• Nie Znaleziono Wyników

Petrographic and microprobe study of nephrites from Lower Silesia (SW Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Petrographic and microprobe study of nephrites from Lower Silesia (SW Poland)"

Copied!
10
0
0

Pełen tekst

(1)

Petrographic and microprobe study of nephrites from Lower Silesia (SW Po land)

Grzegorz GIL1, *

1 In sti tute of Geo log i cal Sci ences, Uni ver sity of Wroc³aw, Pl. Maksa Borna 9, 50-205 Wroc³aw, Po land,

Gil G. (2013) Petrographic and microprobe study of nephrites from Lower Silesia (SW Po land). Geo log i cal Quar terly, 57 (3):

395–404, doi: 10.7306/gq.1101

Lower Silesia hosts im por tant Eu ro pean neph rite de pos its of Jordanów and less-known of Z³oty Stok. Neph rite ar ti facts were dis cov ered in ar chae o log i cal sites dated back to the Neo lithic pe riod, across Eur asia. Es pe cially ar ti facts found in Po land, It - aly and Bul garia may orig i nate from Pol ish nephrites. Now a days, only one ar ti fact is pre cisely linked to Jordanów.

Petrographic study of nephrites and chem i cal anal y ses of con stit u ents by means of EMPA al low ac cu rate iden ti fi ca tion of the nephrites. The char ac ter is tic phases of Jordanów tremolite neph rite are ro tated and cataclased di op side porphyroblasts with pres sure shad ows, chlorite lay ers and nests with in ter lock ing non-pseudomorphic tex ture and prehnite veins. The pres ence of hydrogrossular, grossular, ti tan ite, ap a tite with monazite in clu sions, and zir con with pleochroic haloe is typ i cal. Chlorites are usu ally rep re sented by penninite, and mi nor clinochlore and diabantite. The char ac ter is tic fea tures of Z³oty Stok actinolite neph rite are löllingite and di op side crys tals usu ally vis i ble by the na ked eye, with the pres ence of quartz and car - bon ates. Löllingite is chem i cally inhomogeneous and gold bear ing. Most of the min er al og i cal-pet ro log i cal fea tures can be ob tained us ing non-de struc tive meth ods.

Key words: neph rite, Jordanów, Z³oty Stok, Lower Silesia, elec tron microprobe, min eral iden ti fi ca tion.

INTRODUCTION

Neph rite is well-known raw ma te rial for carv ings, tools and low-priced jewel lery. How ever, due to a lim ited num ber of oc cur - rences and eco nomic in sig nif i cance, it has drawn lit tle sci en tific at ten tion. Neph rite is a va ri ety of jade, com posed pre dom i nantly of fi brous Ca-am phi boles (tremolite and/or actinolite). Ar chae ol o - gists use the term jade to im ple ments formed mostly of mono - mineral rocks: monomineral am phi bole rock or pyro xenite. The other va ri ety is jadeitite com posed of jadeite pyro xene. Be cause of ul ti mate tough ness caused by fi brous fab ric (Bradt et al., 1973) – there fore called the tough est nat u ral stone (Make peace and Simandl, 2001), and rel a tively low hard ness (about 5.5–6.5 in Mohs’ scale), neph rite is one of the raw ma te ri als mostly pre - ferred by the carv ers since the Early Neo lithic pe riod. Sig nif i cant world de pos its are re stricted to tens of lo ca tions. Ma jor neph rite de pos its are lo cated in Can ada – Brit ish Co lum bia (e.g., Simandl et al., 2000; Makepeace and Simandl, 2001), Rus sian Fed er a - tion – Si be ria (Harlow and Sorensen, 2001, 2005; £apot, 2004), China (Sax et al., 2004; Liu et al., 2011a, b), Ko rea (e.g., Yui and Kwon, 2002), Tai wan (e.g., Wan and Yeh, 1984; Hung et al., 2007), South Aus tra lia (Harlow and Sorensen, 2001, 2005 and ref er ences therein), New Zea land – South Is land (e.g., Root, 1994; Middle ton, 2006), and in the USA – Wy o ming, Alaska and

Cal i for nia (e.g., Sinkankas, 1959; Middle ton, 2006). De spite lim - ited num ber of de pos its, neph rite ar ti facts were found in nu mer - ous ar chae o log i cal sites, dated back to the Neo lithic age. Lim ited neph rite sources to gether with wide dis tri bu tion in ar chae o log i cal sites, gives un usual op por tu ni ties in re con struc tion of an cient trade and mi gra tion routes.

Eu rope and Asia are among the ar eas where neph rite ar ti - facts were dis cov ered in many sites, e.g., in It aly, in clud ing Sic ily and es pe cially Sar dinia (D’Amico et al., 2003), Bodensee Lake in Swit zer land (Maœlankiewicz, 1982; Middle ton, 2006; Heflik, 2010), SW Po land (Heflik, 2010), Bul garia (Kostov, 2005; Kostov et al., 2012), Baikal Lake in Si be ria, Rus sia (Losey et al., 2011), Gobi Altai in Mon go lia (Derevianko et al., 2008), Pa ki stan (Fournelle et al., 2010), China (Cheng et al., 2004; Sax et al., 2004; Hung et al., 2007), Tai wan, Viet nam, Phil ip pines, Ma lay - sia, Cam bo dia, Thai land (Hung et al., 2007). Es pe cially in ter est - ing are ar ti facts from Pol ish, Swiss, Ital ian and Bul gar ian sites (Fig. 1) be cause some of them are prob a bly made of Pol ish nephrites. More over, the sources of neph rite ar ti facts in nu mer - ous ar chae o log i cal sites re main un known, in clud ing those in cen - tral and south ern It aly, es pe cially Sar dinia (D’Amico et al., 2003), and in South Bul garia (Kostov, 2005). Fur ther more, re cent stud - ies al lowed dis tin guish ing at least two dif fer ent types of neph rite raw ma te rial used to carve ob jects from sites in south-west Bul - garia (Kostov et al., 2012). The Pol ish source of these ar ti facts is prob a ble due to a rel a tively short dis tance. At pres ent, only one ar ti fact is iden ti fied to be carved from Pol ish neph rite of Jordanów – an axe from Gniechowice near Wroc³aw (Heflik, 2010). De - tailed petrographic study of Lower Silesian (SW Po land) nephrites, ap pli ca ble es pe cially in archaeometric stud ies and al - low ing sim ple and pre cise host-de posit iden ti fi ca tion, was the

* E-mails: grzegorz.gil@mailplus.pl, grzegorz.gil@ing.uni.wroc.pl Received: December 11, 2012; accepted: March 6, 2013; published online: May 24, 2013

(2)

ma jor goal of the pres ent re search. In or der to em pha size the char ac ter is tic fea tures of the nephrites, a com par i son with some Asian neph rite min er als is given.

