• Nie Znaleziono Wyników

Experiment work on merchant ship models during the war

N/A
N/A
Protected

Academic year: 2021

Share "Experiment work on merchant ship models during the war"

Copied!
54
0
0

Pełen tekst

(1)

EXPERIMENT WORK.

ON MERCHANT SlIP MODELS

DURING THE. WAR

BY

A. EMERSON, MSc., Associate Member

and N. A WITNEY

A paper read before the North East. Coast Institution of

Engineers and Shipbuilders in Newcastle upon Tyne

on the 19th March, 1948, with the discussion and

correspondence upon it, and the Authors' reply thereto

(Excerpt from the Institution Transactions, Vol. 64.)

- WCAD1 UPON TYNE

y ThE NORTH EAST . COAST INSTITUTION

OF ENGINEERS AND SHIPBUILDERS, BOLBEC HALL

LONDON

B -& P N EON, LIMITED 57,

HAYMETI SW I

1948

(2)

THE INST1T1T1ON IS NOT' RESPONSIBLE: FORT THE.

; L

STATEMENTS MADE, NOR FOR THE. OPINIONS EXPRESSED, ,

J

'-IN- -THIS" PAPER; -DISCUSSION AND AUTHORS'--- REPLY

- . :'L.

:-:

..V:;5_ J_

.y.ç 'c'

-ERRATA

p. 306, Fig. 3.--" 2346 B" should read ' 2436 B." p. .312, Table 1(f)." 2732 A" should read "2372 A."

P.317, Table 2(b)." with clubfooting "should read" without clubfooting."

s.'.

:

-\c \

()

t r

ç-,

MADE AND PRINTED IN GREAT BRITAIN

(7 .'-I' 1fl' fN

/rj:,r:

.: 2;.i

TT

(LI

(3)

EXPERIMENT WORK ON MERCHANT SHIP

MODELS

DURING THE WAR

By A. EMERSON, M.Sc., Member, and N. A. WITNEY

(Communication from the National Physical Laboratory)

19th March, 1947

SYN0PSIS.Descriptions of hulls and the results of model resistance and

propulsion tests on single-screw cargo vessels and coasters are given in the first

part of the paper.

The designs represent a considerable part of the range of

single-screw ships.

The results have been used to illustrate an analysis of the

factors affecting the smooth-waler performance, and in particular of the choice

between "hollow" and" convex" bows.

Individual results are briefly discussed.

Introduction

DURING

the war, model experiments with merchant-ship forms

were made at Ship Division, The National Physical Laboratory,

to the order of the Admiralty.

Permission has been given by the

Director of Scientific Research, Admiralty, to publish any results of

general interest.

By confining the selection to normal single-screw

ships it has been possible, with much recalculation and compression, to

present and analyse these data in a single paper.

Other papers(1 have

already stated the operating conditions affecting the choice of speed and

dimensions, so the model data is given without explanation of dimensions.

A limited number of additional resistance experiments have been made

to connect the individual results.

The model work during the war was carried out to the instructions of the

Director of Merchant Building, Admiralty; the designs

provide valuable data

because the standard is high; it should be recorded that there was very close

and effective liaison between the Tank and the successive Directors, Sir Amos

L. Ayre and Mr. McArthur Morison through Mr. J.

Lenaghan the Assistant Director.

Presentation of Results

The models have been divided into two groups, cargo

vessels and coasters,

having ratios of length to breadth greater and less than 68

respectively.

In

each group the ships are given in order of fullness.

Hull shapes are defined by tables of offsets which are expressed as percentages

of the half beam on water-lines corresponding to 30 ft., 24 ft., 18 ft., 12 ft.,

6 ft., and 3 ft. for the standard 400 feet b.p.

length ship.

The bottom line

inthe table gives the tangent point on the rise of floor. Figures given in brackets are bow and stem heights. The sections are at equal spacing between the after

perpendicular (section 0) and the fore perpendicular (section 10). The sections are

drawn in Figs. 1(a)I (h) each in the same size of beam-draught rectangle. Thus

each body plan has the same depth scale, but the

beam scale varies; the shape

20

(4)

290

xpan-r woiuc

ON MERCHANT SHIP MODELS DIJRING THE WAR

of the sections is "true" only for length to breadth ratio 727;

the coaster

sections should be much wider and have a more pronounced outward

slope.

The ship moulded dimensions, length, breadth, rise of floor, bilge radius and

draughts (as tested) are shown on the body plans.

To avoid overcrowding of

the small-scale drawings a few of the modifications have not been shown.

The non-dimensional co-eflicients, 400 ft. ship dimensions andthe sectional area

ordinates are given in Tables 2 (a)-2 (d) at draughts corresponding to 27 ft. and 24 ft.

for the 400-ft. ship.

The area ordinates are expressed as fractions of the

midship rectangle (breadth x draught = 10-0), the midship ordinate is 10 x

midship area co-efficient and the area under the ordinate

curve represents the displaced volume and gives the displacement co-efficient instead of the prismatic

co-efficient. The longitudinal centre of buoyancy has been calculated excluding

the cruiser stern. The wetted surface used to calculate the Froude skin

constant

omits the effect of slope to the centre-line; it is

a surface obtained by

expansion in the transverse direction only.

The results of resistance experiments are given

in

Table 3 as ship (c) and

effective horse-powers.

The () value is derived from the model experiments

by the use of Froude skin-friction co-efficients. Effective horse-power is that

required to tow the naked hull with a clean hard surface in smooth salt

water.

(C)

__!

x 29377 and e.h.p. = (C)2/3

2

V3

4271

where R = resistance in tons

= ship displacement in tons

V = ship speed in knots

These results are also given in Table 4 as 400-ft. ship

© values.

They

have been lifted from the ship (C) curve at "corresponding

speeds ", i.e.

at the same ratio of (speed)2 to length, and a skin-friction correction

applied.

This correction stated in the table is a mean value, there being a small variation with speed.

In Tables 5 (a)-5 (b) interpolated values of 400-ft. ship

© are given at 24 ft.

or 27 ft. draught.

The principal dimensions of the propellers used in self-propulsion tests are

stated in Table 6 (b). Those selected are diameter, pitch over the outer half of the blade, boss diameter, blade-area and blade-thickness fraction (thickness

at

shaft axis/diameter). The position of the propeller is defined by the intersection of the rake line with the shaft axis, and the clearances in the aperture are specified. Results of screw experiments given in Table 6 (a) are Froude wake fractionw

and thrust deduction fraction t open-screw efficiency

and quasi-propulsive co-efficient, q.p.c.

The trial shaft horse-power and corresponding revolutions

per minute are given in each case. These are estimates of the ship figures under ideal trial conditions; the shaft horse-power which is the

power required at the

propeller for these conditions is equal to

Effective Horse-power ± 8%

Quasi-propulsive Co-efficient

Before discussing the results there are one or two comments to make on the

method of presentation of the data.

The definition of the hulls has been reduced to occupyas little space as possible.

(This economy of space applies throughout).

By calculating areas and

co-efficients on 24 ft. and 27 ft. draughts the variety of models has been

reduced

to a comparable basis.

Since the results published will be used for design

purposes the displacement and the displacement co-efficient are the basic

(5)

EXPERIMENT WORK ON MERCHANT SHIP MODELS DURING THE WAR 291

factors and the midship section and prismatic co-efficients the derived factors.

In considering critical slopes of area curves the apparent differences due to

change in midship section may be misleading.

For these reasons the area

curve ordinates have been stated in terms of the midship rectangle rather than

the midship area.

To describe each propeller accurately requires a dimensioned large-scale

drawing.

The alternative of making an approximate calculation of radial

distribution of thrust on each propeller was discarded because the use of such

information would not justify the work involved. So the information is simply

a statement that with a propeller of given dimensions certain results were

obtained. Any departure from normal practice is specified; otherwise a Troost

4-blade screw of the given dimensions would give the results obtained within

1 or 2 per cent.

Discussion of Resistance Results

The hulls tested cover a wide range of single-screw cargo ships of slow and

medium speed. They are used to illustrate general principles of design and not as subjects for individual discussion.

The speeds and dimensions quoted are

reduced to the standard ship of 400 feet b.p. length.

Taking first the cargo vessels of normal proportions, length to breadth

ratio 7l to 7-6 (or beam 52 ft. to 57 ft.) there is a division into two types

of hull: the convex or round bow, and the hollow bow, for block co-fficients

about 070.

The lowest CC) values from 10 to 14 knots obtained with a convex bow,

are obtained when the fore-body block co-efficient is about 076. The optimum

after-body block co-efficient varies from 066, with a large-diameter propeller

(i.e. a shallow cruiser stern) and relatively wide beam, to 069 with a deeply

immersed cruiser stern or narrow beam.

(This after-body fullness depends

also on the extent to which the sections are made Vee shape). The shape of

sections forward depends to some extent on the speed but the maximum slope

and maximum curvature of the water-lines is near the bow and the fore body is

designed to distribute the flow evenly over the bottom and sides. A cut-away

bow contour reduces the resistance appreciably and is very necessary with Vee

sections.

The minimum © value is obtained at 28 ft. to 30 ft. draught and

increases as the draught is reduced. This form has a very low resistance at

10 knots hut because of the large angle of entrance there is a rapid increase in

(C) with speed'.

The form of the hollow bow depends on speeds; as the designed speed is

reduced from say 17 knots the water-line entrance angle increases, and the point

of inflexion of the water-lines, or the position of maximum slope of the area curve,

moves forward.

This process continues until the designed speed is 14 knots

when the best result is obtained with a half angle of entrance of 14k deg. and the

maximum area curve slope is at 8k station or 12k per cent. length abaft the

fore perpendicular.

(The bow wave has a flat crest from 9k to 9k station, a

hollow at station 8 and the next crest near station 7).

With this bow the rise

in

from 10 to 14 knots is small; if the entrance angle is reduced below

J45 deg. the rise in (c) is reduced but the whole (C) curve is raised

unless the fore body is also made finer.

The optimum fore-body block

coefficient is about 070; for finer bows the maximum slope is held at 8}

station but reduced in magnitude with the entrance angle. With increased

fullness up to bpp = 072 a satisfactory result is obtained if the maximum slope

is moved forward to station 9 and the entrance angle increased to 155 deg.

or by increasing the maximum slope at 8* station.

Increasing the angle of

entrance, and reducing the maximum slope; excessive increase of the maximum slope; and moving the maximum slope too far forward, all cause the resistance

(6)

292 EXPERIMENT WORK ON MERCHANTSHIP MODELS DURING THE WAR

type of bow designed for 14 knots is also the optimum hollow bow for lower

speeds and can be used to determine the useful ranges of hollow and convex

bows.

For speeds higher than 14 knots the entrance angleshould be reduced

and the maximum slope reduced and moved aft; but if the bow has to be full,

increased angle of entrance appears to cause least increase in resistance. The actual distribution of flow round a hollow bow form is not known, but the flow

to the bottom appears to be "starved "; the after-body block co-efficient needs

to be 002 less than for the cOnvex bow. The variation in (C) with draught

is small, particularly if the angle of entrance is small. When the fore body is

tOO full the lowest (C) value thay be obtained at light draught--21 feet or less. The choice between convex and hollow bows for minimum resistance is, there-fore, a matter of speed, fullness and draught and is illustrated in Figs:2 (a)(2 b).

This shows (C) values plotted to a base of block coefficient at 24 feet draught

and minimum curves at 1.4 knots drawn for convex and hollow bow forms.

The area curve differences or slopes are also shown for the two types and the

approxmiate variation in C with draught is given.

The optimum convex

bow form has a block coe cient of O72 (bFB = 076, b.

