• Nie Znaleziono Wyników

Ultra-fast wind/EDR monitoring algorithms and their performances

N/A
N/A
Protected

Academic year: 2021

Share "Ultra-fast wind/EDR monitoring algorithms and their performances"

Copied!
37
0
0

Pełen tekst

(1)

monitoring algorithms

& their performances

23/04/2015

NLR

Amsterdam

(2)

2

/

2

/

Work has been done in the framework of the EU FP7 program,

the UFO project.

Presentation contributors: Albert Oude Nijhuis, Agnes

Dolfi-Bouteyre, Cedric Rahatoka, Ludovic Thobois, Richard Wilson

(3)

Introduction and motivation

Contemporary EDR/wind retrieval methods

EDR from radar and lidar profilers

EDR/wind from scanning lidar

EDR/wind from scanning radar

Wind vector retrieval development

Conclusions

(4)

4

/

4

/

We would like to improve wind vector/turbulence intensity

retrievals and improve wake vortex monitoring.

Introduction and motivation

Improve

turbulence

retrievals

Improve

wake vortex

monitoring

Improve

wind

retrievals

Evaluation of

contemporary

methods

New methods?

Improve

lidar/radar

technology

Evaluation of

contemporary

methods

(5)

Instruments at the Toulouse trials for remote sensing of

turbulence intensity / wind vectors.

Windcube V2

UPMC Radar

Scanning

windcubes

Thales X-Band

weather radar

Leosphere

windcube

profiler

X-band

Doppler radar

profiler from

LATMOS

(UPMC)

Leophere

Windcube UFO

- Glide slope

or

- Air volume

Scanning at

three

elevations.

- Air volume

(6)

6

/

6

/

Wind vector retrieval

We measure Doppler velocities, which are radial velocities along the

line of sight.

Radar/Lidar Doppler velocities within an analysis volume

are converted into a wind vector.

Wind field is assumed to be linear.

Wind field is retrieved by

a least squares fit or;

by single value decomposition.

Figure adapted from `Doppler radar and

weather observations’ (Doviak and Zrnic, 2006)

𝒗 𝑥, 𝑦, 𝑧 = 𝒗 𝑥

0

, 𝑦

0

, 𝑧

0

+

𝜕𝒗

𝜕𝑥

(𝑥 − 𝑥

0

)

+

𝜕𝒗

𝜕𝑦

(7)

Turbulence intensity retrieval

Turbulence is quantified by the Eddy dissipation rate (EDR)

(8)

8

/

8

/

Turbulence intensity retrieval

EDR

can be derived from velocity measurements from radar, lidar or

sonic anemometers.

EDR

retrievals

A sequence

of velocities

Doppler

Spectral

width

Power spectrum

Structure function

Variance

More processing steps,

e.g. Doviak (2006) / White

(1999).

(9)

Profilers at the Toulouse trials

CURIE: a X-band Doppler radar from LATMOS (UPMC)

Leosphere WindCube 7v2: a Doppler lidar profiler

Doppler spectra are obtained each 6 s (radar) or 0.8 s (lidar)

Measurements consist in backscattered power,

(10)

10

/

10

/

WindCube 7v2 lidar profiler

Different methods show consistency.

Vertical and off-vertical velocity

variances

=> isotropic fluctuating field

Good agreament between different

EDR estimates

(here total variance and spectral

level).

(11)

Curie radar profiler

Tilme-height plot showing the diurnal cycle of turbulence activity during the

Toulouse ATB trial as observed by CURIE radar: Cn2 (top), vertical wind

(12)

12

/

12

/

Comparison of radar and lidar profilers

Time series of EDR estimates from radar (blue) and lidar (red) measurements

during day-time.

Diurnal cycle of turbulence activity observed simultaneously by radar (left)

and lidar (right).

(13)

Remarks on EDR from profilers

EDR from radar and lidar profilers show consistency.

Some discrepancies still need to be clarified (likely related to low signal

to noise ratio).

The ability of these instruments to measure turbulence intensity in the

atmospheric boundary layer during non rainy periods is clearly

demonstrated.