Jordanów (Jordanów Œl¹ski) and Z³oty Stok are the two old - est-known neph rite de pos its in Eu rope. Be fore their dis cov ery in the 1880s, all neph rite ar ti facts were in ter preted as raw ma te - rial im ported from dis tant Asia (Maœlankiewicz, 1982; Heflik, 2010). Neph rite was com mer cially ex ploited in Jordanów in the 1900s, mostly for small carv ings, dec o ra tive items (Fig. 2A) and low-val ued jewel lery, es pe cially cab o chon cut (Fig. 2B). How - ever, larger blocks of neph rite were also ob tained, e.g., over a two-ton block ac quired in 1899 is stored in the Met ro pol i tan Mu - seum, New York (Walendowski, 2008); an other block, which weights a few hun dred ki lo grams is ex posed in front of the Min - er al og i cal Mu seum at the Uni ver sity of Wroc³aw. While Jordanów is among the most im por tant neph rite oc cur rences in Eu rope (e.g., Middle ton, 2006), the small oc cur rence at Z³oty Stok re mains rather less known. Dis tri bu tion of mod ern carv - ings is much nar rower. Be sides those above, neph rite boul ders in Lower Silesia have been found in gla cial de pos its (Scan di na - vian prov e nance), e.g., in the Wroc³aw city area (Heflik, 1974).

Jordanów (for mer Jordansmühl) neph rite is found in sev eral lo cal i ties scat tered over a dis tance of 20 km, es pe cially in the ser pen tin ite quarry in Nas³awice and the his tor i cal (now aban - doned) quarry in Jordanów, where most of neph rite was mined (Traube, 1888; Sachs, 1902; Heflik, 1974, 2010; Maœlankie - wicz, 1982; Majerowicz, 2006; Middle ton, 2006; £obos et al.,

2008; Walendowski, 2008). In Z³oty Stok (for mer Reichenstein) neph rite was dis cov ered in an un der ground gold and ar senic mine (Traube, 1888; Beutell and Heinze, 1914; Heflik, 1974;

Maœlankiewicz, 1982), in a gal lery named Ksi¹¿êca (Fürsten - stollen; Traube, 1888; Beutell and Heinze, 1914), known also as the Piastowska gal lery (Heflik, 1974). In the 1400s, the Z³oty Stok mine sup plied ~8% of to tal gold pro duc tion in Eu rope (Cwojdziñski and Kozdrój, 2007). Re cent field stud ies con - ducted by the au thor sug gest that neph rite dis tri bu tion is wider and lim ited not only to the mine gal lery.

GEOLOGIC SETTING

Jordanów lies be tween Wroc³aw and the bor der with the Czech Re pub lic, and Z³oty Stok is lo cated fur ther south, close to the bor der. Geo log i cally, the two lo cal i ties are sit u ated in the NE edge of the Bo he mian Mas sif. Z³oty Stok lies in the moun tain - ous part of the Sudetes, while Jordanów – in the strongly peneplained Fore-Sudetic Block (Fig. 1). The Sudetes and the Fore-Sudetic Block are com posed of tectono-strati graphic units, tec toni cally jux ta posed dur ing the Variscan Orog eny (Ma - zur et al., 2006). These ar eas ex tend be tween the NW–SE- trending Odra Fault Zone in the north and the Elbe Fault Zone in the south (Kryza et al., 2004). The Sudetic Bound ary Fault, par - al lel to the Odra and Elbe fault zones, sep a rates the Sudetes from the Fore-Sudetic Block.

Fig. 1. Sim pli fied geo log i cal map of the Sudetes with in di cated Jordanów and Z³oty Stok neph rite de pos its, moun tain ous part of Sudetes lies SW from Sudetic Bound ary Fault, NE from fault is Fore-Sudetic Block, and marked lo ca tion of the study area and se - lected ar chae o log i cal sites where neph rite ar ti facts were found in Eu rope, mod i fied af ter Aleksandrowski et al. (1997, fide Mazur et al., 2006) and Google Earth® 2012

De tailed lo ca tion of neph rite ar ti facts and ref er ences are given in text

(3)

Jordanów and Z³oty Stok lie in the Cen tral Sudetes sensu Mazur et al. (2006). The Cen tral Sudetes are com posed of Neoproterozoic–Early Pa leo zoic me dium- to high-grade meta - mor phic mas sifs and units of the Góry Sowie, Orlica, Œnie¿nik and K³odzko, the Si lu rian-Car bon if er ous Bardo Sed i men tary Unit, the Early De vo nian? Cen tral Sudetic Ophiolite, the Niemcza and Skrzynka shear zones, and sev eral small units.