= 068) centre

of buoyancy 1

to 2 per cent. forward of midships. The optimum hollow bow

block coefficient is about O68

(FB

= 070 AB

0 66) centre of buoyancy

nearly I per cent. forward.

Briefly at 1 3?i knots (V/fj, = 0675) and block coefficient 0O the convex

bow is chosen if the draught is deep (greater than 25 feet) the designed centre of buoyancy well forward or if the screw diameter is large, and if the beam is wide.

The hollowbow is chosen for .lighter draught, narrow beams and for centre of

buoyancy positions near midships or with a deep cruiser stern

-Perhaps the simplest way of extending the discustion to cOasters is through

consideration of the results obtained with four of the additional models

-2751 (= 2202C) a. normal h011ow bow fOrm, 55 ft. beam l4 deg. half angle of

entrance and the similar model on a wider 64 7 ft beam (2767A), 2751G a

convex bow model of 55 ft beam designed to give a reasonably low resistance

with a convex bow appreciably more than the optimum, and the 64 7 ft beam

similar form 2767C Assume that at 10 knots the resistance due to wave making

is small and that the nse in

between 10 and 14 knots with the addition

of 0 025 for the fall m skin friction resistance represents the wave making

resistance © at 14 knots.

At 10 knbts the convex bow (C) is

about

002 less than the hollow bow, of which 001 may be attributed to reduced

wetted surface co-efficient (s) and the other half to better distribution of flow

round the form or reduction in stream-line acceleration or reduction in eddy

making.

The wave-making resistaiice (C) at 14 knots are: convex bow

(0110 + 0025)-= 0.i35 and.hollOw bOw (Or035 + 0025)=O060. For

the wide beam 67 ft., the low spçed ©, is 0:05 -lessfor the convex bow

than for the hollow bow, of which 001 is due to reduced surface; the

wave-resistance (c) values are respectively (0 105 + 0025)

0 130 and (0055

+ 0O25) =0 080.

1fthe © values are converted to resistance values it

will be seen that-the wave-making resistance of-the hollow bow increases ata rate

greater thati beam2 and of thd convex bow at approximately. beam.

This.

example is 'based on differences and the experimental accuracy does not 'allow

accurate quantitative deductions but the general result is believed to 'be. true

and may be' partially explained :in the following manner. The convex bow

form gives -a well-distributed flow over the hull; when the beam is increased

there is a reduction in (C) withthe wetted surface co-efficient () and

any-other changes in low speed resistance (C) cancel out

At speeds up to 14

(7)

EXPERIMENT WORK ON MERCS1ANT-SiUP MODELS DURING THE WAR 293

of curvature of the lines does not increase ssmply as a function of the angle of

entrance.

This reduction factor increases with the beam so that the increase

in resistance with beam is comparatively smalL With the hollow bow form it

is known that departure from l4deg. half angle of entrance can seriously

increase the low-speed resistance and that for small changes in beam, or possibly

beam/draught ratio, the optimum angle decreases with increased beam

So

that when 2751 is made wider, 55 ft. to 647 ft. and the angle increases from

14 deg. to 17 deg. the increase in © may be due tO the unsuitable form Or

to increased eddy making.*

In any case the effect of increased beam at any speed is to move the dividing line between hollow and round bows to lower block coefficients. The benefits

of the convex bow aie obtained with a forebody block ëoefficient less than

O76 and the h011ow bow requires a fine bow and still finer stern than for nortnàl proportions

The main problem for the coasters is to obtain an after body

with low resistance and a high propulsive efficiency The after body is generally

too fülland the

remedies " for lOw resistancemaking thesections Vee shape,

dropping the cruiser stern and cramping the aperture and snubbing the stem

linesall militate against good screw performance.

Because of the difference in proportions the coasters are difficult to compare but they show quite clearly

the :effect of beam, size of propeller and fullness of after body in the ©

values at all speeds.

Perhaps the effect of cutting away the bow forefoot

should again be remarked.

Discussion of Individual Results

The models of the 15-knot cargo liners and tankers, 2087; 211 8A & B and

2202A & B show the variatiOn of result obtained by altering the entrance angle and maximum area curve slopes. The result with 2202C has been extended in the 2751 models. 2751A is a re-cast of 2202C; 2751B has the maximum slope increased and in 275 ID it isagain increased. The degree to which this process

can be carried without increased (C) is somewhere between 275 lB and

275lD

With 2751D a diverging wave is formed on the bow forward of

station 9.

The after body in 2751C and 2751D was made fuller than 2202C

by shortening the length of run

Model 2751F is a fine round bow form with

the same after body as 2202C, and 2751G has a fuller but more Orthodox

stern than 2202C (similar to 2277A & B) which was developed for straight

frames.

..,

-The fine models 2146, 2277 and 2159 need little comment. -The stern lines

of 2146 and 2159 are full and there was a difference in result with "repeat"

models. 2277C has the same type of stern as 2202C and is again slightly worse

than the normal stem form.

The effect of the stern on wave making shows at

v-/L=oi5

Model 2140 shows the increased resistance entailed by a hollow bow made

too full.

2131, 2410A & B and2194 are standard low-speed designs with a

convex bow. .2134F may be classed asafreak design.

The parabolic curve of

bilge allows a very long parallel body and an even greater length having the

same floor shape and straight frames.

Among the coasters 2470 and 2767C (a wide beam copy of 27510) show the full round bow form; 2370 to 2372A and 2372B to 2508 the effect of beam when the stern lines are too full; and 2508A to B and 2478A to B the effect of cruiser stem when the stem lines are too full. The other changes are more complicated but 2437 to 2470 show mainly the reduction in resistance obtained by clearing

up the stern lines and 2221B to C is an example of snubbing the stem lines

to delay the separation flow at the stem.

The chine forms 2314A and C are included because they show, by inference,

the general line of flow over the hull.

(8)

294 EXPERIMENT WORK ON MERCHANT SHTP MODELS DURING THE WAR

DiscussionS of' Self-Propulsion Results

The quasi-propulsive coefficients obtained are plotted in Fig. 3 to a base of

revolutions per minute, trial conditions, corrected to 400 ft. ship.

The straight

line shown in the figure has the empirical formula given in a paper in I943,

N400 .

q.p.c. = 0 83 -

' where N400 is the trial conditions value of revolutions

per minute for the corresponding 400 ft. ship, or if L is the ship length in feet

N the revolutions/mm., N40çj = N \/4or q.p.c. = 083

-This empirical formula has been found to give a close approximation to the

results obtained with a well-designed bronze propeller working at the designed

speed on a model with a modern "stream-lined" stem arrangement.

Higher

values may be obtained at light immersion, (less than O 3 diameter) with thin

propellers and with large-diameter model propellers. Low values are obtained

with any departure from good design and with thick propellers, large-blade

area, full stern lines, very deep immersion and small-diameter model propellers.

For the cargo vessels in general the formula value was obtained and no

further comment is made except to note that for pre-fabricated C type ship,

model 2194, it was necessary to club-foot the after-end sections and push the

propeller loading out to the tips, to obtain the required result.

The coaster results are more scattered because the steep stern lines, Vee

sections and cramped apertures have been used to obtain low resistance in some cases, instead of club-footed sections and the ample clearances required for good propulsion.

The low propulsive coefficients are obtained with Vee-section

after bodies in models 2448, 2452, 2470 and 2370. The improvement with

even a slight club footing is shown in the change form 2372B to 2394B & C.

If the after-body flow is so critical that a small change in form causes a large

change in resistance then the working of the propeller may cause a similar

change in resistance which will show as a low propulsive efficiency.

The after

body should be made fine enough not only to avoid increased resistance but

also to carry club footing and the working propeller without flow separation.

Small high-speed propellers in particular need every attention to shape of

stern section and design of fin and aperture.

Acknowledgments

This paper is a record of part of the war work of Ship Division and is

published by permission of the Director of the National Physical Laboratory,

Sir Charles Darwin.

The Authors would like to acknowledge the assistance of Miss J. V. Foulkes

in the tedious collection and arrangement of the data.

(9)

EXPERIMENr WORK ON MERCHANT SHIP MODEI.S DURING THE WAR 295

REFERENCES

1 (a). "Merchant Shipbuilding During the War," by Sir Amos L. Ayre.

I.N.A. 1945, Vol. 87.

I (b). "Standard Cargo Liners," by W. T. Butterwick and W. McArthur Morison.

N.E.C. Inst. 1946/47, Vol. 63. "Coasters and Small Craft in the Wartime Merchant Shipbuilding Programme," by J. Lenaghan and T. W. Davis. J.E.S.S. 1946/7, Vol. 63.

"The Standard Partially Fabricated 10,000 Tramp Vessel," by J. Lenaghan.

I.E.S.S. 1946/7, Vol. 90.

"Merchant Aircraft Carrier Ships (MAC Ship)," by J. Lenaghan.

I.N.A. 1947, Vol. 89.

"Effect of Shape of Bow on Ship Resistance (Part 3)," by A. Emerson.

I.N.A. 1941, Vol. 83. "Resistance of Hulls of Varying Beams," by A. Emerson. !.W.A. 1943, Vol. 85.

(10)

Bu-r. I5E O It..00 6

MODEL

277A.- Z77B.-L.4O FT. b.63OrT d 937.

-\

"-s MOL)1.L

i4A

2I4B

L. 4Z5rr B. %OrT. d.

-11

\\_

N

\

1IIIi1

5 2277 C.---BIL' £DIU IO-, ISE OF FLOO!Z 4 ,, MODEL

2118A. - 2118

5.---k5IL A$U -OF1. OF MODEL toe A RISE OF FtoO 3 ...5.

Fig. 1 (a)Body Plaiis

2oa 9. L 4-bFT. bLIUFT. A.bFT.

::

N"

/

9'

/;

i

t1I

7'

M11:' N,' Ii

L 4(oSp-T. . 64OFT.

j.

1MM

&V%._

I

'iliuM

LLt1%

L%11!I/DiM

RILIE RADIUS

75 i.

(11)

g OF FLOOR 6 s. ILG R4DIUS 10 FT. I9e cc PLOO 3 '.. L. 4a5 PT. B. %OFi d. 26

III

'ii

Ijj'

it1I_

L. 1O FT. b. b'+UPT. V.DCO'.

III

I

I

9

III

III

Lt%L1W_Vi

'-I. . bUFT. a.

hi

II

-N_A

AWEJi

Lt%U

L11

I.. qFb . . 0.. b/O

_I"

III

tt%%11 VIII

'11INZuIi

RIt OF FLOOF 3 ". RISE OF FLOOR 3 M5.

Fig. 1 (b)Body P/apis

MODEL

2087A.-

Z0878.--2087

(12)

RIGE OF FLOOR 3 i.&. MODEL 275I 2751A. A.. F.&.

27510 -AB. -F3.

RISE OF rLOOE 3 iw.

Fig. I (c)Body Plans

RISE OF FLOOR 3" MODEL 2410 A 4IO gI5E O FLOOR NIL. L. 4* Fr. . b4 PT. & 232 FT.

/

IL

:

Ill:

\

\ 1 4

1 lu

\

1V AA

BIL&E RADIUS 10 Ft.

II&

_

II

"I:

S_II

I_I1W_-Il

RII1F RADIuS 4.ç

V

A2

BILOE RADIUS A.7Sri.

3. 4-Or. __ 5. OJF1. 0.0FF i. a. t0Ot I.

_

:

1

__hi

.7

Ii

1V

___

VA

RILOF RADIUS 10 FT

(13)

RI5E OF FLOOR 61w5. MODEL

2140.

