• Nie Znaleziono Wyników

(slides)

N/A
N/A
Protected

Academic year: 2021

Share "(slides)"

Copied!
34
0
0

Pełen tekst

(1)

Ideals of cubic algebras and an

invariant ring of the Weyl

algebra

talk at the Antwerp Mini Workshop on Noncommutative Geometry Koen De Naeghel∗ University of Hasselt January 18, 2006 ∗website: http://alpha.luc.ac.be/ elucp1324

(2)

Based on joined work with N. Marconnet math.AG/0601096

Contents:

1. Introduction and main results 2. Noncommutative quadrics

3. From reflexive ideals to line bundles

4. From line bundles to quiver representations 5. Generic type A

6. The enveloping algebra 7. Hilbert series of ideals

(3)

1. Introduction and main results

• k = C field of complex numbers • First Weyl algebra

A1 = khx, yi/(xy − yx − 1) Question: describe right ideals of A1

• Cannings and Holland (1994), Wilson (1998) R(A1) = { right A1-ideals}/=←→ a

n

Cn where

Cn={(X,Y)∈ Mn(k)2| rk(YXXYI)≤ 1}/Gln(k) is the n-th Calogero-Moser space

(4)

Le Bruyn (1995) proposed an alternative method • Beilinson (1979) Db(coh(P2)) RHomP2(E,–) > < –⊗LE Db(mod(∆))

where E = O(2) ⊕ O(1) ⊕ O and ∆ is the quiver −2 X−2 > Y−2 > Z−2 > −1 X−1 > Y−1 > Z−1 > 0

with relations reflecting the relations in k[x, y, z]

     Y−1X−2 = X−1Y−2 Z−1Y−2 = Y−1Z−2 X−1Z−2 = Z−1X−2

• Hulek, Barth (1977-1980): (stable) vector bundles on P2 are determined by certain (stable) representations of the quiver ∆

(5)

• The picture survives when we replace

– k[x, y, z] by homogenized Weyl algebra

H = khx, y, zi .(zx − xz, zy − yz, yx − xy − z2) a noncommutative analogue of k[x, y, z]

– P2 by Proj H (sense of Artin and Zhang) – relations of ∆ by the ones induced by H

• Equality A1 = H[z−1]0 induces bijection between sets

R(A1) = { right A1-ideals}/=

and

R(H) = { reflexive graded right H-ideals }/=,sh

They correspond to “line bundles” on P2

q

By derived equivalence line bundles are de-termined by certain stable representations of the quiver ∆

(6)

• Berest and Wilson (2002) used these ideas to reprove

Theorem A.

Aut A1 has a natural action on R(A1) – orbits indexed by N,

– the n-th orbit is in bijection with n-th Calogero-Moser space

Cn={(X,Y)∈ Mn(k)2| rk(YXXYI)≤ 1}/Gln(k) smooth connected affine variety of

(7)

There are many more k-algebras inducing a P2q. Interesting class: by Artin and Schelter (1986)

• Artin-Schelter algebra of dimension 3 is (i) graded k-algebra A = k ⊕ A1 ⊕ A2 ⊕ . . .

global dimension 3

(ii) A has polynomial growth

(iii) A is Gorenstein, i.e. for some l ∈ Z ExtiA(kA, A) ∼=

(

Ak(l) if i = 3,

0 otherwise.

• Classified by Artin, Tate and Van den bergh (1990) and Stephenson (1994).

• They are all noetherian domains GK-dim 3 have all expected nice homological proper-ties

(8)

• Assume A generated in degree one. Two possibilities:

– A is quadratic

0 → A(−3) → A(−2)3 → A(−1)3 → A → kA → 0

hA(t) = X

n

dimk Antn = 1

(1 − t)3 – A is cubic

0 → A(−4) → A(−3)2 → A(−1)2 → A → kA → 0

hA(t) = X

n

dimk Antn = 1

(1 − t)2(1 − t2)

• Generic class: called type A algebras quadratic:      ayz + bzy + cx2 = 0 azx + bxz + cy2 = 0 axy + byx + cz2 = 0 cubic: ( ay2x + byxy + axy2 + cx3 = 0 ax2y + bxyx + ayx2 + cy3 = 0 where a, b, c ∈ k generic.