The Œlê¿a Ophiolite is a part of the Cen tral Sudetic Ophiolite – a dis mem bered unit lo cated at the N, E, S and SW bound ary of the Góry Sowie Mas sif (Mazur et al., 2006; Kryza, 2011). The Niemcza Shear Zone (trending N–S), in ter preted as mylonitised Góry Sowie gneiss es, and their con tin u a tion – the Skrzynka Shear Zone, sep a rates the Góry Sowie and K³odzko mas sifs from the Kamieniec Meta mor phic Belt and the Œnie¿nik Mas sif Fig. 2. Neph rite im ple ments (A, B), field pho to graphs (C) and thin-sec tion pho to mi cro graphs with crossed polars (D–F)

A – mod ern dec o ra tive soap holder made of Jordanów neph rite (ob ject size ~12 cm); B – mod ern cab o chons made of Jordanów neph rite (lon gest di men sion of each cab o chon is ~3 cm); C – chlorite black wall hosts ir reg u lar neph rite veins and nests at the con tact of rodingite dyke and ser pen tin ite in the Jordanów Quarry (ham mer for scale in the mid dle of the pho to graph); D – Jordanów neph rite; E – Jordanów neph rite schist; F – Z³oty Stok neph rite; Tr – tremolite, Act – actinolite, Di – di op side

(4)

(Mazur et al., 2006). The shear zones, com posed pre dom i - nantly of mylonites, host ba sic and ultrabasic parts of the Cen - tral Sudetic Ophiolite, gneiss, mica schist and mar ble lenses, and Variscan granitoid dykes.

The Jordanów Quarry (Fig. 3A) is lo cated within serpen - tinites of the SE mar gin of the Œlê¿a Ophiolite, close to the Niemcza Shear Zone in the south and Pa leo zoic meta sedi - ments in the east (e.g., Majerowicz, 2006; Kryza, 2011). Neph - rite oc curs within chlorite black-wall, at the con tact of rodingite dykes and host-serpentinites (Fig. 2C). The ori en ta tion of rodi - ngite dykes is from nearly ver ti cal to ~45° dip. Black-wall thick - ness var ies from a few centi metres to about one metre. Neph - rite oc curs in the form of ir reg u lar veins and nests with vari able di rec tion and strike. Over a dis tance of a cou ple of metres, the dip of the neph rite-bear ing zone may change from nearly ver ti - cal to hor i zon tal. At pres ent, the ex posed neph rite bod ies are from a few to ca. 50 cm thick. In the past, elon gated bod ies were ex ca vated, up to 1.5 m long and about 0.5 m thick. Sim i lar spec i mens might be found if the quarry is re ac ti vated. Within serpentinites, NW–SE-trending leucogranite veins of vari able strike are also pres ent. U-Pb zir con age of serpentinisation is 400 + 4/–3 Ma (Dubiñska et al., 2004) and leucogranite veins were dated at 337 ± 4 Ma (zir con U-Pb; Kryza, 2011). The age of leucogranite veins cor re sponds to that of granitoid veins of the Niemcza Shear Zone (338 +2/–3 Ma) rather than of the

Strzegom-Sobótka Gran ite (~310–294 Ma), NW of Jordanów (Kryza, 2011).

The Z³oty Stok mine is lo cated at the NW edge of the Skrzynka Shear Zone, close to the con tact with the K³odzko- Z³oty Stok Gran ite and the Sudetic Bound ary Fault (e.g., Cwoj dziñski and Kozdrój, 2007). Neph rite forms veins be tween ser pen tin ite and pyroxenite nests within blastomylonites (Beutell and Heinze, 1914; Heflik, 1974, 2010). Ad ja cent serpentinites are com posed of lizardite and chryso tile (e.g., Cwojdziñski and Kozdrój, 2007).

Un for tu nately, the gal lery where neph rite was mined col lapsed in half way (Fig. 3B), mak ing a de tailed field-re la tions study im pos - si ble. K-Ar bi o tite age of the K³odzko-Z³oty Stok Gran ite (ca.

298 Ma) prob a bly rep re sents a fi nal stage of con sol i da tion (Bach liñski and Bagiñski, 2007). Pluton em place ment age is es ti - mated to be 340–310 Ma; gran ite ther mally over prints the Skrzyn ka Shear Zone blastomylonites, al though is post dated by the lat est stages of shear ing (Mazur et al., 2006).

MATERIALS AND METHODS

De tailed field stud ies were per formed in the Jordanów Quar ry and in still ac ces si ble part of the Ksi¹¿êca gal lery, which was pen e trated up to the col lapse site. In Jordanów, sam ples

Fig. 3. Field and hand-spec i men pho to graphs: A – quarry in Jordanów, B – col lapsed Ksi¹¿êca gal lery in Z³oty Stok (area of pho tog ra phy width is ap prox i mately 3 m), C – pol ished neph rite from Jordanów, D – pol ished neph rite from Z³oty Stok

Scale bar 3 cm, Di – di op side, Lol – löllingite

(5)

were col lected di rectly from the wall, in Z³oty Stok, sam ples were taken from closed mine dumps and nearby streams. In ad di tion to field-col lected sam ples, neph rite carv ings from the col lec tion of Wroc³aw Uni ver sity Min er al og i cal Mu seum were mac ro scop i cally ex am ined. Sam ples were cut and pol ished to ex hibit dec o ra tive prop er ties.

Geo chem i cal meth ods en able iden ti fi ca tion of the neph rite source area with a high cer tainty. Re cent stud ies on Eu ro pean neph rite ar ti facts give op por tu ni ties for dis tin guish ing raw ma te - rial on the ba sis of whole-rock geo chem is try (cf., Kostov et al., 2012). In the pres ent study, chem is try of rock-form ing min er als and mi nor con stit u ents was ex am ined be cause neph rite mu - seum ar ti facts are usu ally valu able and us age of de struc tive meth ods is im per mis si ble – there is a pos si bil ity to make non-in - va sive chem i cal anal y ses of some min er als us ing the en vi ron - men tal (ESEM) or low-vac uum (LVSEM) scan ning elec tron mi - cro scope with en ergy-dispersive spec trom e ter (EDS) (e.g., Hung et al., 2007). Mod ern elec tron mi cro scopes al low sam ple as large as 300 mm in di am e ter and 110 mm high, and are usu - ally equipped with EDS and wave length dispersive spec trom e - ter (WDS). How ever, if the ar ti fact or raw ma te rial is large enough and small piece re moval is per mit ted, thin sec tions can be pre pared and stud ied un der petrographic mi cro scope and stan dard elec tron microprobe.