215E

OF

FLOOR 3 IJS.

Fig. I (d}Body Plans

l5E

OF FLOOR

NL

MODEL 2134 F. 2IE OF FtOOR

1W5.

-kr. Ii

/

lilt

I

&w iii

9

'Ii!

LiL%11_PI!i

BILOE RADIU5 55FT. LJ33 FT 0. 3bUFT fl. Ub FT.

Ii

L_

111

111

ttiii

L. 45 srT. B 56OFI d. 266 FT.

II

_____I.

II

9__1

______:4

L.

b. bIb

d.3014n.

_____

ii

__ill

-1h1

UU_9_III

&%

(14)

A MODEL 2767 L. 465,T B.64-rr d. 2828

__III

%% '_ liii

.LLL%II MIll

BILGE

SADIUS 2751 A gIE Or l:1oO

3 I.

Fir. 1 (e).Body Pla,s.

PIbE OF FLOOR

&7A R

MODEL5. 2412A- 242B---

L.I8Orr. B.3?-8SFT.

d.12.t 2412C

-rr.

:-.'

lit

lii

L%\

%\

%\

W_1111

/_

RILGE ADIU5 4IZA- 40 4Ift 4.0 e4Iec 4-0

L.I4OFT. 8.27OpT.

d.875-I

_Eli

ilA

_1W_441

k-1W

BILGE RADIUS 448 35 IVI¼fl.flIP ..tflJ -, L.3IOFT. B.46-83T. d. 837Fr.

_IIIII

11111

1t_i,__I

BILGE RADIUS

24c8 525 2478A -B-ES a47eB sss I5E OF FL0O 40 40

(15)

MODEL 2393

A

Fig. 1 (f)Body Plans

0 z lVUJLJL.L_ C.'I L. ZOO rr B.3258rr

0g

-d. 1366FT. C't/SJ

I'

"INI

.11/ 1A

\

'\

,\

W4K

BILGE RADIUS 2437 2449 341 ?470- SO' L. 140 FT B. 260FT cI.IOOcr

N

it%

r

111

Dli

711

tiw \

t% .1

-BILGE RADIUS 2393 4.5' 01SF nC Cl flflo IS'

MODELS 2452A- 245

L.2IOFT B.36'SFT

d.14'OFT.

B---__

/

/1/I

rI/Ill

II

1%__

&%_W

MODEL 2372e--- L.190cT B.32'OFT . 13'O5Fr

NO

Ii

___

__9a

'IN

1111

RISE OF FLOOR 5 .5. RISE OF FlOOr .47, MODEL 2370 L. 190 FT 6. 305rr

J. l305r

MODEL 2372s L. 190 cy B. 320 FT a. 13OSrr

(16)

RI5

OF FLUOI

A--- 2?88

Fig. I (g)Body P1an.

v100EL Z3i1 - L. 100EL 2I4 A-- - L 20

\ \

N

4210. J. 786. 4410 d. 1790. I

T

WI, ill

L. l4I5t B.

FI. d

/rjJ

_1W_A-/All

1r__,

-4.5 . 22BB 30' L. ?.5OFT B. 4410 d. I790 . to . -2 2ZMLO

____

______II

L.Z'BF1 B33-B.9 FT. &177aF /1'

ii

'-iii

JP1

L%

I____LIII

tI'%iII___Al

BILGE RADIUS 22B7= 30 2 5BA 60 2288B -IIE ØF FLOO P1U.. -25 PJL.

MODEL Z24

-ZB5 A 0

(17)

B.---EXPERiMENT WORK ON MERCHANT SHIPMODELS DURING 1ME w 303 MODELS 2221 A

2221 B a

c---L. 312 FT B.4(o-33 F1 a. EO83F

LI

111

iLL

't

iI

LLt

I__ .111:

&Ii

__1_i

ElI_GE RADIUS 222% A 22219- 70 RREIC - 6.0

215E OF FLOOR 25 - NIL . NIL

MODELS 22210 2?21E-L.312 Fr. B.4fr53 FT d..RoS3Fr F

it

.

mi

ILw_

1L_I

L

'Iii

/

I

if

/

lJ

BIL&E WAOIUS 222% 0 70 22RIE 70 22210=

RISE OF FLOOR WIL WIL WIL

(18)

Fig. 2 (a)C'urves of Ec) (400 ft.

ship)

to Base of Block Coefficient showing Comparison of Hollow and

Convex Bows at Varying Speeds and Draughts

4O0 ft; ship)

24FT.

DAUC,HT 55 FT. BEAM. I5:5i. SC2EW DIA

Z7FT. Il

55.T.

' Ii F1 I. .5 F 1. ,.. I H 4.. .

---l7

-;_%

-WI,

4

. 0 .

0

-. 0

::L_0w

r

-.

____

-i---ttXQIL.

V PJOT5 UOLLoW 8ow

-.

-

--DIF ,73

.3

493

-7 1Z5 733 743 753 .7.3 _173 24FT DFT

-.,:

-10 71 7Z 73 74 75

..'

I 1 I 76

(19)

ZR

ECPERIMET WORK ON MERCHANT SHIP MODELS DURING THE WAR 305

APPROXIMATE VARIATION IN II WITH DMLJ(HT, IOI4.JOT5 400or 5IiP

AQEA CURVE SLOPES.

Fig. 2 (b)Curves

of ()

(400

ft.

ship) to Base

of

Block Coefficient

showing Comparison of Hollow and Convex Bows irVinying Speeds

and Draughts (400 ft. ship)

VI

1020

OIs

23, CAL OF 400 or 5H,P DAuGI4T UJ EEV.

250

___a-.'

A

2 ISO

uIoa

;

&.

_YJ

f0._'rA__IL

I..

(20)

Fig. 3Q.P.C. to a Base

of

R.P.M. (400ft. ship)

09

Ob

O..PC. =

oo

-

j 07

2SOA 2452L , +

ce°

"

4 t37tE.

- 06

05

L) r3 ,O

VERY VEE SECTIONS IN AFTE Vft SEcTIONS PAIZTLY CLUBFOOTED

BODI. N AFTEV BODY.

4

- 03

20 40 60 80 laO SCALE OF N400 120 -140 160 ISO ZOO 220 240 260 260

400FT. SHIP R.P.M.

(21)

EXPERIMEN'r WORK ON 5*CHANY SP MODEI.S DURING TI WAR 307

TABLE I (a)-Offsets

MOOEL

7, awi xr

rkno F.R

U(I]EF1

6 5 4 3

2 £k

I A.P

<

'.9 cJ 30' IRS 5 74-9E '00 lOS 100 9-91 79-7 545 32'4 24' 8-6 *4.5 342 525 833 35.1 100 77.7 911-2 18

G-4 r4G91-2 IO0A3.i

t4u 12' S-Z 11-7 284,9017 75-5 377 807 33! II'S. 9-4 3-5 307 = 100 IT-S 51-0 35 51-0 3-7

_50

5.3 11-4 24Z4Z1 77053.057.0 543 Is-I 75 V7 3..

-Cu ia-S 517 41$ Gil 174 51-7 100 I'.' 349 $4.1

rs' i95 58.1 sso ioo '00

I!'

4.3 I0-5 £4e .I 789

100 90 AS 2 146 A

0' 1-9 9-9 18-9 54-0 037 ICC 37 3.5513 73.5 203 (U so' 19-7 757 $ 100 100 100 99-0 912 919 515 24' 15-S 54.5 94.1 iSO 975 117 54.5 25-7

II' IS-B 497 015 834 leO 100 100 854 212 (20')

i2 252447955 30-29-I-I I00

95.11515 30i Ui

-3'

G'55.i 5119

95-O= 537 20I 190 7.0

-3.2 152 590454019 753 9iZ . 530408 240 13-I S S

s. -9 4-I

127 Z2-999.4

549 17-A CU

30' 13-7 492 900 '559 ISO

Z*'I5-8 34'S 552

970 100

II'

. I28 302 50.8 554 95-I 00

2'lO.Z 4.14

50489.5

AS 2Z77A

0'

7.0

208 52.2 691 820 95.7 3' jj3.Z 14.2 572 42-I '-9 9-2 U

N

N

30' 100 930 97-7 1179 73051-9349 24' 100 975 01.Z 152 ig' 957 99

215

-''

AS 2277 s

34i 8S071438-9 I54 G' 5 7a- 560

zag 9-0 -

-9-5 RF 905434 253 11.1 3.5 I'S

-N

30' 12-5 53545-055252-I 01-I 100 too iee 100 03.4 52.9

IS'

34_IS

4-0 17.5

535970

I00 ,00'57'I

920 405 17.0 52-2 551 89-0 = 100 100 ISO 93-5 82-5 05.5 5 is' 47 524 503 854 100 100 56.i 504119 4' 2-O

5-0 53.9425 904 ======577 22.i 5.7

r7 33-550799-3954-743-z31 '7-on

1877.8

'(

o

CU 30' 144 3.7.2 ICC 190 100 100 994 . 75-7 4.7 44.3 24' I03 2j 94.5 iSo 109 100 01-7 443 23'I

I$'7.I 17-3

59-795-410cz-i

IS' 5-0 13-7 55-I Si'S 792 947 O0 109 59.0 *0.9

'

-' 5-747,0094-i

I'Z 5- 17-S 342 5-2-599'S 33-795-4 ==95.l SI'S

159 55

(22)

308 EXPERIMENT WORX ON MERCRANT SHIP MODEtS DURING THE WAR

TABLE I (b)-Offsets

MOOEL

=

8-EAM - AT F.P.

8

B 7 7 6 5 4

I'/z

0

CJ

30' -

I

2

°

24' 50' 047 P 100 100 803 613

IS' 24' 45-2.

!

100 tOO 77-ZG?I

12' 18

2I-0 43.5w

100 l2-8

''

S.F 2087 F0EE-C

°

BOD'( AS 5087 A N 9 8 884 r-1 51-S 24-8 14-9 2

53lZi-S8-2

I8, 1.8,

=

Cu 30' 14.9 t7.2 92l 100100 100 99.4 95-I 2.4' 10-3 213 71.1 897IOO 100 100 978 93-585973457840-5 21-2 18' 7-I 17-3 G6-2 100 100 100 873 305 414

It'

50 14.0 37-Z 100 100 89-0 48-5 IZ4 28 10.4 99-B 894 100 100 04-I 34*

u.z. 7-0- 21-a 394 58475-I 97-8 974 5I-4 14-9

(17) i-s s-i o-z 19-7 77-9739 56- V-S s-i ,-o

i

-=

Cu

30' 15-7 28-7 777 939 too 100 99-I 371

24'Ii-I

I 49-i 75990-799-8100 100 .- '00 37-I 92-2 890 71-4 5042i.Z

IS' 7.S 19-7 690873 975 100 100 33-4854 5B4 13-6 ('95)

It'

59 15-3 82-8 95-I '00 100 100 980 87-2 78'4 48-4 7.94 Ito G' 3. lI-S 30.3 52-481-r.I00 £00 95.4753 61147.1 23-887 Fro 78 42-4 GI-* 774898 97-9 97-8 6Z-7 4-9

1c(I-7) It 3-I

3-2 *9-7 37499.0779T7-956-1Z1-s 9-5 3.l 1-6 1-0

o

CsJ CU 30' - 19-0 32-2 87-0 100 100 389 989 909 70.2. 41.4

24' 15-i 27-I =397 83092-B 100 I00 99798-I 30253-273-7805 IS-S IS' II'S 59-I 44-764580-191-4 100 100 9I 84.0 6o-7 440

$2' 8-3 17038-859478-5 974 100 100 88-7 77-9 288 10.4 o' -i 10.1897 51-4 s 96-7 99 so-i 97-0 51-4 - I-Z 59 17.3 374 614 304

39

547 11.5 SF O (U CU 3D' 11-7 23'4 77.989-7 976 99-7 00 100 0-519-3 45-5 100100

'8' 7-2 13-I 39-0. S-1 too ice

2' 48 904 lCD

AS 2202 A

'

__-

S9

=89397-5 999 '39

61.7%4)

8-7

4608&974-O 740

o

CU CU 30'

IS

7451]100 100 999

984 87o 851 41-I 24' I0-2 098

I00 100=01.7.

