• Nie Znaleziono Wyników

Modelling of the Probabilistic Input for a Nonlinear Wave-Load Simulation Model

N/A
N/A
Protected

Academic year: 2021

Share "Modelling of the Probabilistic Input for a Nonlinear Wave-Load Simulation Model"

Copied!
10
0
0

Pełen tekst

(1)

MODELLING OF THE PROBABILISTIC

INPUT FOR A NONLINEAR WAVE-LOAD

SIMULATION MODEL

L.J.M. Adegeest

Report No. 933

Jijiie 22, 1992

Dalft University of T e c h n o l o g y

Ship Hydromechanics Laboratory Mekelweg 2

(2)

Modelling of the Probabilistic Input for a

Nonlinear Wave-Load Simulation Model

L.J.M. Adegeest*

June 22, 1992

A b s t r a c t

For the calculation of long-term fatigue and extreme loads i n vessels, a statistically correct description of the environmental conditions is re-quired. I n order to take into account nonlinear response effects, t i m e domain methods are apphed. These methods require a reahstic descrip-tion of an irregular wave surface i n the time domain satisfying spectral and statistical properties resulting f r o m oceanographical research. I t is shown that i n case of nonlinear simulation models, a random wave amplitude model should he applied.

Commonly used parameters i n the statistical description of the waves are the significant wave height, a characteristic wave period and a wave spectrum. Usually i n f o r m a t i o n ahout the spectral shape is not available. For that reason a modification of the Pierson-Moskowitz spectrum or a J O N S W A P spectrum is usuahy applied. B o t h spectral shapes have their limitations. The use of a Wallops spectrum eliminates the problem of the choice of a suitable spectrum since the formulation is applicable to general sea states. The spectral shape is a f u n c t i o n of the variance and the peak period and has a variable band w i d t h . I t is shown that this spectrum satisfies theoretical and measured wave height distributions very well.

1 I n t r o d u c t i o n

For t h e design a n d c o n s t r u c t i o n o f ships t h e e x t r e m e responses o f the s t r u c t u r e m u s t be k n o w n . These extreme responses occur i n c e r t a i n ocean wave c o n d i t i o n s f r o m w h i c h t h e p r o b a b i l i t y o f occurrence a n d severeness m a y be p r e d i c t e d o n t h e base o f l o n g t e r m ocean wave s t a t i s t i c s . I n an o p t i m u m s t r u c t u r a l design process b o t h t h e s h o r t - t e r m and the l o n g - t e r m response s t a t i s t i c s are needed. T h e s h o r t - t e r m s t a t i s t i c s can be d e r i v e d f r o m the response o n a s t a t i o n a r y r a n d o m seastate. U s u a l l y a c e r t a i n seastate can be considered t o be s t a t i o n a r y

(3)

o n l y f o r a f e w hours, c o r r e s p o n d i n g w i t h the s h o r t - t e r m response p e r i o d . T h e l o n g - t e r m response s t a t i s t i c s are r e l a t e d t o t h e expected l i f e t i m e o f the ship a n d can be considered as a s u m m a t i o n o f s h o r t - t e r m responses.