Sam ples col lected in the field were thin-sec tioned and ex - am ined un der the Nikon Eclipse E600 POL stan dard petro - graphic mi cro scope. Min eral chem i cal com po si tion was ob - tained un der the Cameca SX 100 (EMPA) elec tron microprobe with EDS and WDS, at the Mi cros copy and Microprobe Lab o ra - tory of the Uni ver sity of War saw (Po land). Anal y ses were per - formed at 15.0 kV ac cel er a tion volt age, and with 10.0 and 20.0 nA beam cur rent. In case when thin-sec tion ing is im per - mis si ble, a sim i lar anal y sis can be per formed us ing ESEM/LVSEM. From the ob tained re sults, 96 rep re sen ta tive anal y ses were se lected: 18 rock-form ing am phi boles and 78 other con stit u ents (29 py rox enes, 18 chlorites, 18 löllingites, 6 gar nets, 3 apatites, 2 Cr-spi nels, 1 prehnite and 1 ti tan ite; see Ap pen di ces 1 and 2 *). Microprobe anal y ses were re cal cu lated from ox ides in weight per cent (wt.%) to at oms per for mula unit, fol low ing e.g., Leake et al. (1997), or to atomic per cent (at.%).

RESULTS

PETROGRAPHY

Gen eral ap pear ance of the nephrites is sim i lar to typ i cal nephrites. Jordanów neph rite in hand-spec i men re veals a wide spec trum of green colours – from green ish-creamy, through bright green, to dark green. Mi nor white (Sachs, 1902; Heflik, 1974), pink (Heflik, 1974) and blu ish-green (Traube, 1888) zo - nes were also re ported. Trans par ency var ies from semi tran - slucent to opaque. The rock fab ric is cha otic or fo li ated (flat par al - lel or wavy), usu ally with green to black chlorite schist (Fig. 3C) and ser pen tin ite, creamy rodingite nests and lay ers, vis i ble to the na ked eye. On pol ished sur face, nu mer ous black spots (mostly opaque spinel) are pres ent, in some parts of rock, they are rare and scat tered, in oth ers, they form a nearly spot ted tex ture.

Z³oty Stok neph rite is bright to dark green, mostly grey - ish-green and trans lu cent. Red dish weath er ing rims were also re ported (Beutell and Heinze, 1914). The fab ric is cha otic or lay ered – di rec tional tex ture be ing caused by creamy, mostly

opaque, clinopyroxenite lay ers. The unique fea ture is the pres - ence of large (up to ~2 mm in di am e ter), sil ver löllingite crys tals with me tal lic luster (Fig. 3D). Löllingite is scat tered in the rock ma trix or con cen trated in lay ers. Sev eral spec i mens re veal an - other char ac ter is tic fea ture – lay ers com posed of di op side megacrysts ag gre gates, each crys tal up to ~1 cm long.

Jordanów neph rite shows usu ally a typ i cal, non-di rec tional fab ric, i.e., close inter growths of fine and very fine tremolite fi - bers (Figs. 2D and 4A, B). How ever, larger tremolite porphyro - blasts also oc cur (Fig. 4A). Fo li ated zones are also pres ent, with flat par al lel (Fig. 4C) or folded lay ers (Fig. 4D). Prehnite veins (Fig. 4D) with pink and blue in ter fer ence colours are the di ag nos tic tex tural (and min er al og i cal) fea ture. Char ac ter is tic chlorite nests with an in ter lock ing non-pseudomorphic tex ture (Fig. 4B) sensu Wicks and Whittaker (1977), and ro tated and cataclased di op side porphyroblasts with chlorite-am phi bole pres sure shad ows (Fig. 4C) are ob served as well. Some chlo - rite lay ers con tain zir con crys tals with pleochroic haloe (Fig.

4E). Ap a tite crys tals con tain ing monazite in clu sions can be iden ti fied (Fig. 4G).

The ma jor con stit u ents are tremolite, di op side and chlorite group min er als – mostly penninite, mi nor clinochlore and dia - bantite. Mi nor con stit u ents in clude grossular, prehnite and opa - que spinel (chro mite-mag ne tite solid so lu tion). Ac ces sory pha - ses are antigorite, hydrogrossular, ti tan ite, zir con, ap a tite and monazite. Al tered zones are rich in clay min er als and opaque ox - ides. Grossular and hydrogrossular show no clear spa tial re la - tions; both oc cur as sin gle iso met ric or elon gated grains or are con cen trated in ag gre gates. Their inter growths are also pres ent, and hydrogrossular seems to have formed at the ex pense of grossular. In the sense of Simandl et al. (2000), Jordanów neph - rite can be di vided into neph rite sensu stricto (Fig. 2D) and neph - rite schist (Fig. 2E). Neph rite is com posed of tremolite (87.2–89.8 vol.%), di op side (4.7–5.7 vol.%), chlorite (3.8–8.1 vol.%), spinel (from trace to 0.2 vol.%) and grossular (from ab sent to 0.5 vol.%). Neph rite schist (fo li ated zones, petro - graphi cally cor re spond ing to semi-neph rite) is com posed of tremo lite (33.5–79.7 vol.%, in tran si tion to rodingite and chlorite schist drop ping to 11.4 vol.%), di op side (7.4–55.1 vol.%), chlorite (5.0–38.9 vol.%), Cr-spinel (from trace to 4.2 vol.%), grossular (from trace to 10.8 vol.%), preh nite (from ab sent to 0.5 vol.%), ti - tan ite (from trace to 0.8 vol.%) and clay min er als-ox ides ag gre - gates (from trace to 9.7 vol.%). The most com mon is a tran si tion from neph rite to neph rite schist in sin gle spec i mens, which de - creases stone’s gem qual ity.

Z³oty Stok neph rite also shows typ i cal in ter nal, non-di rec - tional fab ric, al though is com posed of actinolite (Fig. 2F). How - ever, larger actinolite porphyroblasts, euhedral di op side mega - crysts (Fig. 4F), and gran u lar clinopyroxenite nests (some cut by thin neph rite veins, sim i lar to whole rock) are also pres ent.