17-4-18' 78 17-S 34.8 94.1 tOO 100 997 84-8 05-3 21-S (19-9) 4-7 14-3 92.3

l00 £00 98079-0404

£2.7 4' (o-o) s-s 513 88-5 994 81-9 890 53-2- 8-8 4-2. 41-882.4 304 72-0 578 25.3133 5.9

RS50-838-S 68541-8 ErOS 78 2-4 2.3 I-B

CU

0

Cu Cu

o'UUUU

8'?Z02.D

AS

Oc

- 22.02E 6' 2-9

___2-4

3' i-a SO AFTER BODY AS

22024

APTES-800'( AS

2202 D

(23)

EXPERIMENT WORK ON MERCHANT SHIP MODELS DURING ThE WAR 309

TABLE -1 (c)-Offsets

400' EAM Al GlATIOhIS

30' 5.2 524 907 100 100 100 100 00 988 957 894 81.1

9.9 453 .&7 ioo 100 53 784 to-I

-.

I$' - 7.0

91-8 100 100 100 62719.9

Lfl ig

4-ro l2897o too too leo

6G631-8 133

Q2S

3 541.1

- Pr (zuO - I-S l37

634I2.GG3 32

30' 132 69-9 547 100 leO 100 tOO 85 95-8 100 00 100 97 I 829

<

18' 7-2 172 639 8t7 100 toO 100 94.1 93.1

192

-12 - 6.5

52-2 '00 100100 536 129 ' 7-8 I6.3 P.R 53 56.3 748 50-9304171 64 52 1.8 100 P00 100 . 6.0 16.9 41-9 4.9 83.7 '00 '00 100 100 925 81-3 '5-P

l'

7-I 16439.1 81.9 100 100 100 93 19-0 12' 6.5 15.5371 59.79l5 100100100 97 99.5 12.9 6' - 2-8 12-S 32352.5 59.5100 = 87-7

= = 88

3'

J2676lZ

l67 6.4

-19-2 52.1

I'l 84 5.2 18

-0

Cu 30' 15-0 776 I00 100 100 100 34.3 24'

Il4734I00 100100 loo97-tGoG300 20-2

18' 6.1 702881 100 100 100 '00 612 23.0 2.0

It' 8-2 ICC 100 100 tOO 95-5 35.I 1-4-7

5 5-3 515 8.4

PR 2.3 86 57.9 49-3 O Il-S 2-9 29

100100 100 5P8 33.8

24/ 400100 tOO 100 94-8 41-I IV.4

1$' 142 l00 100 817

26.l

-100 -100 -100 9 72.9 35-I 18-2

l5.l

l00 100

8425I8

-' 7°

B446.02l

-<

2

3o'

'l00 l00l00

.l0O109 100

10.1

It'

''

124 l00 5' 24

PEJI.I

2

D50l00l0O 100100

P0000 lOb oo

Is' r74 590 100 lOb l0o

,ce ==

t-B)

t2 12-8

7b0 lOOIl2

85-G 849 too be ice

oq

14.7

(24)

-310

EXPlE

WORK ON MERCHANT S MODEZ.S DURING THE WAR

TABLE 1 (d)Off.set.

MODEL

FR8 7

%

AT STNTIONS I I Vz AR

275te

jIZl Z3.B 518

Z495

I72 12'

AS

75i A

3 RF

75Ic

41.1 '00

957&0

'7..'

AS 2751B

IE'

I00 100

5.3 144

U

' 14263 13.1 25 22

27510

355I

99 100 100 75I 18' %04 100 12

AS

75 I c

B5 80.I

3' iii

F

2751F

= 8Z

100100 100 18'

Zloo ,00____

AS 2751 A

981 3'

ri

ES 147 31E

27516

_.__..__.=====5" ==

I00 100 18'

4'2 2Ts -

-' - AS 275 I F

00 302 15 6'

__===_='.0_

nS 3, 2.2

2751A

AS 2202 C

-2751E

A5 Z751 D

A5 2751 A

27G7 WIDE BEAM

MODELS

27G7A

AS 2751A

(ozc)

2767a

AS 2751 A

AS 2751 G

(25)

EXPERiMENT WORK ON MERCHANT MODELS DURiNG ThE WAR 311

TABLE i (e)-Offses

SCAM AT STATiONS

F.P.99 9

7

6

4 3

" AP

5l5lO0

I 100

=

iOO 311 toe 'C

].

-12 T7 iCC 7.4

'

-I$ 5.0 18 £0

a4' _... __...a.

57_

12'

12 408 618U AS 2412 A 4G4

' s

-'7.3525

i20 24

3' .94a7

68

-'8

Gil 578 112 " l7 2

AS 2412 A

-6' '

39

113 43

-is I")

0'

30 208 40 67E 9V 100 '00 100 99.2 35 57 24' 155 653 91.1 100 100 978 6I1 362 17

IS' 110 5fr77&3882%4997 100 IO2

I 2' 487 689 89 95599.1 6' 115 c.-. s.i 79.t 57.3 594 7.0 3' (l.7I) - 3. 153 253

ii

El 18

<

(iJ U) 28 7.3 9i., 100

5$4938

24.1

24O 727100 100 IOU 100

97.l 897 75.9 553 31.3 66

IS'

2O.6%5 lOU 100 IOU

55 64.7 43. (73

I2' 72

Gi68i5i00 '00

I0o87' r

6'

"9

749999 IOU

870 72' 4.0 963 755 57.4 39.0 325 9.5 27 2F. 19 252 G5.6 51.1 ' 4t.9 3'G 16 14 (U If) 30' '00 24'

o543lc0

2'l8a930

AS 2452 A

6'

==5i472.3==

_.0

3' 27 115 46

"

.is

3.3 IS

-344

N

t') 35' .3 S7'

3j

27 7

33.250O9

3O.' 61

-3 9,3 g I47 4.4 s.c 64 27.6 450 555 72 215

IA 9

(26)

312 EXPERThffNT WORK ON MERCHANT SHIP MODELS DURING THE WAR

TABLE I

(f)-Offseis

MODEL %BEAM AT STAT1O4S Ø' 76-I 9I6 00 100 '00 '00 '00 95-3 88.4 777 614 357 24' '00 100 100 00 100 99-9 = 904 793 414 36 GO1932l0Q 100100

W -

71-5 952 100 00 100 922 8 107

- 80

57.1 74.3 93.4 994 icq 970 991 31.1 1.7

3.7

12 11-0

4577l-t 41.7 227 80 1-7

1-7

o

N

30 19.7 100 100100100 100 95-5 54.1

I6070o 100 100 1794

I0

18' *s 999,00 100 100 q77 82-7 65 224 71.2 95.3 991 *oo '00 78 3*9 11.7 13-0 6o-2 88695.7 100 ,b.i 535 350 57 3' 5-0

431 67470-235 *0-9 3.4

5399563o.i '243.7 *2 '-2 '2

30' 65.9 25-3 96-2 100 '00 100 100 100 8o-e 327 24' 817 100 laO 00 100 9*5 830 4,3

IS' 274 Si-S 100 100 *00 835 So-I

12' 21-6 465 100100 544 8-4 6

35055.0,355I.5

15.6, '55

e5-742.sS67B37.

8-S 2-3 RE .7 5-2 5-7 3.8 572 319 2-6 2-2 .5 '..Q Cu

30' *5-3 25.3 55'I 83 soo ,00 'ee 'oo s-t em

24' 1*-s 479 o0 100 100100 (5! 9.5 434 63 *00,00 *00 25.6 *74 *2' 68 76-I 91-2 lCD 100 leO 974 6' '.9 8-5

3

- fr7

--64 3-4 '5

<

N. 30' *5.931-9 63-0 855 975 *00 100 100*00 100 S.7 24' 126 274 57.0 55.l ioo 100 *00 '00 100 51-9 IS' 9-S 22'S 503 91-5 *00 100 100100 99-5 67-7441136 ,2' 6.8 18.6 65-I 100 100100 72 4 B-6

6'

i7 Ii, 3ei

Sq 97-a 846 71-S 19-7 b-B

3' 5-8 44505-5

5= 74.544-I 26S

t

S.I I6334-57iI 77-I47* 29-IB-1 26 13

N

-- 100

I0080I37-3

10099 67-744-117-8 *2'

AS 2478 A

'

92

-7l937.i Go

865

QF

U47 2916I 2-5I3

Cu

ti')

0

N

<:3°':

3I-a 5788B2%-2soo 100 ,00ioo

24'

i2-3S794.I

*00 *00 100100 231 49283-7 972 *00 100100 I00 9I5 -0B 185 87-7343 '00100 9&3831 6' 27 111 3' 54 R. eo

(27)

EXPERIMENT WORI( ON MERCHANT S1 MODELS DURING THE WAR -313 TABLE 1 (g)-Offsets .BEAM AT STATIOW8 CU nJ

30'.

IOC) 100 24 100100 17.1

rA5

l,.__..___.__I0o

2-3-72 A IO IOö 979

3$I 13I

-3'

-

.

7825i75.5

o

CU 90 913 100100 100100 IO9979 82o 41.3 24' 12.1 oo 100 100 4.t 154

iool0o27i

12'

-G'27

77'3S237'8

S1l 49.j

I.'-f CU 100 100100 100 00 100 9I'7 24' 100100 994 9;6

68-II0o 100 100100 94Ø7.4

2I'I 12' 7.0 192 tOO 100 too 912 766 11.7 6'

2 IS.2

==7.0

-_

RF3'7

5 19 1.2

<

If) CU 53 984100 100 100 lao 100 919 24' 12.2 73.3 85.8 '131 tOO 100 100 '347 446 382

Is'

94 a;1824 9iO

00 100

l2'5867

iOO 100 fl 9i

I2.9

-'

23- "I

S4.e9BO4o.e 794

92

tLE2.3 17.1

723

s4.II7489 '.5

-(U

A. R ] I

ft 2

2z .3 4 5 100 915 30-9 399 24' 2394 BaG AS 23728 AFTER SCOY EXCEPT 449 65 18' IN C-.