(9)

• A is determined by a triple (E, σ, j) where either – A is linear: j : E ∼= P2 if A is quadratic j : E ∼= P1 × P1 if A is cubic – A is elliptic: j : E ,→ P2, E divisor degree 3 if A is quadratic j : E ,→ P1×P1, E divisor bidegree (2, 2) if A is cubic

Generic case: A is type A and E is smooth elliptic curve (called generic type A)

• Define the set

(10)

• Van den Bergh and De Naeghel (2002) Theorem B.

Let A be elliptic quadratic and o(σ) = ∞.

Then the set R(A) is in bijection with `n∈NDn where Dn is smooth locally closed variety dimension 2n.

If A is of generic type A then Dn is affine. • Similar result by Nevins and Stafford (2002). • Aim of the talk:

analogue of Theorem B for cubic A.

N := {(ne, no) ∈ N2 | ne − (ne − no)2 ≥ 0} Theorem 1.

Let A be elliptic cubic and o(σ) = ∞. Then the set R(A) is in bijection with

`

(ne,no)∈N D(ne,no) where D(ne,no) is smooth

locally closed variety of dimension 2(ne − (ne − no)2).

If A is of generic type A then D(ne,no) is affine.

(11)

• Application: enveloping algebra

Hc = khx, y, zi/(yz − zy, xz − zx, xy − yx − z)

= khx, yi/([y, [y, x]], [x, [x, y]])

Let ϕ ∈ Aut(A1), ϕ(x) = −x, ϕ(y) = −y. Equality Ahϕi1 = Hc[z−1]0 induces bijection between sets

R(Ahϕi1 ) = { right Ahϕi1 -ideals}/=

and

R(Hc) = { reflexive graded right Hc-ideals }/=,sh

By Theorem 1 and further investigation Theorem 2. The set R(Ahϕi1 ) is in bijection with `(n e,no)∈N D(ne,no) where D(ne,no) = {(X,Y,X0,Y0) ∈ Mn e×no(k)2×Mno×ne(k)2 | Y0X X0Y = I and rank(YX0XY0I) ≤ 1} /Gln e(k) × Glno(k)

are smooth affine varieties of dimension 2(ne − (ne − no)2).

(12)

2. Noncommutative quadrics • A cubic Artin-Schelter algebra

graded k algebra A = k ⊕ A1 ⊕ A2 ⊕ . . . Hilbert series 1 + 2t + 4t2 + 6t3 + 9t4 + . . . • graded right A-module M = ⊕i∈ZMi then

degree 0 ↓

M = · · · ⊕ M−1⊕M0 ⊕ M1 ⊕ . . . M (1) := · · · ⊕ M0 ⊕M1 ⊕ M2 ⊕ . . . • - GrMod(A) graded right A-modules

- Tors(A) direct limits of fdim modules

- GrMod(A) −→ GrMod(A)/ Tors(A) = Tails(A)π M 7→ M

A 7→ O

- M 7→ M (1) induces sh : M 7→ M(1)

- grmod(A), tors(A), tails(A) noeth. obj. - X := Proj(A) := (tails(A), O, sh)

(13)

A is determined by triple (E, σ, j)

• P = ⊕nPn ∈ grmod(A) is a point module if

A  P and hP(t) = X n dimk Pntn = 1 1 − t Choosing a k-basis e0, e1, . . . in P0, P1, . . . ( e0 · x = α0e1 e0 · y = β0e1 , ( e1 · x = α1e2 e1 · y = β1e2 , ( e2 · x = α2e3 e2 · y = β2e3 , . . . for some αi, βi ∈ k. If r is relation in A then e0 · r = 0. Leads to equation in (α0, β0), (α1, β1)