L i n e a r s h i p responses i n i r r e g u l a r waves have succesfully been described i n the f r e q u e n c y d o m a i n . U n d e r t h e a s s u m p t i o n of a Gaussian e x c i t a t i o n b y t h e i r -regular waves, t h e l i n e a r response s p e c t r u m is g i v e n b y t h e p r o d u c t of the square of t h e f r e q u e n c y t r a n s f e r f u n c t i o n a n d the wave s p e c t r u m . T h e s t a t i s t i c a l p r o p -erties of these processes have been s t u d i e d by m a n y researchers, especially i n t h e f i e l d o f oceanography. P a r a m e t e r s d e s c r i b i n g a s h o r t - t e r m seastate are f o r i n s t a n c e t h e s i g n i f i c a n t wave h e i g h t a n d a peak p e r i o d o f t h e wave s p e c t r u m . I t has been observed t h a t due t o the v a r i a b i l i t y i n s h o r t - t e r m e n v i r o n m e n t a l c o n d i t i o n s t h e s p e c t r a l shape varies as w e l l . T y p i c a l s p e c t r a l shapes c o m m o n l y used i n t h e ship response statistics are t h e P i e r s o n - M o s k o w i t z - s p e c t r u m [21] f o r f u l l y developed seas a n d t h e J O N S W A P s p e c t r u m [9] f o r f e t c h - l i m i t e d seas. T h e I T T C proposed a m o d i f i c a t i o n o f the P - M s p e c t r u m i n t e r m s o f t h e sig-n i f i c a sig-n t wave h e i g h t a sig-n d peak p e r i o d . A s s h o w sig-n b y S t . D e sig-n i s [23] t h i s s p e c t r a l f o r m u l a t i o n involves some c o n t r a d i c t i o n s on t h e assumed narrow-bandedness. T a y f u n [24] showed t h a t t h e s p e c t r a l b a n d w i d t h effects the d i s t r i b u t i o n o f wave heights a n d p e r i o d s . For t h a t reason the W a l l o p s s p e c t r u m [11] is p r o p o s e d f o r t h e s t u d y o f t h e s h o r t t e r m responses as w e l l as o f l o n g t e r m responses. L o n g -t e r m p r e d i c -t i o n s s h o u l d be based o n -the j o i n -t p r o b a b i l i -t y o f s i g n i f i c a n -t wave heights, peak periods a n d s p e c t r a l shapes. T h e W a l l o p s s p e c t r u m is a p p r o p r i -ate t o a general sea s t a t e a n d t h e shape o f the s p e c t r u m is d e t e r m i n e d b y t h e peak p e r i o d a n d t h e s i g n i f i c a n t wave slope.

T h e o r e t i c a U y the s h o r t t e r m d i s t r i b u t i o n of wave heights as w e l l as of l i n -ear responses are R a y l e i g h d i s t r i b u t e d . A l t h o u g h m a n y d i s t r i b u t i o n f u n c t i o n s have been suggested at times there is considerable evidence t h a t t h e p r o b a b i h t y d i s t r i b u t i o n o f the wave heights of Gaussian waves is q u i t e w e l l described b y a R a y l e i g h d i s t r i b u t i o n as proposed b y L o n g u e t - H i g g i n s [17]. T h i s has b e e n p o i n t e d o u t b y V i n j e [26] w h o suggested a m u l t i p l i c a t i o n f a c t o r i n f r o n t o f t h e o r i g i n a l d i s t r i b u t i o n a n d gave a n e s t i m a t e o f the R a y l e i g h coefficients f o r Gaus-sian waves as w e l l as i n the range o f s t r o n g l y n o n h n e a r effects. These char-acteristics can also be a p p l i e d t o t h e statistics o f linear responses. E x t r e m e s can be e s t i m a t e d f o r the c a l c u l a t i o n o f the desired m a x i m u m s t r e n g t h a n d t h e d i s t r i b u t i o n o f loads can be d e t e r m i n e d a n d used f o r f a t i g u e c a l c u l a t i o n s .

I f the responses are s t r o n g l y n o n l i n e a r another s t r a t e g y has t o be f o l l o w e d . I n t h i s s t u d y t h e m o s t a t t e n t i o n is p a i d t o a specific n o n l i n e a r p h e n o m e n o n o c c u r r i n g at slender vessels i n waves, i.e. t h e r a t i o of t h e sagging b e n d i n g m o -m e n t s a n d t h e h o g g i n g b e n d i n g -m o -m e n t s w h i c h appears t o be u n e q u a l t o one. I t has been s h o w n t h a t t h i s effect is m a i n l y caused by a change of i m m e r s e d v o l u m e i.e. t h e r e l a t i v e m o t i o n of fiaring sections, see f o r instance [12]. A f o r -m u l a t i o n f o r t h e e s t i -m a t i o n o f the f a t i g u e da-mage s u b j e c t e d t o q u a d r a t i c wave loads o n slender vessels has been presented b y Juncher-Jensen [13]. I t was f o u n d t h a t due t o the n o n l i n e a r d e s c r i p t i o n o f the loads the f a t i g u e damage increased