The ma jor con stit u ents are actinolite and di op side, mi nor con stit u ent is löllingite – iron ar se nide (Fig. 4F, H, I). Ac ces sory phases were de tected in some sam ples only; these are car bon - ates (do lo mite and cal cite) and quartz. Small num ber of con stit - u ents is char ac ter is tic to this de posit. In the sense of Simandl et al. (2000), Z³oty Stok neph rite rep re sents neph rite sensu stricto (Fig. 2F), with the amount of actinolite above 90 vol.%. How - ever, if con sid ered to gether with clinopyroxenite lay ers – the thick ness of neph rite lay ers is up to ~7 cm (e.g., Traube, 1888), usu ally less (sep a ra tion is of ten im pos si ble) – com po si tion is sim i lar to semi-neph rite. The term neph rite schist can not be used due to lack of schist fab ric. Neph rite/clinopyroxenite inter -

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1101

(6)

layers are com posed of actinolite (54.6–58.0 vol.%), di op side (30.5–37.3 vol.%) and löllingite (8.1–11.5 vol.%).

MINERAL CHEMISTRY

Am phi bole. The com po si tion of am phi bole (Leake et al., 1997) from Jordanów neph rite clas si fies it as tremolite. The chem i cal com po si tion is as fol lows: SiO2 (55.8–58.8 wt.%), CaO (13.2–13.7 wt.%), MgO (20.4–23.1 wt.%), to tal Fe as FeO (2.5–3.8 wt.%) and sig nif i cant Al2O3 (0.1–3.3 wt.%) (Ap pen dix 1), Si from above 7.7 to near 8.0 apfu (at oms per for mula unit), and Mg/(Mg + Fe2+) from 0.90 to 0.95. In con trast, the com po si - tion of am phi bole (Leake et al., 1997) from Z³oty Stok neph rite clas si fies it as actinolite (Fig. 7) com posed of SiO2 (56.6–57.7 wt.%), CaO (11.5–13.1 wt.%), MgO (19.1–21.9 wt.%), to tal Fe as FeO (4.4–8.4 wt.%) (Ap pen dix 2), Si ca. 8 apfu. and Mg/(Mg + Fe2+) from 0.8 to 0.9.

Clinopyroxene. The com po si tion of clinopyroxene from Jordanów clas si fies it as di op side (Morimoto et al., 1988) com - posed of SiO2 (53.6–56.5 wt.%), CaO (23.6–26.2 wt.%), MgO (14.9–17.8 wt.%), to tal Fe as FeO (1.6–5.7 wt.%), Al2O3

Fig. 4. Thin-sec tion pho to mi cro graphs with crossed polars (A–F) and back-scat tered elec tron (BSE) im ages (G–I) of stud ied nephrites

A – Jordanów (JR) – tremolite porphyroblasts in fine-grained tremolite groundmass; B – (JR) chlorite nest with in ter lock ing tex ture; C – (JR) ro tated and cataclased di op side porphyroblast with chlorite-am phi bole pres sure shad ows and a sin gle chlorite grain; D – (JR) prehnite vein cut ting folded, lay ered neph rite; E – (JR) chlorite with zir con in clu sion sur rounded by pleochroic haloe; F – Z³oty Stok (ZS) löllingite grains and euhedral di op side megacrysts; G – (JR) ap a tite with mi nor monazite in clu sion; H, I – (ZS) löllingite grains; Ap – ap a - tite, Chl – chlorite, Di – di op side, Lol – löllingite, Mnz – monazite, Prh – prehnite, Tr – tremolite, Zrn – zir con; löllingite crys tal num bers cor - re spond with Ap pen dix 2

Fig. 5. Chlorites from Jordanów neph rite plot ted on Fos ter’s di a gram (1962, fide Esteban et al., 2007)

(7)

(0.01–2.0 wt.%) (Ap pen dix 1), wollastonite com po nent (47–51% Ca2Si2O6), clinoenstatite (41–48% Mg2Si2O6) and clinoferrosilite (3–9% Fe2Si2O6). The com po si tion of the least calcic clinopyroxenes is still diopsidic, al though close to augite.

The most calcic ones plots slightly above the di op side field (Fig.

8). How ever, these are diopsides rather than pyroxenoids (cf.

Morimoto et al., 1988). The com po si tion of clinopyroxene from Z³oty Stok clas si fies it also as di op side (Morimoto et al., 1988) com posed of SiO2 (54.5–55.1 wt.%), CaO (25.1–25.4 wt.%), MgO (15.7–16.4 wt.%), to tal Fe as FeO (1.7–3.0 wt.%) (Ap pen - dix 2), wollastonite com po nent (~51%), clinoenstatite (44–46%) and clinoferrosilite (3–5%). The sam ple plots slightly above the di op side field (Fig. 8), sim i lar to some anal y ses from Jordanów.

Chlorite. Ac cord ing to Fos ter’s di a gram (1962, fide Esteban et al., 2007), ma jor ity of chlorite plot as penninite, only two sam ples plot as clinochlore and one sam ple – as diabantite (Fig. 5). Chlorites are com posed of SiO2 (30.9–38.6 wt.%), Al2O3 (13.4–20.4 wt.%), MgO (24.4–33.9 wt.%), to tal Fe as FeO (4.0–17.1 wt.%), CaO from be low de tec tion limit to 2.6 wt.% (Ap pen dix 1), Si (IV) from 2.9 to near 3.6, and Fe2+/Sum R2+ from 0.05 to 0.3.