E is the zero locus in P1 ×P1 of equation. • Example: if A is type A then E is

(c2−b2)α0β0α1β1+aα20(cα21−bβ12)+aβ02(cβ12−bα21) = 0 • Example: if A = Hc enveloping algebra

then E is

0β1 − β0α1)2 = 0

the double diagonal 2D on P1 × P1

• Point module P 7→ p closed point in E P (1)≥0 7→ σ(p)

(14)

Artin, Tate and Van den Bergh:

A −→ (E, σ, j) −→ B = B(E, σ, j) • A linear: B ∼= A

A elliptic: B ∼= A/gA with g ∈ A4 normal • Tails B and Qcoh E are equivalent

Tails A −⊗AB −→ ←− (−)A Tails B ˜ (−) −→ ←− Γ Qcoh E > i∗ < i∗

i∗ is right exact (restriction functor) i∗ is exact

(15)

3. From reflexive ideals to line bundles

• A cubic Artin-Schelter algebra, X = Proj A • For I ∈ grmod(A) graded right ideal

m 7→ dimk Am − dimk Im

is linear in m.

• For J ∈ grmod(A) of rank one, ∃! d ∈ Z s.t. dimk Am − dimk J(d)m =

(

ne for m  0 even no for m  0 odd for some integers ne, no. We say

- J(d) is normalized

- (ne, no) are the invariants of J

• For ne, no ∈ Z define full subcategory of

grmod(A)

R(ne,no)(A) = {J ∈ grmod(A) | J rank one, reflexive, normalized with invariants (ne, no)}

(16)

• Apply exact quotient functor

π : grmod(A) → coh(X) I 7→ I

Let R(ne,no)(X) be image of R(ne,no)(A). Objects in R(ne,no)(X) are called

normalized line bundles.

• R(ne,no)(A) and R(ne,no)(X) are groupoids • Natural bijection between set

R(A) = { reflexive graded right A-ideals }/=,sh

and isoclasses of a (ne,no)∈Z2 R(ne,no)(A) and isoclasses of a (ne,no)∈Z2 R(ne,no)(X)

(17)

• For I ∈ R(ne,no)(X) its cohomology groups Hi(X, I) := ExtiX(O, I)

are partially computed (for I 6∼= O)

l . . . −5 −4 −3 −2 −1 0 1 . .

dimk H0(X, I(l)) . . . 0 0 0 0 0 0 ∗ . .

dimk H1(X, I(l)) . . . ∗ ne − 1 no ne no ne − 1 ∗ . .

dimk H2(X, I(l)) . . . ∗ 0 0 0 0 0 0 . .

Thus ne > 0, no ≥ 0 and easy to prove

R(0,0) = {O}

• By standard computation on the Euler form dimk Ext1X(I, I) = 2(ne − (ne − no)2)

hence for any integers ne, no

R(ne,no)(X) 6= ∅ ⇒ (ne, no) ∈ N Converse also true! See below.

(18)

4. From line bundles to quiver representa-tions

• A cubic Artin-Schelter algebra, X = Proj A • Due to a Theorem of Bondal (1990)

Db(coh X) RHomX(E,–) > < –⊗LΓE Db(mod Γ)

where E = O(3) ⊕ O(2) ⊕ O(1) ⊕ O and Γ is the quiver

−3 X−3 > Y−3 >−2 X−2 > Y−2 >−1 X−1 > Y−1 >0

with relations reflecting the relations in A.

(19)

Assume (ne, no) 6= (0, 0). Fix I ∈ R(ne,no)(X).

• Consider I as complex of degree zero

• By previous its image is in degree one RHomX(E, I) = M [−1]

where M = Ext1X(E, I)

• M is given by a representation of Γ H1(X, I(−3)) X > Y >H 1(X, I(−2)) X0 > Y0 >H 1(X, I(−1)) X00 > Y00 >H 1(X, I)

dimM = (no, ne, no, ne − 1) and relations.