(4)

w i t h 5 0 - 1 0 0 % d e p e n d i n g o n the speed of the vessel. A s i m i l a r m e t h o d is ap-p l i e d t o offshore s t r u c t u r e s by M a d s e n [18]. T h e i m ap-p o r t a n t advantage o f these m e t h o d s is the reduced c a l c u l a t i o n t i m e c o m p a r e d t o t i m e d o m a i n s i m u l a t i o n s . T h e m e t h o d is l i m i t e d t o s h g h t l y n o n h n e a r systems. P h e n o m e n a such as s l a m -m i n g , b o w f l a r e s l a -m -m i n g a n d deck wetness can n o t be dealt w i t h w h i c h -means t h a t e x t r e m e loads can n o t be p r e d i c t e d u s i n g t h i s approach. Besides t h a t the p h y s i c a l i n t e r p r e t a t i o n o f the results is n o t as easy as o f t i m e records.

For the reasons m e n t i o n e d above n o n l i n e a r t i m e - d o m a i n s i m u l a t i o n models have become very p o p u l a r over the last years f o r the c a l c u l a t i o n of t h e n o n l i n e a r b e h a v i o u r of f l o a t i n g s t r u c t u r e s . A n a l y s i s o f t h e s i m u l a t e d t i m e - r e c o r d s give us the s h o r t - t e r m s p e c t r a l a n d s t a t i s t i c a l i n f o r m a t i o n w i t h a c e r t a i n degree o f accuracy. For p r a c t i c a l reasons i t is i m p o s s i b l e t o p e r f o r m l o n g - t e r m l i f e - t i m e s i m u l a t i o n s i n order t o i n v e s t i g a t e t h e l o n g - t e r m f a t i g u e a n d e x t r e m e loads. A second p r o b l e m is the d e s c r i p t i o n o f the i r r e g u l a r waves w i t h respect t o the realistic s h o r t - t e r m s t a t i s t i c a l p r o p e r t i e s of the i n p u t as w e l l as of t h e r e s u l t i n g responses. A desired accuracy o f t h e s t a t i s t i c a l p r o p e r t i e s o f t h e waves a n d of t h e responses has t o be o b t a i n e d a f t e r a l i m i t e d n u m b e r o f s i m u l a t i o n s of finite l e n g t h .

I n t h e f o l l o w i n g p a r a g r a p h s the d e s c r i p t i o n of realistic e n v i r o n m e n t a l c o n d i -tions w i l l be discussed. T h e r e a l i z a t i o n of wave records w i l l be discussed w i t h respect t o the spectral shape, r a n d o m n e s s a n d accuracy as well as the l o n g - t e r m d i s t r i b u t i o n of sea states, defined b y s p e c t r a l shape, s i g n i f i c a n t wave heights a n d peak periods.

(5)

2 The l o n g - t e r m d i s t r i b u t i o n of environmental

conditions

T h e m a i n e n v i r o n m e n t a l c o n d i t i o n s as experienced b y a vessel i n an i r r e g u l a r seaway are d e t e r m i n e d b y a s p e c t r a l shape S a n d a characteristic wave p e r i o d Tp or f r e q u e n c y w,, a n d wave h e i g h t i / 1 / 3 . E v e n t u a l l y a d i r e c t i o n a l s p r e a d i n g f u n c t i o n D m a y be used. Parameters such as c u r r e n t and w i n d can n o t be neglected i n case o f o f f s h o r e s t r u c t u r e s b u t are o f m i n o r i m p o r t a n c e f o r a s h i p .