852I2

6' 84 7 36 917 743 420 44-i

9.5

-3' 193 344 51.4 R 8.1

50 Ia

-(U Lii 30' 42.1 8I8

2506 B

MS

e4' 181 448 79. F0WAR0 6 827 4Z4 IS.4

18'

233 54

7o7

92

-t'l, 12'

VBZ =86.1 a ato

S73 l04

(o'3.2

O 334 524 O4 83052-1 C -Th N AS E D , - s-s 3' 74 -1 00-9 57-5j95i5

44.1 293A-'1 --

-R.F FR

!,i 9z 9 8z 8 7i 7 G

2-5 1-9 l.a

-30' 758 93-a 995 tOO 100100 100 - ioo be 100 983 42.3 24 35-7 70.790-799-5100 100 100100 100100 95-I 54.0 2-5

100100 100 100 lee

9i-8ss-7

]

IC' 806984 too too soo leo 994 95-I

Ic5

-

-('4 (U

g

841 34.9

I93.9 2-5 1-7 7

(28)

314 ExPERIMENT WORK ON MERCANT SHIP MODELS DJ2RING ThE WAR

TABLE I (h)OffseL

% BEAM AT S1AT0N5 MODEL

F.P9 9

8

7 6 5 4 3

2

I'II I Y 30' 45'l tOO 100 *00 100 100 100 100 100 733 434

24 397 *00 100 lao lao '00 laO 100 18' - 31-4 948 100100 tOO tOO 100100 ' 902 UI 2' -(U 6'

l0i79l

lO0 *00 00

8Ii7 99546

24

l5

24

R. iq:I

'.3 13 13

-U) (U 30'

AS 2285 A

12

-

--la 12 --la

('U 30' 23-9 100 100100 OO

97

867 GI-4

I&4667

100 100 100 = '380 637 44 Ia-I 12 11-8

-Io0 100 I0090-759-7

l2 .

g.

lG068l7

205100

l.a

-9836o3

(

CU CU 100 oo '00100 370 24' 100100 100100 99-I 78-6 GI4 35-6 I8' too 00 100 95

101

-12' 8l-7

935.

100*00*00100 91-3 6'

49 =511

RF. 25-Ills i-a (U CU

30'Ió0 iootoó

-9425Z

24' 7i5 . 96r7 995100 100 tOO 10099' 92 033 6m3

IS' 161 354655 85O I00 tOO 100

83r7lBl

12' lIZ

lee IooI24

6' 49 303511

96lB3iI04

F-

o-o 26-Ib9a

35. Il-S 12

-(U

24

'67869I00

IS' 346638 fl2 100100 100 884739 ZI-5

12' too too

-8I-964-I

l48

6'

. 3l1 476 687

100 l0094-0.11-2

3'l3'33795&t-l4I38-3

-4-3 24422 8&3 5 863 594 69 1-7 1-7 . (U

lIoo

i-5l3

2o24o-l5l0009i3 .

IS' 16-0 34-I 100 tOo = 100 .74-5 21

257 583 100

6'

6-I 215 491 724.

113

-a 46

(29)

-EXPBRD4ENT WORX ON 2dERQC4NT SHIP MODa.S DURiNG 1B WSR 315

TABLE 1 (i)Offsets

40&

'

MODELuFp,g

S2AM AT

8k8

S1AT*4S

7 65 4,3

2 Izfl Ye

30' 424 725 895 877*00 *00 *00 (00 95-I 882 27-0 2.4' 192 319 617 87t00 (00 lao i8

OOl00O7295lI

*z' 3' ISr$ 947 947 34.7 565 4.o7C. es

3B7BG 60 2i

-2

Cu 3o .997 (00 *00 00 *00 939 69.5 49.9 25-4

24'4l-4S94

997(00

*00 %oo: 759= 32-7

2

I&'37.4 67-8 872 349

too 995 Ia

-2ootoó

3

64 65-I 73* 52.o 34-i 9$-t 94o 99

-2 *59 45 5 84.5 91-6 924 7-7

-

¶2-7 53867-6 8 21-5 7-8 4-3 2-I

ia Cu

3d 2.48 902 ioo ioo

(o0(.

.5

2.4' 4o6 00 2-6 2'

512==

'2

4546s 54.

-tb 30' 3*-B '

183

-A.5 2221 D

6' RE

989 95,9 97-94}2 40

24' 6e0 938 tOo (00 97* 91.3.793 SIZ270 (Z9

*58 279 lOS *00 *00 laO 86-t 153

II0 v

9

o57og9

-' 6-3 *7-4 434 983 *00, (00 99B 9*3 80-3 234 6.7 3' 2-4 (*5 538 93-2 9$-I 9f1 83.4 54-7 17(0 4-8

28 (3.

-<

CU 30' 6-4

Ht *2-34 8-76 T7.OI 7-el 701 lI96 24-0 -78

$J

I-IT. *2-40 i-Oo 2-14 46 '*9 -*9 .49 .49 .3 .93 4Ø

2e*o

E'

ii

*90(457 9*2 4-0

...

TNE5E AE 400' DIMENS ONS

a

-4 -4

44

-4-U I-fl 30' 8344 as *42 9Z0 7-0l 701 882 *433 *412*5'9J 6i5 Hr (12 * '19 49 -*9 49 49 .45 ] 345 jJ 824M *95.64344721.THESE AE 400'

240 Z6'OtI5l qi

DIMENSIONS .4 .4 4 '4

II'4 "

(30)

TALB 2 (a)-..400 ft. Ship Particulars

400' SHIP

PA1TICULA5.

AQEA CU2VE OQDINATES

10 =

B x d..

.IOI,dOSD4MLD PB AS Cm Cp 0b0 L20G1W0F L/thcE F.P9! 9Y2 9 8 8 7Y2 7 6Ps

5 4 3z 3 2Yz 2.

IAL povA 'MAe.-527 527 77.0 24-0 t70 --o 9t65

926547.9-2-4

425 (,58 641 .979 -45 -955 . 085A 200 041A20020016-59-$ 7.00 19-S 4 193 19-i . IIY C,2$ 1.09 250 4.11 . 576 97942-4-45-907-39B-539tb5.62979 7-24 9-3b 5.14, 9-60 9-19 9.90 925 A9 $61 765 2346, 6-35 . 4it3.IS

A.

15$ IS

_________________

03 127 157 24

______

-

'

i;i' :'

v'

t

[W

ILk

1II11 I P

JMJI

]II1I9 894 rii S

s'z 152 70 16

602 9$1 977 0.7SF 7.00 200 35-1 Il-i 19.5 I5'i 6i9 49 I-3D 37.4 5-10 7-30 9.47 9-27 94 975 9.87957 9-Is 5-40 716 6.11 4-93 3-135 I.Si 75 25

7'

.-

.. .670 997 479 0-6li 7.40 7.00 15.7 III IS-S ISYj 6.19 A9

2087 A

. 6.15 4.73 '521 1-63 Si 27

. . .570 .957 .679 0-64 F Zoo ZOO 6.6 Jl-1 IS-S I513z 619 AS 2097 A 055 .74,

..

.

...

' 993 479 485-%9.75 .959 9976987, 01SF10SF I-32F 174 367 Zéø 200 15.5 I5.5126 12-6 11.1 369 4 169 Il, I5 178& 694 6-15 6-oS 1.49' I-IS $59 3-56 3-7-10 5-79 56$ 6-807-93 7-9* 7.945-9? 9-93 9-Il 9-el 9-0979 953 9.57 9.859979.609.59995 9.97e-s399e9.579o135-4o7;96.'zt4-943-4oI94 5.7.3 Si)8%5.47 7.59 9.36 7356 499 4.9*344 349 $99 1-55 .' .49 -23 . ,

. 79 . i-9I

Ill

--'619

3.47 3.445-97.7,719-52974 9.37997 e4i-5o 9% 523 714 5I 4-50 3.o l-cj . 24 £VLA

,,'

55-i 55.1 240 24-o'1017o 10170 7O2 7. 443 .975 .3.97395 -950 4Sb .499 I-I6F I07F 14,0 160 200 20015.590 $5.5 9. lBS 9.5 $9 14 6-IS 6-21 .75 '-59 45 I22 3-52 5.47. 7-16 -145.447505-9a9-609SI 9-59 0 9-SI 9-11 99$ 9-SI 9.5, 9-65 1O $33 AS 7.73 5.99 2202 4.59 A. 3-03 I46 7t 7

9# 554 210 11300 .115 415 404 916 711 0579 15.5119 17G IS 647. '51117 3.50 551 7779-DC, 9-9*9-70 9.769% 9-98 3.29 9-9*7.7o 9-SI 5-I 3-591-94 159 .93

2.4-0 30280 11b6 '656 '420 972 7oo- 0.8sF I40 '90 9Q 16-4 141's 9-21 .44 1-29 3.35 5.95 755 5.07. 9-58 9-70 9-72 9iz 9-65 9.7.9 954 7.50 5-74 4-70 3-22 1-60 75 28

5I . A5

2 7. 02 C.

-: A 22.0?. 22024 AS

2202 C.

49 '.7.9 A

2202 C

"C

''

53'l 24-0 9830 6S7 4,93 .975 '999 4i83 01SF .

ISO ZoO 16-0 11-2 197 14Yz 6-20 1-7.3 1-14 5-18 7.04 9.49 924, 954 9-9? 9-99 9.65 9-27 7 6% 449 3.7.7 I-62 71

?l454 24-0 90L .7 669 700 -991 732 0-SOF I$O 90 16-S 35 156 IS 9-94 '49 1-97 363 5-57 74$ 5.54 9.44 973 5.18 9.83 94z 9.t 9.10 5.7.7 997 52? 3-35 154' 65 45

(31)

N

I

JVPI3PJVJ d,qg .1fooI7-(q) z

rnvi

I I '

-I tses

01.6 9 Øf 1-1.1 4-91 911

I SLZ W

0.5521 Qippu 0 41 o.j L

)

I SLZ SY I

V JSLi cv

Scis Li v'LI 0* Jc.-o 601.' ZL- 689. 1L9- 9L' 06331 0-43 9-95 61.1 9-91 ll 551 561

09-I 4700 OIL SLG ço/. 395.

6IL. DPOI'l 01.2 L-69 9L91.2 V 15L?. 86-LI 1681 6V S5 -ps.s LI cLI S-LI L91 o 9-Il 551 091 V

ILZ

56 OLOZI 05991 0-42

oil L

VL9LZ 1L96 2L6 19311 *74 !I i,-,f 91 I

icz.

219 53 281 04 460-3 OIL' 214 1.01, 119-99-1.. 0690 0-4?, 00-9 PI-9i 20-4125-6 31.6 91.6 1.91 p95-0 1.-p 93 64.1 9-Il S-SI 561 651 4421 044.' 904. ZZL 299 ISL. 0123 0-13 ISS V ISLZ 9k6 91.4 99-6 *1-6 09-9 89-9 IS-P 316110-998-9191.9- 96-I 516 34-9 609 53 )Z 6-91 9-il 0-6 9-Il S-SI 081 50% 419-I iGSI 91L 094.. 31.6 9LØ. 689-£lL 4.59. sm fIb '51.' 0950 ozlz. 043

oIl

I-SS V SI. cv -0 SLZ 9*1 SI., 019 I 96% 9-91 S-U 0-9 9-Il S5i 09% 0-4% 41.9-I 490.1 3.'L' £7Lr L6 916. 269-9°L' 159--SL 92k LcL 09+0 0003 042. 0-4.3 '56 2.1

, 'z SY

91-6 Sf61 '16 016 69-61 cc-GIL*-815*-91c9-c ILZP6I0861I9'9I9L-f '1% o9-13-, ZI-9 SI IoU

III

0-LI 06 9-li 5-SI 01.1 041 49L-Q IP-0 631: O$'L' 216. 911' 9°k ZZj, 883' LOf. 931.' 111.? 001.9 0112. 0-42 0-12 02 29 93. 39-1.4.-I 5)3 09-I £10 064 205 996 V 49-9 li-I. 151,7. 31-8 019 $09 91-f 6*1 LI-s 19-6 926 62-6 IL6 96 99-4 89-9 IL6 'iLl 31:6 9L-9 fL-f 91.-f 21.6 51.6 *9-6 L9-6 ISL2 1.1-6 53 I6-L 106 26.6 90-9 h'S 196 67.-I £1.1 31 21-9 19-9 U9 Li 9sf, £1 cccl 2-81 411 9--SI '3-LI 0-6 911 0-6 911 5-51 561 01.1 091 041 O$4 40*0 001-0 010-I OSLO