For example, if A is type A then



X00 Y 00  · aY 0Y + cX0X bX0Y + aY 0X bY 0X + aX0Y aX0X + cY 0Y

!

(20)

How is “I is line bundle” translated? • Let P be point module, P = πP .

Cohomology groups given by

l . . . −5 −4 −3 −2 −1 0 1 . . .

dimk H0(X, P(l)) . . . 1 1 1 1 1 1 1 . . . dimk H1(X, P(l)) . . . 0 0 0 0 0 0 0 . . . dimk H2(X, P(l)) . . . 0 0 0 0 0 0 0 . . .

P determines the representation of Γ k α−3 > β−3 >k α−2 > β−2 >k α−1 > β−1 >k where p = ((α0, β0), (α1, β1)) ∈ E σip = ((αi, βi), (αi+1, βi+1))

• I is line bundle means Ext1X(P, I) = 0 0 = Ext1X(P, I) = H0(RHomX(P, I[1]))

= H0(RHomΓ(p, M )) = HomΓ(p, M )

(21)

• Trivially,

Hom(M, p) = H0(RHomΓ(M, p))

= H0(RHomX(I[1], P)) = 0

• These properties characterize M . Theorem.

Let A be elliptic cubic and o(σ) = ∞. Then equivalence R(ne,no)(X) Ext1X(E,–) > < TorΓ1(–,E) C(ne,no)(Γ) where C(ne,no)(Γ) = {M ∈ mod(Γ) | dimM = (no, ne, no, ne−1) HomΓ(M, p) = HomΓ(p, M ) = 0 ∀p ∈ E}

(22)

Pick up another idea of Le Bruyn. I ∈ R(ne,no)(X) is determined by both H1(X, I(−3)) X > Y >H 1(X, I(−2)) X0 > Y0 >H 1(X, I(−1)) X00 > Y00 >H 1(X, I) H1(X, I(−4)) 0X > 0Y >H 1(X, I(−3)) X > Y >H 1(X, I(−2)) X0 > Y0 >H 1(X, I(−1))

So I is actually determined by repr. M0

H1(X, I(−3)) X > Y >H 1(X, I(−2)) X0 > Y0 >H 1(X, I(−1))

of the full subquiver Γ0 of Γ −3 X−3 > Y−3 >−2 X−2 > Y−2 >−1

(23)

Characterizing properties of M0?

• As M0 is the restriction of M :

certain rank condition involving X, Y, X0, Y 0 For example, if A is type A then

 X00 Y 00  · aY 0Y + cX0X bX0Y + aY 0X bY 0X + aX0Y aX0X + cY 0Y ! = 0 yields rank aY 0Y + cX0X bX0Y + aY 0X bY 0X + aX0Y aX0X + cY 0Y ! ≤ dim ker  X00 Y 00  = 2no − (ne − 1) • M0 is θ-stable for θ = (−1, 0, 1). Indeed:

∀I ∈ R(ne,no)(X) : ∃ v ∈ A2 : HomX(I, π(A/vA)) = 0 ⇒ HomΓ0(M0, Q0) = 0

⇒M0 ⊥ Q0

(24)

• These properties characterize M0 for (ne, no) 6= (1, 1)

Theorem.

Let A be elliptic cubic and o(σ) = ∞. Then equivalence C(ne,no)(Γ) Res > < Ind D(ne,no)(Γ0) where D(ne,no)(Γ0) = {F ∈ mod(Γ0) | dimF = (no, ne, no),

F is θ-stable, dimk(Ind F )0 ≥ ne − 1}

• Put α = (no, ne, no) and

D(ne,no) := {F ∈ Repα(Γ0) | F ∈ D(ne,no)(Γ0)}// Glα(k) Locally closed follows.

Smooth of dimension 2(ne − (ne − no)2) is proved.