Spinel, grossular, ap a tite, ti tan ite, prehnite. The chem i - cal com po si tion of mi nor con stit u ents and ac ces sory phases of Jordanów neph rite is pre sented in Ap pen dix 1. Spinel (chro - mite-mag ne tite solid-so lu tion) is com posed of Cr2O3

(46.7–47.0 wt.%), Fe2O3 (14.9–16.5 wt.%), FeO (25.9–27.5 wt.%), Al2O3 (3.5–4.1 wt.%), ZnO (0.8–1.0 wt.%), with Cr/(Cr + Al) ra tio about 0.9. The FeO and Fe2O3 con tents were cal cu lated by charge bal ance, as sum ing the ideal stoichio metry, us ing the Cameca SX 100 rou tine. Grossular gar net is com posed of SiO2

(38.6–40.8 wt.%), Al2O3 (21.2–22.3 wt.%), Fe2O3 (0.5–1.2 wt.%), CaO (35.6–38.0 wt.%), other com po nents are be low 1 wt.%, with Mg/(Mg + Fe) ra tio from 0.05 to 0.65, and Ca/(Ca + Mg) close to 1. Ap a tite is com posed of CaO (54.9–56.5 wt.%), P2O5 (41.8–43.4 wt.%), and F (2.0–2.1 wt.%). From a sin gle ti - tan ite anal y sis, the fol low ing com po si tion was ob tained: SiO2

(31.2 wt.%), TiO2 (40.2 wt.%), CaO (27.5 wt.%), and FeO (1.1 wt.%). Sin gle prehnite anal y sis re sulted in the fol low ing com po si tion: SiO2 (43.9 wt.%), Al2O3 (24.7 wt.%), and CaO (27.8 wt.%).

Löllingite. Opaque min er als from Z³oty Stok neph rite, fol - low ing Fleet and Mumin (1997), are clas si fied as löllingite (Fig.

6), al though the com po si tion var ies from nearly pure löllingite to löllingite with a no tice able marcasite ad mix ture, which has the same struc ture (O’Day, 2006). Löllingite is com posed of Fe (28.0–29.0 wt.%), As (67.6–70.5 wt.%), S (0.7–3.4 wt.%) and trace el e ments. It is in ter est ing that löllingite anal y ses re veal Au from be low de tec tion limit to 0.2 wt.% (Ap pen dix 2). How ever, gold is sparse, this is the so-called in vis i ble gold (Bark and Weihed, 2007; Kovalev et al., 2011).

DISCUSSION

Com pared to the fab ric of Z³oty Stok neph rite, which is non-di rec tional (cha otic), the fab ric of Jordanów neph rite is cha - otic or fo li ated (flat-par al lel or folded). In Jordanów, veins com - Fig. 6. Opaque min er als from Z³oty Stok neph rite plot ted

on clas si fi ca tion di a gram af ter Fleet and Mumin (1997)

Fig. 7. Com par i son of am phi boles from Jordanów and Z³oty Stok, and from Tai wan, Chi nese and Ko rean nephrites,

pre sented on di a gram af ter Leake et al. (1997) Alamas neph rite (Xinjiang, China) af ter Liu et al. (2011b);

Fengtian neph rite (Tai wan) and white nephrites from China and Ko rea af ter Hung et al. (2007)

(8)

posed of prehnite are char ac ter is tic. In Z³oty Stok, the most char ac ter is tic is löllingite, dis tin guish able by the na ked eye, and di op side megacrysts ag gre gates. In Jordanów, both neph rite and neph rite schist are pres ent, in Z³oty Stok only neph rite is found. Jordanów neph rite con tains a wider spec trum of mi nor con stit u ents and ac ces sory phases – chlorites, antigorite, grossular, hydrogrossular, prehnite, opaque spinel, ti tan ite, ap - a tite, monazite and zir con, in con trast to Z³oty Stok, where only löllingite, car bon ates and quartz were iden ti fied.

Jordanów neph rite is com posed of tremolite, in con trast to Z³oty Stok neph rite built of actinolite. Si apfu in the for mula unit in Z³oty Stok is higher (ca. 8) as com pared to Jordanów (7.7–8.0). Am phi boles from Jordanów are sim i lar to tremolite from Fen gtian neph rite, Tai wan (Hung et al., 2007), whereas Z³oty Stok am phi boles are com pa ra ble with Alamas neph rite actinolite (Xinjiang, China; see Fig. 7) due to the sim i lar Si apfu.

More over, the Mg/(Mg + Fe2+) ra tio in Z³oty Stok is in ter me di ate be tween Alamas actinolite neph rite (af ter metasomatized ser - pen tin ite) and tremolite neph rite (af ter do lo mite) pre sented by Liu et al. (2011b). Both stud ied am phi boles also clearly dif fer from the so-called white neph rite (do lo mite-re lated de pos its) from China and Ko rea (Hung et al., 2007; Liu et al., 2011b).

Clinopyroxenes from both oc cur rences be longs to di op side, typ i cal to ma jor ity of de pos its, e.g., Hetian (Xinjiang, NW China;

Liu et al., 2011a) and Alamas, Xinjiang (Liu et al., 2011b). How - ever, some of Jordanów sam ples shown in Fig ure 8 are slightly en riched in Mg2Si2O6 (up to 48 vs. 46% in Z³oty Stok) and Fe2Si2O6 (up to 9 vs. 5% in Z³oty Stok). Jordanów neph rite is char ac ter ized by the pres ence of ro tated and cataclased di op - side porphyroblasts with pres sure shad ows, whereas in Z³oty Stok, euhedral di op side megacrysts and fine, gran u lar pyro - xenite nests are typ i cal.

Chlorites were iden ti fied only in Jordanów neph rite, their com po si tion cor re sponds to penninite, spo rad i cally to clino - chlore and diabantite. The chlorites show higher Si con tents than clinochlore from Chuncheon neph rite, Ko rea (Yui and Kwon, 2002). Chlorites from Jordanów also show lower Fe and higher Si con tents than chlorites from a sim i lar geo logic set ting

in South ern Spain – mostly ripidolite, brunsvigite and clino - chlore (Esteban et al., 2007).