'L

ILL' 501 9 Zf4. 916' 314- 916-101.' 'PV 509-969 889 L°L 959-91.9 5'!: IlL-511: 021: 0060 Q.pi3 o5o eLSI 0-43. 0-1.7. 043 o-j,L i.ss i-ss

'ILZ

9z. 061 23-0 6Sf 82*-9-IS 439 159 05-L 45-9626 996 U9 31.6 L-6 8&6 20-553-1. 59-5 506 83-I t-P Il-S '*41 V-Sc 04 4890 Qeb L9. 083- 093-921 0920

043 0061 914.. 9Lc, *69. 51.9' 1IL 091 0*1 41,50 S-SI 9-li 9-4.1 SI 31-9 5 01.4 09-6 909 ILL 19-5 056 1.11 'iLl 908 626 996 '11.6 01.1. ZS

012 Ill

iLl 88-6

'l1.O06fl17

I4LIM V $' Z S 0-9-3 L-2s 6%- 60-31.1 19-c 9-0 935 56-1. 19-1. fL-B 069 91-0, 886 91.6 194 19-4 011 c9 0.16 lI-5 056 19-6 04.4 99-6 996 116 956 7.9-4. 491 °L5 96-9 96?. 49-9 11-9 11-9 '4(63. 9,62 1-91 091 4-4 *6 2-LI 3-LI 25' Lti LII 16 016-I .193-3 441. £91: 194-014 051: 1% 011: 31: 091. 119 011901 06011 043 L-L,c 4ticIz 4.0

it

99-41.' aL-I 00-2 99-9, 10-plo-S 01,9 09-L 96-4. 2L-9 69-5 99-6 SL-6 99-4 2*6*1.91.9446686440-6696 56-9 566 564 06-6 21.-f 1.L-4 59-6 91690-9 12-9 66-5 82.5 84-2. 51-9 411 $1 00-9 06-5 '*25 0/59 Oil 9-91 9-9 9-019-91 002 021 4061 4*1.1 01.1: 691: *66-566 5-91: 811: 121: 951: 4o9. 9)9. 51811 0059% OVL 0L2 6-95 OIt'2 b 32 Lo- IL-sq-i 961 26.0? 021 90-403-988-4.96-9469 96.4. 206 954 %6 11.6 166 61.-soS-s '1.8-6 09-6 29-6 0S 286 01:6 *1:6 LI-S 69-6 *1-991-5 £19 51-9 09-9 lI-I

Ill

911 10-9 24-5 90 46 9-Li 841 9-9 3-01 991 091 021 dOLl 409-I 094.- 881.-066 286-491. 2L1. 991: 961. 909' 109-00911 019-fl 0-43 0-12 £95 VOIVZ 1,3-I 91-96-i 64-c 145 369 919 96.99*6 1.1.698-6 69-6 866 9-LI L66 09-8 60-1 Z6 59-1 9-19 92 0-8) I'll

4L9-I 162 994' 921:699- 1.91: 09101 043 S-SI 003 091 004 I 1.-fl 7.Ll 96 50-9 664 194 OIL 829 306 05-4 19406-6 06-9 986 91.6 04-6 19-8 03-/, 50-5 Lvz 68

064- 601..

+

0.1.3

ict 01001 0'bz 6(1: £99- 691. IlL- 686- 6-41 002 091 496-0 SI $91 I-fl 02-9 1,4.-I lI-B 62.9 6011 51:6 SL-6 6% 696 96-9 86-8 62-4 09-9 PL-I

92-1.25 OVI -v z, z

z c

c

i

S 9 k9 L. cL 9 6 d

() 39('4 ki

3 921 o, d -oivinip o-sii-g F-'p 9 S.LVNICO 3AflD

vv

WV1flDIiVd

IIHS

'i

0Oi

(32)

TABLE 2 (c)-400ft. Ship Particulars

4001 5HP

PARTICULAR5.,

AREA CURVE ORDII'JATES.

10

B

d

L Cp LCBS R F.P 9% '3Yz S 8

77t 7 68 6

I 25z 2 I?2 I /a Y4 A.P. 9AI uA 7296 210 24-0 15535 13465 -712 -7o3 L,45-6630-91,7.714674 -90,3 (,97 0-971' I35i'IGii 176 3-7 u no5.5 16-0 10,9 '7J.3 37-3 5.7° 5-57 174 ':63 406 3-84 6o2 5-16 189 7-44 34 726 960 965 9671965 9-631955 8-04 569 6-04 619 5-00 459 120 307 -53 115 0-19 006 9.,tIO " 31-0 24-0 15475 13425 -705 .700 .0,64 -640 -697 -671 967 .963 -711 .0,54 0-97° $35p ii 11-0 5.5 *1 16.0 24-3 275 5% 547 1-54 -43 544 3-70 9% 050 AG 24.IZ . 4-31 4-50 3-09 060 1-39 I-OS 0-19 0.00 IAI') AS F0 34(2 . 11.8 AS F08 2.4I A "7

2393 7429 21-0 -722 -21 129 I 4. 746 .23 :-5o 0,97 5-54 37g I.4 oil

OAOI 'S 7 24-0 13170 '7i9 664 -991 -970 .711 l5I00.726...O.7o45.7e2lO2c&5ll3I74fl8IbZ2S-S76 I.25c . 4-2 l0,.9 244544

-,

1-71 53 3-906-I 7-99-2.19-71 3.75 5947.579.13 8-66 9-70 9-769-153-72 9-72 9-07 9-02 9078-22-405163-24142 9-02 660482 3-91 1-16 014 004

24-92 p

1-75 4-07 6231490979-50 9-76 9-76

AS 2.4A

.. 1-63 390 Lç 177 5-59 9-45 972 9-72 ' '-I__ 9A35 65-IL' 'I VO40 1443613610 752 745 84 -0,66 94 7°6 -544 --911 -759 '720 l-54F $-04F Ibo (So -. i3. 10-0 5-3 16-4 12 30-029-3 5-13 - - -t4 2-12 4-74 4-61 4-7-6-62 1-23 9-IS 4-14 9-10 364 960 9-77 9-799-54 - -44 9-01 941 9-11 9-71 6-SI 9-47 9-SI 4-94 0-IS 6-44 796 6-60 5-Il 413 7-34 300 151 1-33 0-24 000 9A40 6516 27-0 l437 759 817 95 -944 -726 $-63c 184 300 04 16-4 36-9 6-00 2-Ia 4-54 6-93 0-32 9-14 7-55 9-74 941 9-84 9-7° 9-39 5-54 7-90 6-62 5-10 5-45 $77 0-24 44-0 (2490742 -697-499941 -73 0-2 liZ 34-3 I-194-594.7o4I694S9-509-703509-119-669-359701616304723OSI40 0-00 IAIA 6514 -s 37.024-0 14470 IZbIO-..--666'7--755 -645 72Q.954732-720 I-44c160

--

490 10.4

5-2i.tfl-

*4 30.5 5c 07 o-3-17 2-0 4-74

45. .9

6:840-339-29:-2c911 9659-909-13

9-.o9%9-0l 3-I9-939669-518-470-056-909-049-29$-727-046'7I

5-30 Soc 3-0,o '-76 Oft, .2,I-430-5b0-Ob 0-26 2448 9AiQ" U. 72 -0-4 270 r,oio 1-0 4-0 'ill 4% 7o4 --981) .719 -0-20F -160 lBS 56

-iii

3-2 11-6 20-0 5-97 0-101-52 3-74 575751 1-769-09374 34,90 9-74 9-629298-527-30 , 50,30,7 .,, I-Se 0-IS 00 A70

,-,

64 210

. .,70 - - i.37 60 Oo IS-i -3-2 $76 21-0 5-97 0.61 -67 4-02 632 9-15 9.209.1,09799-40940 9-16 946 9o2 0-Ic 606 5-lb 3-22 1-21 0-IS 0-0

IAIQ

0'IYO 60-4 47-024-0 11640 -13; 617 -705 944 -7w 1-2cc -164 200 is-I 7-2 i7-4 9-0 047 AE 2.475 A 3-7o 9-46 9-00 8-17 6-06 5-10 3-22 1-34 036 0-07

64-a Z1oI4I00 -i.e -725 -us -969 -739 0-4% Soo *0 5-5 16-S £60 4-So 0-73 I74 404 6-37 732 134 -96 -ii19.c5 9-65 9-05 9-5'? SSo 841 759 641 4-09 1-55 067 004

440 I

'vso 6737 17-0 04790 AG F06 2370 A 5-3 R,5 26-0 585 AS 2370

A-0. -o I

"V

67.57 27-0 14730

24-9

700 -710 '7o9 -904 -736 037A 500 60, IS-B Il'-4

I 16-3 26-6 5-45 AS 2570 A I 965 956 9-23 8 0,47-04 559743 6-07 5-90 4-14 2-01 6-94 0 4o 035 p372

'

240 14519

M Ill

-74k Ø0I 80 ISO l-4 1(3 44-5 544 0-1,7 174 3-99 534 7.71 0-15 942 S63'965 3-65 965 9-45 9-26

4-05 395 1-91 1-95 090 086 0.55 231Z 67-37 34-027-0 $4430 -703- -7o7 94 -965 '743 0.29 160 ISO 11-4 10,4 279 5-04 060 -44 -4-Il 624 7-02 719'8S3 4-969479-60 9659-65962 9499-19 0-45 742 5-88 (-78 0080-55 !3726 67-37 37.0 $4780 Z4-O

(33)

'1$1NQ9 600 coo III

III

15.5 19.5 1.9-5 #6-1. 9*1.199 HG 106 4G L1-G LL6 L L98 L16 LccL66 1.1-6 Lc.r. L1-6 1.16 tc Lc6 ss-& L6-0 Z5-L OSL si-s it-I szz oi-Z SL-5 9Lg O-P5 045 1-91 1-91 0-5 Q9-$I 051 oo 001 01511 891.

u.

1.58 oi.. 021. ss. 599-,SL. 991. 02551 0 tO 1 ISO 039 cz

vlcz

(Oo 0#-1 6,6 $8-s 651. 91.9 *56 51.353616 504 666 19-3096 193 IlL GL3 5-92 151 45 9913-211 001 0I-I 9$ 91 2W. Z9 2u 05*51 01.2 91j9 ucz

-991 96-3 i-i. 8-$ Ls3 81.8

a

51.6 81.6 ItZZ. 51.6 69-6 #1-6 98-h 1.1.-S 59-2. '65 1Q35 iLl 0

°

559.1 ZLLo 9L3. 951. 5' 1.11. 931.- 02521 b$

,

61.6 61.6 6kG 19-h 969 65-6 a-I LI-s. 61-9 Ho 926656 51-6 %-L 165 20-6 91.510% 901 tL 911 i9I 101.61.0- 591. 621. 009. 000pI 0-1.2.