(14)

14

/

14

/

Lidar Scanning strategy

3D WIND

Windcube

UFO

EDR/wind from scanning lidar

Volume Wind Measurements with UFO Lidar

Provide 2D Wind measurements every 500m from the ground to 500m of

(15)

10

8

6

4

2

0

2

4

6

8

10

0

50

100

150

200

250

300

350

400

450

500

Distance from Lidar (km)

H

ei

g

h

t

(A

G

L

m

)

Power Law

Extrapolation

Illustration: Artificial Terrain

Spatial Interpolation/

Power Law

Interpolation

Cross-sectional View

Legend: Zones of Interpolation

**Buildings near the immediate vicinity

of lidar, obstructed the lower two

elevation angle scans

Lines indicate various

elevation angles

2,5°

20°

30°

Volume Wind Measurements with UFO Lidar

Methodology used for retrieving 2D wind vectors according to available

(16)

16

/

16

/

05/05/2014 – 11h02

5x PPI of Radial data

8x CAPPI of 2D Winds

Volume Wind

Algorithm

20°

22m

87m

217m

347m

477m

EDR/wind from scanning lidar

Volume Wind Measurements with UFO Lidar

(17)

Glide Path Wind Measurements with UFO Lidar

Windcube

UFO

(18)

18

/

18

/

7x part PPI of Radial data

2D Winds along glide path

Glide Path Wind

Algorithm

EDR/wind from scanning lidar

Glide Path Wind Measurements with UFO Lidar

(19)

EDR from azimuthal structure function

-10000

-5000

0

5000

-6000

-4000

-2000

0

2000

4000

6000

15-Apr-2014 09:19:39

-6

-4

-2

0

2

4

Vr (m/S)

Azimuthal structure function

07:12 08:10 09:09 10:08 11:07 12:06 13:05 14:04 15:03 16:02

0

0.1

0.2

0.3

0.4

Time

ED

R

1

/3

(

m

2

/3

.s

-1

)

averaged over 10 mn, no error terms 24-Apr-2014... : EDR1/3 z=0050 m to0100 m z=0100 m to0150 m z=0150 m to0200 m z=0200 m to0250 m z=0250 m to0300 m z=0300 m to0350 m z=0350 m to0400 m

EDR1/3 (m2/3.s-1)averaged over 10 mn, no error terms 24-Apr-2014... : EDR1/3

a

lt

it

u

d

e

(m

)

time

08:12

09:09

10:07

11:04

12:01

12:59

13:56

14:53

50

100

150

200

250

300

350

0

0.05

0.1

0.15

0.2

0.25

0.3

EDR1/3 (m2/3.s-1) 24-Apr-2014. EDR1/3 (m2/3.s-1) averaged over 10 mn, no error terms

Azimuth from 47° to 293°

Elevation = 6°

0

100

200

300

400

500

600

700

800

0

0.05

0.1

0.15

0.2

0.25

15-Apr-2014 09:14:47 averaged 10 mn

m

m

²/

s

²

EDR 1/3 = 0.0476 m 2/3. s-1

L0 = 505 m

(20)

20

/

20

/

EDR from azimuthal structure function

EDR^1/3 (m2/3.s-1) averaged over 10 mn, no error terms 06-May-2014

a

lt

it

u

d

e

(m

)

time

07:00

08:01

09:02

10:02

11:03

12:04

13:04

14:05

15:06

16:06

50

100

150

200

250

300

350

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

EDR^(1/3) (m2/3.s-1)

06:00

0

06:58

07:57

08:56

09:55

10:54

11:53

12:52

13:51

14:50

15:49

16:48

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

ED

R

1

/3

(

m

2

/3

.s

-1

)

06-May-2014... : EDR1/3 averaged over 10 mn, no error terms

z=0050 m to0100 m

z=0100 m to0150 m

z=0150 m to0200 m

z=0200 m to0250 m

z=0250 m to0300 m

z=0300 m to0350 m

z=0350 m to0400 m

0.1

0.2

0.3

0.4

0.5

ED

R

1

/3

(

m

2

/3

.s

-1

)