Grossular from Jordanów neph rite, pre sented on a dis crim i - na tion di a gram af ter Schulze (2003), plots in the typ i cal crustal- de rived gar nets field (Fig. 9). It in di cates its ge netic re la tions with rodingitization and serpentinization rather than with a host-rock man tle protolith. The cal cu lated Ca/(Ca + Mg) (close to 1) and Mg/(Mg + Fe) (0.05–0.65) ra tios cor re spond to gar - nets from Fengtian nephritan, Tai wan, given by Wan and Yeh (1984), with val ues close to 1 and from 0.1 to 0.5, re spec tively.

Opaque spinel from Jordanów rep re sents a chro mite-mag - ne tite solid so lu tion. Fig ure 10 shows a plot of Cr/(Cr + Al) vs.

ZnO (Hung et al., 2007), here af ter spinel from Jordanów is sim i - lar to Nanshan neph rite (China), and com pa ra ble to Chara Jelgra neph rite (Si be ria, Rus sia) and Fengtian neph rite (Tai - wan). How ever, a larger num ber of anal y ses are re quired to use this method more pre cisely.

Z³oty Stok is prob a bly the only one neph rite de posit world - wide with sig nif i cant amounts of löllingite, and prob a bly among a few (maybe even two) gold-bear ing nephrites – the other is in Siskiyou County, Cal i for nia (Sinkankas, 1959). The ab sence of py rite and ar seno py rite, which are com mon in the sur round ing rocks (e.g., Muszer, 1988; Niœkiewicz, 1988), in con junc tion with the pres ence of löllingite, sug gests ore min er als (and per - haps whole neph rite) for ma tion at the tem per a ture of 500–650°C (Gil, 2011).

CONCLUSIONS

The pres ent de scrip tion of Pol ish nephrites al lows their iden ti fi ca tion by means of petrographic and chem i cal anal y ses of con sti tut ing min er als. It can be com ple men tary when ap plied with a method of neph rite iden ti fi ca tion based on whole-rock geo chem is try given by Kostov et al. (2012), or other meth ods.

Ac cu rate iden ti fi ca tion of Jor danÙw neph rite can be man - aged based on the com bi na tion of fea tures given be low. Fab ric and com po si tion as sign it to neph rite sensu stricto or neph rite schist. Chlorite schist, rodingite and ser pen tin ite in ter ca la tions are vis i ble by the na ked eye, al though are not al ways pres ent.

Fig. 8. Clinopyroxenes com po si tion from Jordanów and Z³oty Stok nephrites, pre sented on di a gram af ter

Morimoto et al. (1988)

Fig. 9. Com par i son of gar nets from Jordanów and Tai wan nephrites pre sented on Schulze’s (2003) di a gram Fengtian neph rite (Tai wan) af ter Wan and Yeh (1984)

(9)

The neph rite is com posed of tremolite, sim i lar to Fengtian neph - rite tremolite (Tai wan), with the Si con tent from 7.7 to 8.0 apfu.

Other ma jor con stit u ents are di op side and chlorites. Mi nor and ac ces sory phases in clude grossular, hydrogrossular, prehnite, antigorite, opaque spinel (chro mite-mag ne tite solid so lu tion), ti - tan ite, ap a tite, monazite and zir con. Grossular and hydrogros - sular oc cur as sin gle iso met ric or elon gated grains or ag gre - gates, or inter growths of both, and show no clear spa tial re la - tions. Hydrogrossular seems to be formed at the ex pense of grossular. A typ i cal form is di op side rep re sented by ro tated and cataclased porphyroblasts with chlorite-am phi bole pres sure shad ows, prehnite veins, and lay ers and nests com posed of chlorite group min er als. Chlorite cor re sponds to penninite, spo - rad i cally to clinochlore and diabantite. Some chlorite nests show

an in ter lock ing non-pseudomorphic tex ture. Chlorite of ten con - tains zir con in clu sions with pleochroic haloe. More over, ap a tite con tains monazite in clu sions. Crustal-de rived grossular gar net is pres ent, like wise in Fengtian neph rite (Tai wan). The spinel com - po si tion is sim i lar to that of Nanshan neph rite (China).

Z³oty Stok neph rite can be iden ti fied with high plau si bil ity dur ing care ful mac ro scopic ex am i na tion, based on the oc cur - rence of löllingite dis tin guish able by the na ked eye. How ever, löllingite is not al ways pres ent. To al low dis tin guish ing less char ac ter is tic sam ples, other ad di tional fea tures are used. Fab - ric and com po si tion as sign the spec i men to neph rite sensu stricto, al though if neph rite piece is re moved to gether with clinopyroxenite, av er age compositon re fers to semi-neph rite.

The neph rite is com posed of actinolite, com pa ra ble with Alamas neph rite actinolite (Xinjiang, China), with the Si con tent of ca. 8.0 apfu. Other ma jor and mi nor con stit u ents are di op side and löllingite. Ac ces sory phases are car bon ates and quartz. Di - op side forms gran u lar clinopyroxenite nests (some cut by actinolite veins sim i lar to whole neph rite) and euhedral mega - crysts. Some of megacrysts are vis i ble by the na ked eye. The löllingite com po si tion var ies from nearly pure phase to a löllingite- marcasite solid so lu tion. This is one of few gold-bear - ing nephrites world wide.

It is prob a ble that neph rite ar ti facts found in ar chae o log i cal sites in Eu rope, e.g. in Po land, Bul garia, Swit zer land and It aly, orig i nate from the Pol ish source of raw ma te rial. In par tic u lar, fea tures of ar ti facts from Po land, SW Bul garia, Sar dinia and S It aly should be com pared with char ac ter is tic fea tures of nephri - tes pre sented in this pa per, be cause the source area of all ar ti - facts is still un known. The an a lyt i cal meth ods pre sented herein should be ap plied to other Eu ro pean and, if pos si ble, West ern Eur asian neph rite de pos its, which gives new ca pa bil i ties in archaeometric stud ies.

Ac knowl edge ments. The re search has been sup ported by an in ter nal grant of the Uni ver sity of Wroc³aw – Min er al og i cal Mu seum and Gemmology De part ment. P. Gunia is ap pre ci ated for nu mer ous con struc tive dis cus sions and for al low ing the ac - cess to neph rite col lec tion of Min er al og i cal Mu seum. I thank A. Szuszkiewicz and K. Turniak for lan guage cor rec tions.