*63 111.909- 05591 O#z .hJ.o9LG-LIL- oi-t 0 IIQpç f-LI 9L-60L-tC-6 H-966-soo-c 8L-391.68L-5 '3-1.05-953-3 SL-I99-S(L-5

-11-0 ILj 06-5 £6-s £i 05-9 95-3 61.6 61.3 926 61.6 51.6 96-6 91-5 11-9 61-3 51.-S 0-91 9si 2-1. tol 505 091. 615- 591. IlL 90$ 00041 0-LI

9-GI £3-I 0 53-59-91 I-LI 16359-590cp9Iov-509-i 18613-615-3 ILIsq.poI-961.LL6gsc.6

-OZLI96-35L$g1.%j

0532,

0-32 oi53vI 091-L%-L91.G*oq44u 9L5Q-S9-I it 6j,-6lI-6PL-LZ5-50- r.6136286 l6-lZL3t5-9P-L1iJ3I5 Il-a

+'IZZZ

-11-0 26-I #3-9 3P9 L-lqI-39v9z6-s66.8s,6 505 00-3 96 91.6 LL6SL-GfL4 91-4 91-6 91.649-6453 5L-6b9-3LG.309-L9p.5L.j $5-I 99-S *9-4 1650-Pc 91.5 0-59 5-LI 9-51 a IL 121 sic-i 01IZ-591 913. thEL6-5Sb9lL-55 651. 0152.1 otOt.I 0-fl OL 6S 91221 IL-I 500 £31 Lop u-9 31.s 135 3 986 93-6 556 iL-S 55-6 495 345. 043 899 50-9 O-p( 5-LI 53 552-I 996- 2.5/. 61.1. 05241

0-8.2 091 dZII 03-5 0-59 9-91 55 9-61 003 09-2 La 05L Z- 61.6 63-6 91-6. 81-6 814 21-9 GIL 3-3 I3 55 cl-a

OIL- 956 0% 9iL- 49L- 09664 0-1.2 t'35 010 130 ILl 90-$00-959t 596-I 391. P16.LPL--p0L-g1.-o5ozl api W0 54-I 285 iL-I 953 5c 96559581.G8L-4 51.681.-S 81-981.591.349-6113 Z3-L 58-S 58-1 81-I 59-3 a-ic 941 09 5-12 091 021 SISI 'LLo 91.6- 99L. 9 991- o9f( Oi SPSS 51-0 53-0 95-1.51.9 9L-55L 563 390-605.159391-z 860 933 5U3LIO.9.. 5394 S9L-5i9-9IL-60L.99L. 00224 0-fr?. Sz-o90-IL1.591g 59-5(4(99109512081 Oil 51.9-I P1.1.VLfr9sL-ozL.26L 01.931 0-1.353-63

-PLi 96-1.09-3316 0LtL3-6O6-3O6-000-39s'

iL-S *1-6 91.-I. 04-3. 99-i 15-I

8655-466-1.10-9-536-I GSL-0*ESL-GJ0.L O6L

o9;zi

0-c.i 339. 0965j 94 04 5fr °OZ opt sl9j 991 3.9 9j 583 055 19.9 9i-j 591. -9 16093-3 51.6 LI5Ø'L91 11.9 03-3 l/.3L.3 35-s

lI--9s

v-a cv-o

. .sgzz Li 0*4 S912 4v

-52-0 51.-I SL-v 01-1. 959 033 916 (56 636 (86 (3-6159-6 1.1.615*6 95-8 alL 01* 61-3 565 055 9-SI 0 LI-O

I'LL- 3%- 1St 951. $% s8gsi 0-32 o'5i vol-a 9-9 -$i 033 0-95 91-2 52-s 5t'-L 29-9 556 1.1.3 lOG 44-3 53-3 V9-e159-6 13-6105-6 03-5 0$-j. 00-5 02-1

1.91. 995- -OIL SLL. eL99I 0-Li

-500 05-I 03-2. 019 03-9 1.3-1 93-3 5fr-3 95-3 95-5. 95-3 95-3 953 553 93-6153-3 50-6 09-5. Ii-5 01-i 01.-s 555 L-91 5-8-silo 161. 456-191. 651.- 39L 599(1 0-1.2 09-6 09-609805-0056 09-6135-6 31-3 °-L 595 96-2 ILL 30-6 056 09 59-5 593 6-51 I (1.-SI 4.11 901 vie-a gag. 0%. $1.1 $1.1. 311. 99951 0-12 59l9 58-5 6-92 9 032 V 30Z 03-0 #6-0 50-2 IL-p I O4 SY 91-5 SIS 0-92 5-32. 0181 *-u 0 ISV as, ob* vciO 451.

1.91- 151.. 2.21. 169 £1911 O-Lz 0*2 IS-IL 51-0 '5-0 98-I 91-4 31-9 1.9-5. ZLS 62-3 83-6 L5-3L9-3 83-0 55-6 56-511.2-9 i-L 95-S 46-9 61.-I 33-0 01-3 '262 0-91

4-5. 0-61 091 003 5090 62L L96- 501. GIL 191 0*351 0-LI $3-IL v gOSZ

9 ZLZ 03 cv 1.dV 5I'TL0O49n5 3LIM) g Lc2 Q4 cy d V ( ( I I Z ?%2 £ I I

f

g g :I I2$'5IIcj Au'j5001 I 9-61 d i i ' 01

caLvNIa2Io

MIflD

rc'

-1fl)U2iVd

dU-Ic ,O0'7 RJlJfl31$JVf JU1S 'foo

(P) z

v.L

(34)

TABLE

3 (a)-ShIp © and

E.H.F. Value,y

0

.

9

c

-SH P ® AT SPEED IN KNOTS

SHIP E.H.P

AT SPEED

IN

KNOTS

1111k 12 I "3 13'. 4 I4' IS I5 IG IG'& 17 I7'4 lB II I I'6 lZ 12k 13 13' l

Id' 15 IS4 16

1GYeII7 ri's 18

21464 425 55.0 25.62 I 1610 II 79.0 4 441. .991 .95 .5 - 473 5 695 '1 B 99$ b9 701 1717 .761 $040 $570 1750 5275 2070 2060 3150 3455 950041504695 5375

21408 425 sso 2962 11710 i'Soo /s..i..257 .939 .533 94. 44 63 L'S. 564 70475579445 .5347* 144

Z4, 117.0 '1500 .51') 521 625 54 1.4 54 '(k? 568413 67949$ 10051150 ISIS 1500 1710 7940 lBS 245' 27203030 50 3710 4150

2540 11100 1125.0 'II') 821 4,25 63' 699 5.47 -.W S 573679.431 970 IllS 1270 .450 6.55 1875 IS 2370 2650 2030 3245 35 4000

2.442 $0550 '0725 .429530.532 5 .4 iS 65 0 671-5707.99 955 10951245 1420 $5051510 04. 2280 2550 294' 5135 3475 030

2277A 450 7.3.0 2997 157(0 15006 5 .4224 451 453 541.471 4Th50 1190 2020 2290 - 25 29031.50 35 .49255490

u779 450 03.0 2957 $5700 15505 '4, 7.I4, 431. 413 .543 445-6.45 646-547.7.54.7.70.634, 750 zosrts5O 2610 25001220 3550 3920 4545 s 5520

?277C 450 (.5.0 25-37 $9730 15955 'ho 425455 -(43 .5 455 54,1 459473.990 3805 05521555510 20 270 35404090 445 5015 2159 425 55.0 2552 12170 izz6o '44-541 645 444 447. -, 41.1 667 675637 752 72.1 746 777 2642 12170 1224,0 4,30 43? -555 440 -942 .. 451 612 656 -690 '75-746 - 044 1200 346 1560 1700 1050 -Eli' . .3170 2550 4020 25-52 111.40 11715 '6304,42- 4 440 65 .957 .4,73 540'709703 030 ISO 145 530 1720. 19402170 25252710 50359410 2555 4355 241.2 11124 11195 651 45245 ,,.G55 450 7 6407.0 '725 1020 114,5 1550 $495 1640 1850 .05 23 '21.10 232. 3.270 3690 80 2087* 41.5 640 2,50 17040 i7iSS !/tc .7.54 640447 .. 430 -')57z5'770 820 670 1314 1516 1741 1990 Fi"7'FW 5090 5892 4845 7902 2790 15(70 15550 .532 467-7.41 - . 1.47-634726770-8I4-54, 1250 .440 11.55 IllS - 4945 5040 6*90 7500 20575 47.5 o-o 2940 17090 17209 -5254,55 - . 478 .086-724770 1445 1707 1944 -. 5073 5986

20875 45,5 (.*O zo-r.o 170(0 7 .635 . . . 679-43.3

i105 1944 ...

'JWI

27-90 5920 14,019

..-

.

.-....

..

.- .. '700 1630 ISIS .. . . 2118 A 47.5 4,40 6340 11090 17205 '44 Sf03 .505 74 486 739 .790 '5*7 1294 148616901952 . .- 5155 .. 7095 23-96 17.590 11.482 .5 - - '5 .763.737799 451 1550 1595 . . . sos sseo oo T 29-05 14170 1421.0 . 475 499 37'D 71.7 (34 1920 1730 .. -- 4475 9150 6090 131,.' 7% 22-75 $0720 $3000 . . 4,46.713741735 .345 1450 $595 ' . '-4265 - 40 57(5 21185 44,5 4,4.0 Z960 17090 17205 Y23 476 427.161 . ' . 59. '70 .745-406.873 .300 1498 1709 .eso!' A- 5252 - 9 7301 '5530 11.030 424,434 - .- 675.584.741 159 -67.5 1229 1414, 1415 1453

fl'-

...

- 434') 9506977

?Z02A445 5.4-0 Z844 16550 i5..460 (39 620-52 . .

--

165 75G '706-OIl 1430 16401510 f11.I . .. ,... - .

2.2020 444 4,4.0 59-44 '4sso I(,,90.o V34 -9.90 . . . .- - 84C'B 7" 371 141.0 11.70 1295

(35)

TABLE 3 (b)Shlp (C)

and E.ILP. Values

,. j

i.

. ,

SHIP ® AT SPEED IN KNOTS

SHIP E.H.P.

AT 5PEED

1P4

KNOTS

10 10 II W. l 131 14 14*15 I5IG I4I7 r7*J8 ID 10611 11* 12 I2 13

13'6 14 14* IS II

I.4 17 17* 18

2W2C 405 04.0 5553 2954 10530 *7*00 *6480 $7200 Y#s 0*5 -2 -. 539495 435*35433*35 445 *367fl I'S '780 770 5405 L400 SOlO 1510 *530 845 2075 3045 2340 2530 53752625298012553748 2935 52063520 4490 427943945500 4375 5005 5778 57cc *5850 443451.9534900750 *590 *580 18*0 5050 2520555529009540 3590 4510 4830 22020 455 64.0 5955 r7100 F7300 Yto 555 045455495 724 1480 US *450 2*60 5445 2750 3045 3590 5510 4345 9075 5552 455 54.4 29-30 rl,Oo 57500'it* IS . 55 - - - 43945047577 '771 *550 *900 2,55 2455 87*0 3055 3525 3775 4520 3020 5510 2*25 479 590 2575 16200 53700 Y5, - 460470475487 72* 753904 *010 '905 5*59 5444 3743 5013 31105450 4250 4720 5430 4555 7270 2545* 425 55.0 2903 *720 12500 Y14 - 4*3 713 .753 4c1 443498 425910 1030 *253 4.45 553 *548 2075 580 21555051 355* 420049039150 9485708 25455455 5810 5202 8720 *5800 VeA - 743 995 .77 *754*781 8,3 *089 *245 1419 *418 5820 2473 5513 55232535 3400 2380 4520 5*90 2*40 525 53.59 30-IA 25*70 52520 155

.