These stochastic q u a n t i t i e s i n c o m b i n a t i o n w i t h the ship's speed, r e l a t i v e heading, g e o m e t r y a n d w e i g h t d i s t r i b u t i o n d e t e r m i n e the e x c i t a t i o n c o n d i t i o n . T h e r e l a t i v e h e a d i n g o f a vessel is d e t e r m i n e d b y the p r i m a r y wave d i r e c t i o n a n d the course o f t h e vessel. For a given vessel w i t h k n o w n g e o m e t r y a n d mass d i s t r i b u t i o n , denoted w i t h the stochastic vector M, saihng w i t h a speed U a n d a r e l a t i v e h e a d i n g fi, t h e l o n g - t e r m p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n o f t h e wave-i n d u c e d loads, d e f wave-i n e d as L, can n o w be w r wave-i t t e n as t h e wave-i n t e g r a l o f a c o n d wave-i t wave-i o n a l s h o r t - t e r m p r o b a b i l i t y d e n s i t y f u n c t i o n o f the loads, m u l t i p l i e d w i t h t h e j o i n t p r o b a b i l i t y density f u n c t i o n o f t h e o p e r a t i o n a l a n d c l i m a t o l o g i c a l p a r a m e t e r s M , 7 Ï 1 / 3 , Tp, S a n d D : PL{L) = J ... J PL{L I M , [ƒ, ^L, Hif3,Tp,S, D)dMdUdndHdTdSdD ( 1 ) T h e c o n d i t i o n a l s h o r t - t e r m p r o b a b i l i t y density f u n c t i o n s are o b t a i n e d b y means of statistics of Gaussian processes i n t h e range o f linear responses or b y means of a n o n l i n e a r s i m u l a t i o n p r o g r a m [1]. I n a c o m p l e t e p r o b a b i h s t i c m o d e l the effect o f v o l u n t a r y changes o f speed a n d h e a d i n g have t o be i n c o r p o r a t e d t o o , w h i c h makes i t v e r y c o m p l i c a t e d t o d e t e r m i n e the j . p . d . f u n c t i o n o f t h e op-e r a t i o n a l a n d c l i m a t o l o g i c a l p a r a m op-e t op-e r s . A s i m i l a r op-exprop-ession has bop-eop-en d op-e r i v op-e d b y D a l z e l l [6] b u t i n h i s expression, an e x t r a stochastical v a r i a b l e occurs t a k i n g i n t o account the fiexible r i g i d i t y a n d s t r u c t u r a l d a m p i n g p r o p e r t i e s o f the ves-sel. D e p e n d i n g o n the t y p e o f s h i p , e q u a t i o n (1) can be s i m p l i f i e d w i t h respect t o t h e j o i n t p r o b a b i l i t y d e n s i t y f u n c t i o n of the c l i m a t o l o g i c a l a n d o p e r a t i o n a l p a r a m e t e r s .

T h e p r i m a r y wave d i r e c t i o n f o r instance is o n l y o f i m p o r t a n c e i f a vessel has a n o n u n i f o r m l y d i s t r i b u t e d course. G e n e r a l l y i n case of navyvessels, a u n i -f o r m l y d i s t r i b u t e d course m a y be assumed. A q u a h t a t i v e s t u d y o n the i n -f i u e n c e of u n c e r t a i n t i e s i n t h e e x c i t a t i o n c o n d i t i o n s has been p e r f o r m e d b y Guedes-Soares [8]. B y some c a l c u l a t i o n examples p e r f o r m e d f o r d i f f e r e n t ship types, i t is s h o w n t h a t the i n f l u e n c e of t h e ship's speed o n t h e d i s t r i b u t i o n o f wave-i n d u c e d loads can wave-increase the characterwave-istwave-ic response value w wave-i t h a b o u t .30%. F u r t h e r m o r e i t is s h o w n t h a t t h e use o f d i f f e r e n t wave c l i m a t e databases leads t o results w i t h differences u p t o 25%. T h e i n f l u e n c e of t h e w a v e - d i r e c t i o n a l i t y was s h o w n t o be o f m i n o r i m p o r t a n c e , a m a x i m u m d e v i a t i o n w i t h long-crested

(6)

waves o f 10% lias been m e n t i o n e d . T h e s h o r t - t e r m responses however are be-lieved t o be reduced b y m o r e t h a t 10% b y a p p l i c a t i o n o f a s p r e a d i n g f u n c t i o n . T h i s has also been p o i n t e d o u t by Bales et al. [2]. I t was shown t h a t especially t h e r o l l m o t i o n s are v e r y sensitive t o angular spreading o f the waves. T h e v e r t i -cal m o t i o n s t o w h i c h s l a m m i n g , deck-wetness and the v e r t i c a l b e n d i n g m o m e n t s a n d shear forces are r e l a t e d , are m u c h less sensitive t o angular spread. For t h a t reason, t h e d i r e c t i o n a l spreading of t h e waves w i l l be neglected i n t h i s s t u d y .