16-Apr-2014... : EDR1/3 averaged over 10 mn, no error terms

z=0050 m to0100 m

z=0100 m to0150 m

z=0150 m to0200 m

z=0200 m to0250 m

z=0250 m to0300 m

z=0300 m to0350 m

z=0350 m to0400 m

16-Apr-2014. EDR1/3 (m2/3.s-1)averaged over 10 mn, no error terms

a lti tu d e (m) 50 100 150 200 250 300 350 0.05 0.1 0.15 0.2 0.25 0.3 EDR1/3 (m2/3.s-1)

(21)

Remarks on EDR/wind from scanning lidar

Wind vectors can be retrieved in the glide path.

EDR from azimuthal structure function gives a consistent picture

(22)

22

/

22

/

Obtaining EDR from radar.

Radar Doppler velocity variance / spectral width is a combination of

factors.

(23)

Validation of EDR by big data

144 days of EDR values compared with 80 parameters at meteorological

supersite in Cabauw.

Small scale effects (DSD, drop inertia) on retrieved EDR mitigated by

using a large footprint.

Comparison of EDR from vertically profiling radar (TARA) shows good

agreement with sonic anemometer in convective mixed boundary layer.

Comparison of EDR fails in nocturnal boundary layer, when

stratification is important.

January 19

th

, 2012

(24)

24

/

24

/

X-Band Radar : Analysis - 24/04/2014

2D Wind Field (top) and EDR spectral width Retrieval (bottom)

EDR value (in dB)

Elevation : 3.5°

Elevation : 5°

Elevation : 6.5°

Wind main direction

Heading ~0°

Wind main radial velocity ~8m/s

(25)

Unrealistic high EDR values

Elevation : 5°

Elevation : 6.5°

2 wind main directions

Wind radial velocity span : 0 to 20m/s

Wind main direction : -50° wrt north

Elevation : 3.5°

X-Band Radar : Analysis - 06/05/2014

2D Wind Field (top) and EDR spectral width Retrieval (bottom)

EDR value (in dB)

(26)

26

/

26

/

EDR/wind from scanning radar

X-Band Radar : Analysis - 06/05/2014

For a large footprint, the effects of drop size distribution, inertial effects

are of less importance. Here a sequence of mean Doppler velocities is

used.

EDR is retrieved from velocity variance, 2nd and 3rd order structure

functions.

(27)

Collaborative Radar/Lidar Wind Monitoring in Glideslope

RADAR

LIDAR

RADAR

LIDAR

06/05/2014

No rain,

cloudy conditions

24/04/2014

Raining, strong winds

(28)

28

/

28

/

EDR from radar and lidar profilers

Remarks on EDR from scanning radar and lidar

With EDR from spectral width mostly realistic EDR values are found but

some unrealistic high values at low elevation.

EDR from spectral width remains a challenge as it is a combination of

many factors. In the future polarimetric radar, or additional information

from models / ground sensors, can help to enhance the retrievals.

EDR from combination of radar cells (large footprint) gives realistic

values.

Under some conditions, the radar and lidar are able to observe air

space simultaneously.

(29)

Wind vectors are retrieved from Thales X-band radar

Wind vectors are retrieved from Thales X-band radar

Least squares fit with linear wind model (See Doviak et al.)

Optimal estimation with forward model is used.

(30)

30

/

30

/

Contemporary wind vector retrieval

Radar/Lidar Doppler speeds within an analysis volume

are converted into a wind vector.

Wind field is assumed to be linear.

Wind field is retrieved by

a least squares fit or;

by principal component analysis.

Figure adapted from `Doppler radar and

weather observations’ (Doviak and Zrnic, 2006)

𝒗 𝑥, 𝑦, 𝑧 = 𝒗 𝑥

0

, 𝑦

0

, 𝑧

0

+

𝜕𝒗

𝜕𝑥

(𝑥 − 𝑥

0

)

+

𝜕𝑦

𝜕𝒗

(31)

4D-Var wind vector retrieval

4D-Var (optimal estimation) is applied by minimization of a cost

function.

