed fie (0,1] and for every function F e M q (fl), the function

r z 1 -,-1

. - [ i f ,5... - 1 a > 0, <4) f(z) j Fa (5) g" 1

0

being the solution to the equation

(5) F(z) * f(z) •

with the initial condition f(0) = 0, belongs to the family MQ (B).

P r o o f . Since F e MQ (fl), it is a univalent and,star like function. From this fact and from the well-known result ([5], theorem 5) we shall obtain that, for the given function F <= the solution f of the form (4) of equation (5) is a function holomorphic in U,

(6)

Since

z F 1 (z)F'(z) ■ p B (z)

for some Caratheodory function p, therefore

J (a, z j f) * - P 6 (2>

So, indeed, the function f e M (fi).

4. We shall now deal wi th the problem of estimation of coef-ficients in the family Ma (fi) and, in particular, with the Go- luzin functional. We Bhall prove

Theorem 4. If a function

belongs to the family Ma (fl), then, for any fixed p c C, 00

f(z) ■ z + a zn n=2

fi

when Ip - c(a)| < r(a, 6)

1 + 2 a

2 (6) la3 - pa2 l < ■

I

A

1 + 2 a 1vl when Ip - c(a)| > r(a, fi)

where

(1 + a)

and

Equality in estimate (6) holds, respectively, for functions be-ing the solution to the equations

(7)

2 Q J(a, z | f) - ' I U = 1* P r o o f . Let 00 f(z) - Z + ¿l! a„zn n=2 n *

be any function of the family Ma (6).

Then j

j(a, Z I f) - [ < 1 + q(z) ) ( 1 - q(z))-Tf for some function

q(z) - 5Z c zn

n=1 n '

holomorphic in U, |q(z)| < 1. In consequence, comparing the 2

coefficients and determining the functional - pa2 for any fix-ed p e c , we shall get that

a 3 ~ P a2* ” 1 + 20

B[a2 + 8a + 3 - 4u(1 + 2a)] 2 ¡ „ — r: 1 7 2 — i— c i < c 2 +

¿ (1 + a)

4 1 + 2a ^ c 2* +

Since, for the function q, the estimates lc^| ^ 1 and Ic^l < < 1 - *c l* 2 are true, therefore

l a 3 " P 6 ! 1 < T ' + 2 a

Í1 + (lvl

-

1

) I c -| !

2

] < r l ~ 2 S m a x f 1 ' , u l } •

It can ea sil y be veri fied that Ivl < 1 if and only, if

Ip - c(a)I < r(a, B ) .

In consequence,, we shall get estimate (6).

Fro m Theorem 4 one can obtain estimates of la2 l and la^l in the class Ma (S) by taking p = 0 and consi dering the limtc case p - oo , respectively. These estimates, with particular

(8)

values of the parameters a and fl, yield the already-known results in the families MQ (Q) ([2]), Ma (1), ([4], [9]).

REFERENCES

[ I ] D. A. B r a n n a n , W. E. K i r w a n, On some classes of bounded univalent functions, J. London Math. Soc., 1 (1969), 431-443.

[2] D. A. B r a n n a n , J. C 1 u n i e, W. E. K i r w a n, Coefficient estimates for a class of starlike functions, Canad. J. Math., 22 (1970), 476-485.

[3] L. S. J a c k, Functions starlike and convex of order a, J. London Math. Soc., 2 (1971 ), 469-474.

[4] P. K. K u l s h r e s t h a , Coefficient problem tor a class of Noca- nu-BazileviS functions, Ann. Polon. Math., XXXI (1976), 291-299. t 5 ] S. S. M i I 1 e r, P. T. M o c a n u, M. 0. R e a d «, Bazilevi

functions and generalized convexity. Rev. Rouo. Math. Pure* at Appl., XIX, 2 (1974), 213-224.

[6] P. X. M o c a n u , Une propriété de convexité généralisée dans la théorie de la représentation conforme, Math. Cluj, 11, 34 (1969), 127- -133.

[7] J. S t a n k i e w i c z , Some extremal problems for the class S Q ,

Ann. Univ. Mariae Curie-Sklodowska, Sec. A, 25 (1971), 101-107.

[ 8 ] J. S t a n k i e w i c z , Quelques problèmes extrémaux dans lea clas-ses des fonctions a-angulai remente étoilées, Ann. Univ. Mariae Curie- -Sklodowska, Sec. A, 20 (1966), 59-75.

[9j J. S z y n a l , Some remarks on coefficients inequality for a-con-’ vex functions, Bull. Acad. Polon. Sci., Ser. Math. Astronoa. Phys., 20, 11 (1972), 917-919.

Institute of Mathematics University of I6di

Janusz Zyskowskl

PEUNYM U0G0LNIENIU a-WYPUKtYCH FUNKCJI

j

i

) i 3 f- (0,1] będą ustalonymi liczbami. Przez i/it: iunkcji f, holomorficznych w kole U « { z e

(9)

€ C : I sc I < 1} , takich, że z łf’(z)f(z) * 0 dla z « U^, spełniających wa-runek

, larg {(1 - a) *.a(1 ♦ < flf, z e u.

W przedstawionej pracy podane s« pewne związki między funkcjami z po-szczególnych rodzin M a (B). Ponadto oszacowany jest pewien funkcjonał okre-ślony na M a (B) zależny od współczynników rozwinięcia funkcji w szereg Tay-lora.

Cytaty

Powiązane dokumenty

При соответственном переходе к пределу в формулах (8) получены аналогичные оценки (17) для коэффициентов d„, dx,

E., Ob odnorn sluchae integriruemosti v kvadraturach uravnenya Lyovnera-Kufareva, in Russian, On a certain Integrability in Quadratures of Lovner- -Kufarev Equations, Math.

Some authors (see eg. [4], [7], [8]) assumed that the class B is identical with the class L of normalized close-to-convex functions introduced independently and in a

It would not be meaningful, however, to distinguish the class of Lu Qi-Keng domains without giving an example of bounded domain which does not belong to this class.. To this aim

W pracy xnaietiono dokładne ostacowanie od dołu funkcjonału Re prawie wypukłych i wyznaczono promień a-gwiazdristcśei tej klasy. /(-’) w klasie

On the Existence of Some Strictly Convex Functionals O istnieniu pewnych funkcjonałów ściśle wypukłych.. О существовании некоторых строго

The region D(r, k) of variability oj log/' (z) for a fixed z, zeK,, and f ranging over the class Lk of k-symmetric close-to-convex functions is a closed, convex domain symmetric

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,