U s i n g these conclusions, t h e l o n g - t e r m d i s t r i b u t i o n o f the e n v i r o n m e n t a l c o n d i t i o n s i n case of a u n i f o r m l y d i s t r i b u t e d course is d e t e r m i n e d b y t h e j o i n t p r o b a b i l i t y o f a s i g n i f i c a n t wave height ^ ^ 1 / 3 , s p e c t r a l peak p e r i o d Tp a n d spec-t r a l shape S. For spec-t h e l o n g - spec-t e r m j o i n spec-t p r o b a b i l i spec-t y d i s spec-t r i b u spec-t i o n o f s i g n i f i c a n spec-t wave heights a n d peak p e r i o d s , p u b l i s h e d wave c l i m a t e d a t a can be used. E x a m p l e s of these d a t a are g i v e n by H o g b e n a n d L u m b [10], W a l d e n [27] a n d Lee et al. [15]. I n the n e x t p a r a g r a p h s the a t t e n t i o n w i l l be f o c u s e d t o t h e m o d e l l i n g o f t h e s h o r t - t e r m e n v i r o n m e n t a l c o n d i t i o n s s a t i s f y i n g realistic wave s p e c t r a a n d d i s t r i b u t i o n f u n c t i o n s o f the wave heights.

(7)

3 Choice of the wave spectrum

For ship response c a l c u l a t i o n s i n i r r e g u l a r waves a s u i t a b l e wave s p e c t r u m m o d e l has t o be chosen. I n t h e design o f offshore s t r u c t u r e s , w h i c h are l o c a t i o n -b o u n d , measured spectra m a y -be availa-ble. U s u a l l y t h i s is n o t t h e case f o r vessels w h i c h are s a i l i n g at m o r e or less r a n d o m locations o n the ocean. For t h i s purpose, t h e o r e t i c a l s p e c t r a l models have been developed f r o m w h i c h the m o d i f i e d P i e r s o n - M o s k o w i t z s p e c t r u m a n d the J O N S W A P s p e c t r u m are the m o s t c o m m o n l y used spectra. A l t h o u g h these s p e c t r a are f r e q u e n t l y used f o r the c a l c u l a t i o n of response spectra f o r a l l p r o b a b l e c o m b i n a t i o n s o f s i g n i f i c a n t wave h e i g h t a n d p e r i o d , some l i m i t a t i o n s on t h e i r a p p l i c a b i l i t y exist.

T h e m o d i f i e d P - M s p e c t r u m can be w r i t t e n as

T h e m o d e l is developed f o r f u l l y developed sea states, w h i c h occur o n l y d u r i n g l i m i t e d periods. F u r t h e r m o r e i t appears t h a t t h e a s s u m p t i o n o f n a r r o w -bandedness does n o t h o l d a n y m o r e since t h e f o u r t h m o m e n t o f the sp e c t r u m does not exist unless some corrections are a p p l i e d [23]. C o m p a r i s o n w i t h field d a t a measured on t h e open ocean showed t h a t t h i s s p e c t r u m u n i f o r m l y overestimates t h e measurements [11].

T h e J O N S W A P s p e c t r u m was developed by Hasselman et al. [9] a n d is a c t u a l l y the P - M f o r m u l a t i o n m u l t i p l i e d w i t h a peak-enhancement f a c t o r . Five free p a r a m e t e r s d e t e r m i n e the final shape o f t h e s p e c t r u m . These p a r a m e t e r s have t o be d e t e r m i n e d o n t h e base o f e m p e r i c a l f u n c t i o n s o f t h e n o n - d i m e n s i o n a l peak f r e q u e n c y . A l t h o u g h the n u m b e r o f p a r a m e t e r s is u s u a l l y r e d u c e d t o t w o (a peakedness p a r a m e t e r a n d t h e peak f r e q u e n c y ) , these t w o p a r a m e t e r s s t i l l have t o be d e t e r m i n e d b y t r i a l a n d e r r o r since t h e m o m e n t s of the s p e c t r u m can n o t be d e t e r m i n e d a n a l y t i c a l l y . T h i s s p e c t r a l shape is o n l y v a l i d f o r f e t c h -l i m i t e d d e v e -l o p i n g sea states.