The cost function consist of three parts

- Reflection (measurable)

- Radial velocities (measurable)

- Parameters

Error covariance matrices S are given.

Correlation length is defined for the parameter space

(32)

32

/

32

/

Comparison of wind vector retrieval techniques

Wind vector retrieval development

Linear wind model

4D-Var wind retrieval

Unrealistic jumps

Resolution volume analyzed:

-> Spurious result at large distance

Unclear how small scale wind

variations are resolved.

Time variation not included

Controllable smoothness

Complete scan [or multiple] solved

at once:

-> No spurious results.

Ambiguity of measurements can be

shown:

• Horizontal direction variation

• Horizontal speed variation

Time variation included,

(33)

Wind vectors are retrieved from Thales X-band radar

Spurious wind vectors can be detected by looking at average

circulation and convergence.

The radar is not at the center of the universe …

… therefore the solution should not depend on its position!

← Circulation

Divergence →

(34)

34

/

34

/

Summary

Summary

EDR from lidar/radar profilers show a consistent picture, with some

possible discrepancies due to low SNR. The lidar/radar profilers can be

applied in non-rainy conditions.

Wind speeds from scanning lidar show good agreement with

TUB

research aircraft and reference sensor (lidar profiler).

EDR from scanning lidar, with azimuthal structure function, gives a

consistent picture.

EDR from scanning radar spectral width sometimes gives unrealistic

high values. EDR from scanning radar with a large footprint shows

consistent picture for different algorithms.

Under some conditions, the lidar and radar can record simultaneously.

Wind retrieval based on optimal estimation can give more realistic

retrieved wind vectors, if we look at circulation and divergence of the

resulting vectors.

(35)

References / further reading

Babb, D.M., Verlinde, J., Rust, B.W., 2000. The removal of turbulent broadening in radar Doppler spectra using linear inversion with double-sided constraints. Journal of atmospheric and oceanic technology .

Barbaresco, F., Juge, P., Klein, M., Ricci, Y., Schneider, J., Moneuse, J., . Optimising runway throughput through wake vortex detection, prediction and decision support tools.

Bouniol, D., Illingworth, A.J., Hogan, R.J., 2003. Deriving turbulent kinetic energy dissipation rate within clouds using ground based 94 GHz radar. Conference on radar meteorology .

Bringi, V., Chandrasekar, V., 2004. Polarimetric Doppler weather radar.

Careta, A., Sagues, F., 1993. Stochastic generation of homogeneous isotropic turbulence with well-defined spectra. physical review E .

Chan, P.W., 2011. Generation of an eddy dissipation rate map at the Hong Kong international airport based on Doppler lidar data. Journal of atmospheric and oceanic technology .

Cohn, S.A., 1995. Radar measurements of turbulent eddy dissipation rate in the troposphere : A comparison of techniques. Journal of atmospheric and oceanic technology .

Doviak, R.J., Zrnic, D.S., 2006. Doppler radar and weather observations second edition.

Emanuel, M., Sherry, J., Catapano, S., Cornman, L., Robinson, P., 2013. In situ performance standard for eddy dissipation rate.

Frech, M., 2007. Estimating the turbulent energy dissipation rate in an airport environment. Boundary layer meteorology .

Heijnen, S.H., Ligthart, L.P., Russchenberg, H.W.J., 2000. First measurements with TARA; an S-Band transportable atmospheric radar. Physics and Chemistry of the Earth .

Krishnamurthy, R., Choukulkar, A., Calhoun, R., Fine, J., Oliver, A., Barr, K., 2013. Coherent doppler lidar for wind farm characterization. Wind Energy .

Mann, J., 1998. Wind field simulation. Prob. Eng. Mech. .

Meischner, P., Baumann, R., Holler, H., Jank, T., 2001. Eddy dissipation rates in thunderstorms estimated by doppler radar in relation to aircraft in situ measurements. Journal of atmospheric and oceanic technology .

O’Connor, E.J., Illingworth, A.J., Brooks, I.M.,Westbrook, D., Hogan, R.J., Davies, F., Brooks, B.J., 2010. A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. Journal of atmospheric and oceanic technology .