-575 .579 OlSyso 759 177 1527 1755*20*4 55 551020*3 3555573* 49521490 5255585565477710 2131 4585 55055435 11780 *590 /e4 402 909 54.4 '724 -751 150 850 *009 lISt 508 *08 *553 5*00 64805790

.*!s;A

2483 900* 97*0 - 735 84 5,0 740 1150 *210 *509 !720 *990 8395 5920 5095 5540 9700 . 5 I . 95 9551 *80 *5*3 *555 5750 5929 1550 7380 1*i-.A 3095 8090 5'750 350 5114 990 859 1350 108 *750 5540 2500 '5730 1(4,sA *9-25 3*00 9520 455 560 0 620 780 920 lOIS *202 *479 1 5908 2579 2955 3080 24104 390 55.5 2465 50530 11000 %12 535 535 5 7*0 929 5154 1120 1314 58499058 2*55 524% 5550 *0209 .650 922 - 0751 2 784 591 793 950 5079 1289 5502*197 2072 5083 9500 32.0 -544 . 4*9 5100 580 759 9*4 1029 *250 1475 740 2089 24505 355* 555 245310950 11000 4s .411 0*4 43* 95 lo . 50 707 824 955 $121 ISIS 854885 8552 55.53 10110 070 420-02 ID - 736 582 SOS 817 *009*569 5524 7735 2*25 3093 9*90 92.0 .65344* 60* 782 895 1061 *234 *4491759 5055 5554F 455 09-059*45 *3930 *4000 /244*5 455 4,59 495. 0 5130 945 1119 5954 1465 171$ *9510 5850 27*5

2194A 426 55.9 14-82 9550 51900 41450 403 .- 506 533 727 3?? 9510 laOS 12891455 1725 3oll 1330 1753

Thd55,4 '7-4* 6200 O ..O *775-- 7*5 MO 930 1140 1320 15501780

1%314 15.41 ScoO ss 779.9*4 .0 700 830 5155 IllS 1345 55105750

0 4-77 7*00 7535 713 1754 .55 - 4%$ 670 702 920 $070 580 *4803555 l$'74 5100 3500 7*0 ... -. -. 444 46s 685 800 51*0 950 IllS *39*2 1305

(36)

TABLE 3

(c)S/iip © and

E.H.F. Values

_j 0.

SHIP

AT SPEED IN KNOTS

SHIP E.H.P AT SPEED

IN KNOTS

Io!4 liii'

I I'4 3 I3 14 14' IS I' 16 I6 17 I7J 18 IB

-IO II II 12

I24 3 I3

14 I4 IS ISZ 16 I6 17 I7 18 I8 2751* 46 64-0 52-28 19000 19200 '123 494 594 621 5858 1327 1517 1729 924 2532 19662927719 2829 16390 5480 410 411 - 958 . .- -857 .9.43 1230 1412 IBIS 1844 2100 I . . . 4758156955 6511 24-35 15720 13820 416 419 50 . I 424 493 1106 3269 452 1670 I --2I80

ItiJ-

6 5260 5222 7264 3450 !75I B 445 94-0 31-55 19220 19340 '7- .535 . . I 827 1901 1752 1974 2952 I SI 1 25-29 19453 16993 60 - -. 35 - 546 945 1197 18091827 20 2345 -

jl

60 6310 24-28 158458948 6906 101 509 1522 1510 1714 1837 2116 5881 97327988297 2781C 465 44-0 52-26 19850 14770 '/29 882 569

'...

- -837 959 1336 1514 1158 5004 2596

'ni1hii

379510485617 28-26 18813 6983 40i 6, - 14911 1268 1447 1644104$ 2125 2404 . 5,09 4168 7952 2428 14315 14515 443 4.4 . . 474 922 -852 1183 1158 1550 765 80- 2265 - JI IL I 7969748899 Z75I4'5 6.4-0 32-18 19830 19950 '/25 625 .954 435 543 878 tIll 2415 276 L'3 86018201 28-83 1704017150 .630 432 . 445 935 1309 1497 1709 1949 2405 . 9881 7160 242$ 1428014480 444 70 422 1199 1571 1567 1777 2011 2280 . .. 94.99575 27512 405 64-0 32zs 19305 19502 '/25 -631 -872 -. 458 . 1425 1633 16642120 241 2759 26-55 18(o43 19753 .95263 -41l0 - 467 1277 1464 p665 1639 2159 2442 5719 1284 24-U 13945 14083 42c 831 - '69 915 1144 iSup 1491 1594 1924 216$ 50569275 469 44-0 3228 19580 19700 158 554 583 - I 1244 492 1615 11931 9729559 . 3923 2826 1650514815 -375 584 - .5 - . 1177 1371 1590 1541 2129 1 .

'

3909 24.74 34143 14245 614 421 726 - 300 1124 1299 ISsI 1729 1994 2198- 6531 27516 448 5.4-0 99.25 (9790 19910 15 .955569 . 843 374 1453 37i7 1571 2117 2921 - 5054 55-55 1700517115 591 673 955 225 1419 1534187921527453 i - 406140 2428 14540 14440 632 291 - .' - 301 1151 1311 1511 1153 2051 7507- L21.L_k . 5511 5.91 27 446 150 3128 2259552525/29

1=° 7910

23'Ze 19190193,0 927

-

. -

Il

9-,JIWIi'i

. 5r.8S0890 2428 19105 18215 .89.555 - . - - -

k'i. i1'rh'rII

-.

I.lj5I10l.112

17475 486 75-0 32-28 1329522725 /29 .5,6 621 - . .

. j

J. . I 5881 !162

28-29 19399 19515 .ss.z2 - - . .

IL. IJ.j

!I 1iLi --' d

. SSS 61.95

24-58 l(.I6I6455

444!

- -

!

1! [l 1l !?1!

--

3917 2767c455 75032-28 2520025_320'/25 -554511 -

-

i4II-ttIjij

. . . 28-25 9340 20050 -582 155 - - . . I

!(.4J

. 61587206 2444 14815 16915 -612 U

- !l" -

jTB-- 55394890

(37)

TABLE 3 (d)Ship © and E.H. P. Values

0 z '

SHIP © AT SPEED IN KNOTS

5HIP EH.P. A

SPEED

IN KNOT5

7 7P, 8 8'k 9 9!4 10 bY2 II IIY2 12 I2' IS I3

14 7 7'a 8 8'Ie 9 9

10 1012 II Il'o IE I2 13 13'Ie 14

2412A *80 324.5 12(7 1420 (428 '/12 -546.463 .485 749 '7 773 82l 472 '57iii i.3. t,9 91 101 (25 154 188 2.29 582 344 435 568 7.88 1100

1100 1258 (544 .667-678-706753.766806-8559,2. 1.001-15 lu 180 74, 94 (*9

(47 I0

2I 274 535 4(6 545 748 (059 Z4Ii8 TSIM4 (80 32-83 7-25 (225 768 (420 774 (425 62 448 645 434 .454 841 -647 457 4 -914 .7)5 447 .755 44* 407 103 870 1-10 .958 (2.1 141 i-57 (-37 (.54, 4,8 SI 85 99 los (22 128 (49 155 181 (87 52.4 225 278

fli

344 33* 435 412. 570 527 795 675 1149 (100 1249 1257 .867 -673-699728 .744 -763 442 495 975 (iS 1-44(84 75 94 117 144 (75 2(8 26 325 405 524 766 ('06

T5IM4*8oA7.5- 760 767 -712-8(0 451 -859 895-924957100 1-07 I-IS I-5(, (57 65 81 (00 *23 (50 181 2(7 261 5(8 400 550 678

24I2c ISO 5295 (2-25 1450 1458

'lit

-642 -669480704 735 '746813 -878975 (-II (.35 1-73 SI 100 *24 (53 *67 228 880 347 439 575 785 1127

2595 (40 2G00 *00 732 738 Ao .4,70.707740 '776475 101 I-Il I-El 1-39 (-80 44 37 72 91 22 (65 5(2. 2.67 354 sts

?ASSA 210 35-Sc (400 2(52 2(62 '/13 745 -784.757967855 451 '9281-05 2*2 256 500 357 435 525 4,59 799

(2.00 864 1814, '760 -748 '799 410 -87.9o4963 -09 (93 255 276 357 397 479 350 741

24528 2(0 3650 140C 2*52 2162 V,s 7057(9744, .7 8 90$ I-OS 200 241 592 148 424 509 6(5 792

5437 200 238 (5-65 182.5 1837 'lit 455.6544894704435.751 -775 -88 875-94804 79 97 4)8 (44 178 22.0 572 532 407 506 633

2449 ZOo 32.55 *5-67 1825 857 'lie -391-597404451-450453.724.774 4594481-os 71 88 (09 (34 164, 504,256 3(4, 402 506 657

2470 200 32-58 15-57 (534 *844 Viz 417.441 -653-63440) .463497-7.47 -819 -952 (.05 78 92 III (37 *67 200 545 504 584 494 4,19

8-00 978 985 785-7984(4-815463440916-380.971 I-pS I-Il 63 18 97 (IS 144, *77 3(2 252 100 961 443.

54.48 (40 27-oo 952 758 144 io -726.744987.507-867 950 48 40 75 95 152 (57

875 664 672 -747-760980522.883-970 46 57 72 91 ((6, (49

T2'M'i4aA7-25 555 559 804890669446582 I-CC I-IC (-22 43 54 68 55 (07 135 171 5(9

2468 3(0 44-85 18575 554,0 5395 '4i (.81 -673 43 4.46*705 .713 -745 .725753 '774 '179 44o7 446-928 IG'1 205 249 3*0 373 442 517 (.04 725 435i 973 1150 285 1506 (940

5479i* 3*0 483 18375 534,0 3594, )8 .665 -858 653 652453 4644.77 49o7o6 '124 '1467748W 463 14,5 200 542 208 34.4 4)0 440 575 (.11 793 928 1088 1298 (565

2478e 310 4043 *8575 2540 53% 9 .666454649446549-459475 -685 -499 711 '759'753 -792 -840 165 199 239 286 341 407 485 574 670 779 907 *059 (854 489

5170 (90 30-3 (3-05 1545 (534 'lie -497.717 969.7794(7-897 104 (-II - (*2 (55 (72 2*0 557 72.6 437 528

2372A (90 32.0 *5-05 (440 (541 Vit -720742 779 -806-853418 (-06 i-us *20 (48 184 254 210 45 440 555

25728 (90 52-0 *5-05 I4, 1624 Yig -(.58.679404715764465.948-957 (09 (55 (4,4 196 745 .523 409 470

23725 (90 33.0 *5-05 1625 1654 Vt .47(.-697722 .741 17' -843-893 957 113 *59 (70 2o6 250 509 388 475

53720 (90 12-0 (305 (654 (635 i/ia 490709965 750 -$ . lIt 142 *74 211 254 320 44o 95

Cytaty

Powiązane dokumenty

szczęki, brak wędzidełka wargi górnej oraz brodawki przysiecznej. Intraoral image, median central incisor of

Modlitwa biednych w intencji ofiarodawców wyrasta zatem z wiary w potęgę Bożej Opatrzności, która obja- wiła się dobrocią bogatych ludzi, a także z poczucia wdzięczności

Wizja to jest dość przewrotna i jednostronna, gdzie świętość nie jest definiowana, jako wzór cnót, lecz jako prawo do tak zwanej wolności, prawo do robienia

uwadze, 6 grudnia 1937 roku erygował przy die- cezjalnym Instytucie Akacji Katolickiej w Płocku Instytut Wyższej Kultury religijnej (IWKr) jako ko- ścielną jednostkę prawną

We find no m ention in the Lithuanian Piarists re­ commended reading list of works from modern philosophy, general geography and politics, general and Polish

Próżno tych spraw doszukiwać się w literaturze, bo można się z nimi spotkać jedynie w archiwalnych materiałach.. Te anali- tyczne rozważania wybiegają poza suche,

Moreover, the public sector marketing activities influence positively the Estonian Road Administration e-service usage percentage from all of the ERA’s

De provincie heeft geen specifiek beleid voor historische lijnen maar wil deze lijnen, net als de overige cultuurhistorische waarden, behouden, verder ontwikkelen