H u a n g et al. [11] developed t h e WaUops s p e c t r u m , a u n i f i e d t w o - p a r a m e t e r s p e c t r u m w h i c h represents the sea states u n d e r a l l stages o f wave development a n d decay. T h i s s p e c t r u m o n l y depends on i n t e r n a l p a r a m e t e r s w h i c h can be d e r i v e d a n a l y t i c a l l y based o n an i n p u t peak frecjuency a n d variance of the wave surface e l e v a t i o n . F u r t h e r m o r e the d e r i v a t i o n has been based o n fluid-dynamical considerations. T h e s p e c t r u m has the a n a l y t i c a l f o r m u l a t i o n o f a P - M s p e c t r u m and c o m p a r i s o n w i t h field d a t a show t h a t t h e results are c o m p a r a b l e w i t h the J O N S W A P m o d e l . W h e n the e n e r g y c o n t a i n i n g waves are a p p r o a c h i n g b r e a k i n g , t h e W a l l o p s s p e c t r u m reduces e x a c t l y t o the P M m o d e l a n d t o t h e J O N -S W A P m o d e l f o r w i c h the peak- enhancement f u n c t i o n is t h e n equal t o 1. T h e W a l l o p s s p e c t r u m is i n d e p e n d e n t o f t h e w i n d speed b u t depends o n l y o n the peak p e r i o d a n d the s i g n i f i c a n t wave slope. A n i m p o r t a n t f e a t u r e of t h i s s p e c t r a l f o r m u l a t i o n is the variable b a n d w i d t h , w h i c h has i t s i n f u e n c e on the d i s t r i b u t i o n of wave heights a n d periods and t h u s o f t h e responses t o o .

(8)

T h e i m p o r t a n c e of a correct choice o f the wave s p e c t r u m m a y be questioned especially w i t h r e g a r d t o the l o n g - t e r m p r e d i c t i o n s of responses [7], b u t the short- t e r m response statistics are c e r t a i n l y effected b y the s p e c t r a l shape. I t is not i m m e d i a t e l y clear h o w a s p e c t r u m w i t h variable b a n d w i d t h effects the l o n g t e r m statistics. Due t o t h e lack of measurements a choice of a m a t h e m a t i -cal s p e c t r u m has t o be made. A l t h o u g h the I T T C r e c o m m e n d e d t h e m o d i f i e d P - M s p e c t r u m , some questions arise w h e n t h i s s p e c t r a l shape is regarded more a c c u r a t e l y a n d w h e n i t is c o m p a r e d w i t h field data. T h e J O N S W A P s p e c t r u m also has i t s l i m i t a t i o n s since i t is o n l y applicable t o a few cases i n the scatter d i a g r a m , representing t h e c o m b i n a t i o n s of s i g n i f i c a n t wave h e i g h t and charac-t e r i s charac-t i c wave p e r i o d . T h e W a h o p s s p e c charac-t r u m does n o charac-t show charac-these h m i charac-t a charac-t i o n s w h i l e i t is easy t o apply, t h e m o m e n t s can be d e t e r m i n e d a n a l y t i c a l l y . I n t h e f u r t h e r s t u d y , t h i s s p e c t r a l m o d e l w i l l be used. T h e t h e o r e t i c a l f o r m u l a t i o n o f the s p e c t r u m is g i v e n by

UJ ' (3)

i n w h i c h iOp is t h e f r e q u e n c y o f the waves at the s p e c t r a l peak a n d /? a n d m are f u n c t i o n s of the i n t e r n a l p a r a m e t e r , t h e s i g n i f i c a n t slope ? of the wave field w h i c h is defined as