Oude Nijhuis, A., Unal, C., Krasnov, O., Russchenberg, H., Yarovoy, A., 2013. Dynamics of turbulence in precipitation: Unraveling the eddies. IPC2013 .

Oude Nijhuis, A., Unal, C., Krasnov, O., Russchenberg, H., Yarovoy, A., 2014a. Optimization of turbulence measurements for radar, lidar and sonic anemometers. ERAD2014 .

Oude Nijhuis, A., Unal, C., Krasnov, O., Russchenberg, H., Yarovoy, A., 2014b. Outlook for a new wind field retrieval technique: The 4d-var wind retrieval. Radar2014 .

Pinsky, M., Khain, A., 2006. A model of a homogeneous isotropic turbulent flow and its application for the simulation of cloud drop tracks. Geophysical & Astrophysical Fluid Dynamics .

Pope, S., 2000. Turbulent flows.

Rodgers, C.D., 2000. Inverse methods for atmospheric sounding - Theory and practive, vol. 2 of Atmospheric, Oceanic and Planetary Physics, World Scientific, Singapore.

Siebert, H., Lehmann, K., Wendisch, M., 2005. Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. Journal of atmospheric sciences .

Unal, C., Dufournet, Y., Otto, T., Russchenberg, H., 2012. The new real-time measurement capabilities of the profiling TARA radar. Seventh European conference on radar in meteorology and hydrology (ERAD) .

White, A.B., Lataitis, R.J., Lawrence, R.S., 1999. Space and time filtering of remotely sensed velocity turbulence. Journal of atmospheric and oceanic technology .

Yanovsky, F., 1996. Simulation study of 10 ghz radar back scattering from clouds and solution of the inverse problem of atmospheric turbulence measurements. Computation in Electromagnetics, IET .

Yanovsky, F., 2002. Phenomenological models of Doppler-polarimetric microwave remote sensing of clouds and precipitation. Geoscience and remote sensing symposium .

Yanovsky, F., Russchenberg, H., Unal, C., 2003. Doppler-polarimetric radar observations of turbulence in rain. Scientific Report: IRCTR-S-006-03 .

(36)

36

/

(37)

Development of an algorithm to provide vertical wind

profiles every 500m up to 500m and up to 10km from

the LIDAR every 5 minutes

Comparisons with certified WindcubeV2 LIDAR show

good agreement better than 1m/s

LEO 2

Heigh

t AGL

Abs

Diff

Std.

Dev

100

0.865 1.346

150

0.65

1.37

200

0.60

1.36

Cytaty

Powiązane dokumenty

rakteryzując erudycję hellenistyczną, autor wymienia jej zasadnicze ele­ menty: wydawanie i komentowanie tekstów literackich; zbieranie daw­ nych tradycji o miastach,

Jeżeli natomiast wybór nastą- pił na więcej niż sześć miesięcy przed upływem kadencji, traktowany jest jako wybór na pierwszą kadencję i Rektor powołuje dyrektora do końca

83 Erporido in Pr. na Lirt do FMpian znajdujemy ważne świadectwo Chryzostoma potwierdza­ jące funkcjonowanie w jego czasach praktyki liturgicznych modlitw w intencji

total momentum received by a pool of free masses in bringing the object back to a state of rest:.. p obj = δ 2

Mickiewicza : sesja naukowa: "Z problemów polskiej literatury marynistycznej". Rocznik Towarzystwa Literackiego imienia Adama Mickiewicza

W prow a­ dzenie postaci ducha zdradzonego kochanka, pragnącego zadośćuczynie­ nia za zniew agę najgłębszych uczuć i dow iedzenia zarazem , że potęga miłości

Członkowie tej kom isji p rzesy­ łają więc składki „kom isyjne” bezpośrednio lub za pośrednictw em sk a r­ bnika kom isji na konto Z arządu Głównego;

W ramach działalności Komisji Historyków Polski i Rosji przy Wy- dziale I Nauk Społecznych i Humanistycznych Polskiej Akademii Nauk, przy współudziale Instytutu Historii Nauki PAN