(25)

5. Generic type A

Assume A is generic type A.

`

(ne,no) R(ne,no)(X) equivalent to

{M ∈ coh(X) | i∗M is line bundle on E deg. zero} By picking a suitable line bundle V on E

∀I ∈ R(ne,no)(X) : RHomE(i∗I, V) = 0 ⇒ RHomX(I, i∗V) = 0

⇒ RHomΓ0(M0, V 0) = 0

⇒M0 ⊥ V 0

for some representation V 0 ∈ mod(Γ0). Leads to

D(ne,no)(Γ0) = {F ∈ mod(Γ0) | dimF = (no, ne, no),

F ⊥ V 0, dimk(Ind F )0 ≥ ne − 1} As {F ∈ Repα(Γ0) | F ⊥ V 0} is affine

(26)

6. The enveloping algebra

Assume A = Hc is the enveloping algebra

Hc = khx, y, zi/(yz − zy, xz − zx, xy − yx − z) = khx, yi/([y, [y, x]], [x, [x, y]])

Work with Ered = D, the diagonal on P1 × P1.

`

(ne,no) R(ne,no)(X) equivalent to

{M ∈ coh(X) | i∗M line bundle on D deg. zero} ={M ∈ coh(X) | i∗M ∼= OD}

Translates into

∀I ∈ R(ne,no)(X) : HomX(I, π(A/zA)) = 0 ⇒ HomΓ0(M0, Q0) = 0 ⇒M0 ⊥ Q0 Leads to D(ne,no)(Γ0) = {F ∈ mod(Γ0) | dimF = (no, ne, no), F ⊥ Q0, dimk(Ind F )0 ≥ ne − 1} Thus D(ne,no) is affine.

(27)

We now simplify this expression. Let F ∈ Repα(Γ0) i.e.

kno X > Y >k ne X0 > Y 0 >k no • F ⊥ Q0 means Y 0X −X0Y is an isomorphism Defining ( X = X Y = Y and ( X0 = (Y 0X − X0Y )−1X0 Y0 = (Y 0X − X0Y )−1Y 0 this means YX0 X0Y0 = I

• dimk(Ind F )0 ≥ ne − 1 means rank Y 0Y X0Y − 2Y 0X

Y 0X − 2X0Y X0X

!

≤ 2no−(ne−1)

(28)

7. Hilbert series of ideals

A is three-dimensional Artin-Schelter algebra. Question.

If I = ⊕nIn ∈ grmod(A) is a graded right ideal, how does hI(t) = Pn dimk Intn look like?

• Macaulay (1927): for A = k[x, y, z] Restrict to pd I ≤ 1.

m 7→ dimk Am − dimk Im is linear in m, i.e. ∃! d ∈ Z s.t.

dimk Am − dimk I(d)m = n for m  0 for some integer n.

In terms of formal power series hI(d)(t) = hk[x,y,z](t) − s(t) 1 − t = 1 (1 − t)3 − s(t) 1 − t

(29)

Turns out s(t) is a Castelnuovo polynomial s(t) = 1 + 2t + 3t2 +· · · + utu−1+ sutu +· · · + svtv

u ≥ su ≥ . . . ≥ sv ≥ 0

for some integers u, v ≥ 0. s(1) = n ≥ 0.

Visualized in form of a stair Example:

1 2 3 4 5 5 3 2 1 1 1 1

Answer (commutative case). h(t) ∈ Z((t)) is of the form h

I(d)(t) for some

graded ideal I with pd I ≤ 1 if and only if

h(t) = 1

(1 − t)3 −

s(t) 1 − t

(30)

• Van den Bergh and De Naeghel (2004): Answer (quadratic case).

Let A be quadratic Artin-Schelter algebra. h(t) ∈ Z((t)) is of the form h

I(d)(t) for

some graded right ideal I with pd I ≤ 1 iff

h(t) = 1

(1 − t)3 −

s(t) 1 − t

for some Castelnuovo polynomial s(t).