? =

(4)

or t h e r o o t of the m e a n squared value o f t h e surface e l e v a t i o n d i v i d e d b y t h e wave l e n g t h o f the waves at t h e s p e c t r a l peak. T h i s characteristic wave l e n g t h is d e t e r m i n e d by means o f t h e dispersion r e l a t i o n . T h e coefficients /? a n d m are respectively c a l c u l a t e d u s i n g the f o l l o w i n g t w o f u n c t i o n s of m l o g ( V 2 7rv)2 l o g 2 a n d (5) ( 2 7 r < r ) 2 ? 7 i ( ' " - i ) / 4 1 (6) 4 ( m - 5 ) / 4 p ( - m - l ^

where r(.) is the g a m m a f u n c t i o n . A f t e r some algebra t h e s p e c t r a l m o m e n t s can be d e r i v e d , w h i c h are g i v e n b y

777,0

^ ^ 2 4 ( m - 5 ) / 4 1

(9)

F r o m field observations the pealc f r e q u e n c y a n d s i g n i f i c a n t wave h e i g h t are k n o w n . FoUowing f r o m s h o r t t e r m wave statistics t h e r e l a t i o n between t h e v a r i -ance o f a Gaussian d i s t r i b u t e d sea and the s i g n i f i c a n t wave h e i g h t is k n o w n , so the variance a n d t h e r e s u l t i n g s i g n i f i c a n t slope can be d e t e r m i n e d . Some examples o f a W a l l o p s s p e c t r u m a n d a n I T T C s p e c t r u m w i t h t h e same variance a n d peak p e r i o d are s h o w n i n figure 1.

D e t e r m i n a t i o n o f the variance o n the basis of a k n o w n s i g n i f i c a n t wave h e i g h t is s h o w n i n t h e n e x t p a r a g r a p h .

(10)

WAVE S P E C T R A I T T C - s p e c t r u m v e r s u s W a l l o p s - s p e c t r u m S [ m 2 s ] 0.5 1 1.5 a a.5 o m e g a [ r a d / s ] Pealc p e r i o d Tp = 8 [ s ] V a r i a n c e m O = 2.25 [ m 2 ] WAVE S P E C T R A I T T C - s p e c t r u m v e r s u s W a l l o p s - s p e c t r u m S [ m 2 s ] 0 0.5 1 1.5 2 2.5 3 o m e g a [ r a d / s ] P e a k p e r i o d T p = 1 6 . 4 [ s ] V a r i a n c e m O = 0 . 7 6 6 [ m 2 ]

Cytaty

Powiązane dokumenty

Daarnaast worden twee parameters gegeven die naast de referentiewaarde ook op de limietwaarde voor de betreffende waarde zijn gebaseerd, de relatieve reststericte en de

Sprawie problemów zawodowrych organizacja partyjna poświęciła wiele zebrań (m. W wyniku kilkumiesięcznej d y ­ skusji został powołany przez organizację partyjną,

Głównym problemem badawczym było pytanie jak współczesne przemiany poli­ tyczne, gospodarcze i kulturalne wpływają na postrzeganie przez młodzież swojego ży­ cia oraz jak

Pokój i bezpieczeństwo państwa warunkiem ładu społeczno-politycznego Z w racając uwagę na zagadnienie ładu społecznego w kontekście budow a­ nia porządku praw nego

o godzinie 12.00 w sali lustrzanej Pałacu staszica w warszawie od- była się uroczystość wręczenia nagród laureatom Xli konkursu „Państwa i Prawa” na najlep- sze

Być może Departament III, dysponując informacjami z Wydzia- łu III WUSW w Gdańsku, poprosił o teczki Janusza Molki zarejestrowanego jako TW „Majewski” pod nr 47080, a

Zostaây one ukazane na tle sĊdów innych specjalistów na temat specyfiki nauczania języka polskiego jako obcego (dalej: JPJO). Przyjęte przez Miodunkę zaâoůenia moůna

Wyczuwam tu centralne miejsce rozważań, ponieważ medialna parafrazowalność stanowiąca nowy cel literatury jest typem komunikacji, którego literatura musi niejako nauczyć się