If in addition A is elliptic and o(σ) = ∞ then I may be chosen reflexive.

(31)

• What is the answer for cubic A? As indicated above: ∃! d ∈ Z s.t. dimk Am − dimk I(d)m =

(

ne for m  0 even

no for m  0 odd for some integers ne, no ≥ 0.

In terms of formal power series

hI(t) = 1

(1 − t)2(1 − t2) −

s(t) 1 − t2 for some s(t) = Pi siti ∈ Z[t, t−1]

with Pi s2i = ne and Pi s2i+1 = no.

Answer (cubic case).

Let A be cubic Artin-Schelter algebra. h(t) ∈ Z((t)) is of the form h

I(d)(t) for

some graded right ideal I with pd I ≤ 1 iff

h(t) = 1

(1 − t)2(1 − t2) −

s(t) 1 − t2 for some Castelnuovo polynomial s(t).

If in addition A is elliptic and o(σ) = ∞ then I may be chosen reflexive.

(32)

Example:

1 2 3 4 5 5 3 2 1 1 1 1

P

i s2i = 14 even weight

P

i s2i+1 = 15 odd weight.

As a consequence, for all integers ne, no

R(ne,no)(X) 6= ∅ ⇔ ∃ Castelnuovo polynomial s(t) with even weight ne and odd weight no But recall

R(ne,no)(X) 6= ∅ ⇒ (ne, no) ∈ N

where

N = {(ne, no) ∈ N2 | ne − (ne − no)2 ≥ 0}

For (ne, no) ∈ N easy to construct s(t), hence R(ne,no)(X) 6= ∅ ⇔ (ne, no) ∈ N

(33)

We end with combinatorical by-product. Shift rows of s(t) to left

For any partition λ, put draughts colouring. Number of  is called even weight of λ

Number of  is called odd weight of λ Bijection between

{Castelnuovo polynomials

with even weight ne and odd weight no} and

{partitions in distinct parts

(34)

Theorem. Let ne, no ∈ N. There is a partition

λ in distinct parts with even weight ne and odd

weight no iff

ne − (ne − no)2 ≥ 0

Special case of Chung’s Conjecture (1951) Proved by G. de B. Robinson (1951)

In particular, the number of such partitions λ is the number of partitions of ne − (ne − no)2. We may extend Theorem to all partitions

Cytaty

Powiązane dokumenty

The semisimple Lie algebras are classified by Dynkin diagrams or, equivalently, by Cartan matrices.. Weyl showed that if g is semisimple then the category mod g of finite

In other words, the above theorem says that the ring of constants with respect to a locally nilpotent linear k-derivation of k[x 1 ,. It is true also if the charac- teristic

W utworze Barbara jeszcze Gasztołdowa żona pojawiają się praktyki, które utwierdzają androcentryczny porządek świata, a przejawiają się w kontekście działań kobiet

30 km/s od wartości odczytanych z wykresu, czyli po odjęciu prędkości radialnej tego układu względem Słońca.. Ponieważ prędkości orbitalne obu gwiazd maja ten sam kierunek

W zadaniu należy obliczyć wartość kąta γ, czyli wartość elongacji Wenus dla momentu, w którym planeta osiąga stanowisko. Kąt β określa wartość chwi- lowej

Formulating an effective public private Partnership policy for housing provision in Nigeria urban centres: A conceptual approach.. Adediran (Eds.), Proceeding of 9th cidb

27 W praktyce n aw et skom pletow anie składu dziew ięciu bezstronnych i niezależnych sę­ dziów Izby Apelacyjnej okazało się niezw ykle trudnym zadaniem.

Uczniowie doskonale wiedzą, Ŝe jesteśmy zbyt słabi, bojaźliwi, bezradni (…), Ŝe nie odwaŜymy się nawet wystawić oceny nagannej, na jaką ewidentnie zasługują”