J. Girulska- Michalik, E. £obocka, A. Stryjewski and J. Bogda - ñski helped with han dling the neph rite col lec tion. I also thank P. Dzier¿anowski and L. Je¿ak for help with microprobe anal y - ses. L. Krzemiñski is ap pre ci ated for ed i to rial cor rec tions. I am thank ful to D. Hovorka and A. Muszyñski for re vi sion and con - struc tive com ments that im proved this pa per.

REFERENCES

Bark G., Weihed P. (2007) Orogenic gold in the new Lycksele- Storuman ore prov ince, north ern Swe den; the Palaeoprote - rozoic Fäboliden de posit. Ore Ge ol ogy Re views, 32 : 431–451.

Bachliñski R., Bagiñski B. (2007) K³odzko-Z³oty Stok granitoid mas sif. In: Granitoids in Po land (eds. A. Koz³owski and J.

Wiszniewska): 261–273. Komitet Nauk Mineralogicznych PAN i Wydzia³ Geologii UW, Warszawa.

Beutell A., Heinze K. (1914) Nephrit von Reichenstein in Schlesien, ein Übergangsprodukt vom Salit zum Serpentin. Centralblatt für Mineralogie, Geologie und Paläontologie, 15: 553–560.

Bradt R.C., Newn ham R.E., Biggers J.V. (1973) The tough ness of iade. Amer i can Min er al o gist, 58: 727–732.

Cheng H.S., Zhang Z.Q., Zhang B., Yang F.J. (2004) Non-de struc - tive anal y sis and iden ti fi ca tion of jade by PIXE. Nu clear In stru - ments and Meth ods in Phys ics Re search B, 219–220: 30–34.

Cwojdziñski S., Kozdrój W. (2007) The Sudetes, geotourist guide, along the road Nysa-Z³oty Stok-K³odzko-Wa³brzych-Jelenia Góra. Pol ish Geo log i cal In sti tute, Warszawa.

D’Amico C., Starnini E., Gasparotto G., Ghedini M. (2003) Eclogites, jades and other HP-metaophiolites em ployed for pre - his toric pol ished stone im ple ments in It aly and Eu rope. Perio - dico di Mineralogia, 73: 17–42.

Derevianko A.P., Olsen J.W., Tseveendorj D., Gladyshev S.A., Nokhrina T.I., Tabarev A.V. (2008) New in sights into the ar chae - Fig. 10. Vari a tion of Cr/(Cr + Al) vs. ZnO in spi nels from

Jordanów, and from Fengtian (Tai wan), Chara Jelgra (Si be ria, Rus sia) and Nanshan (China) nephrites

Di a gram and data for com par i son af ter Hung et al. (2007)

(10)

o log i cal re cord at Chikhen Agui rockshelter (Mon go lia). Ar chae - ol ogy, Eth nol ogy and An thro pol ogy of Eur asia, 34 (2): 2–12.

Dubiñska E., Bylina P., Koz³owski A., Dörr W., Nejbert K., Schastok J., Kulicki C. (2004) U-Pb dat ing of serpentinization:

hy dro ther mal zir con from a metasomatic rodingite shell (Sudetic ophiolite, SW Po land). Chem i cal Ge ol ogy, 203: 183–203.

Esteban J.J., Cuevas J., Tubía J.M., Liati A., Seward D., Gebauer D. (2007) Tim ing and or i gin of zir con-bear ing chlorite schists in the Ronda peri dot ites (Betic Cor dil leras, South ern Spain).

Lithos, 99: 121–135.

Fleet M.E., Mumin H.A. (1997) Gold-bear ing arsenian py rite and marcasite and ar seno py rite from Carlin Trend gold de pos its and lab o ra tory syn the sis. Amer i can Min er al o gist, 82: 182–193.

Fournelle J., Law R., Konishi H. (2010) A neph rite jade am u let from Harappa: Im pli ca tions for long-dis tance con tacts in the Harappan Pe riod. 39th An nual Con fer ence on South Asia, 39 (2010).

Gil G. (2011) Min eral chem is try of the As-bear ing ore min er als from Z³oty Stok nephrites – pre lim i nary re sults. Mineralogia Spe cial Pa pers, 38: 92–93.

Harlow G.E., Sorensen S.S. (2001) Jade: oc cur rence and metasomatic or i gin. The Aus tra lian Gemmologist, 21: 7–10.

Harlow G.E., Sorensen S.S. (2005) Jade (neph rite and jadeitite) and ser pen tin ite: metasomatic con nec tions. In ter na tional Ge ol - ogy Re view, 47: 113–146.

Heflik W. (1974) Nefryt. Pol ish Sci en tific Press, Warszawa-Kraków.

Heflik W. (2010) About some dec o ra tive gems from the Lower Silesia and their sig nif i cance in the de vel op ment of ma te rial cul - ture (in Pol ish with Eng lish sum mary). In: Dzieje górnictwa – el e - ment europejskiego dziedzictwa kultury (eds. P.P. Zago¿d¿on and M. Madziarz): 139–148. Oficyna Wydawnicza Politechniki Wroc³awskiej, Wroc³aw.

Hung H.-C., Iizuka Y., Bellwood P., Dung Nguyen K., Bellina B., Silapanth P., Dizon E., San ti ago R., Datan I., Manton J.H.

(2007) An cient jades map 3,000 years of pre his toric ex change in South east Asia. Pro ceed ings of the Na tional Acad emy of Sci - ences of the United States of Amer ica, 104 (50): 19745–19750.

Kostov R.I. (2005) Gemmological sig nif i cance of the pre his toric Bal kan “neph rite cul ture” (cases from Bul garia). An nual of the Uni ver sity of Min ing and Ge ol ogy ”St. Ivan Rilski”, 48: 91–94.

Kostov R.I., Protochristov C., Stoyanov C., Csedreki L., Si mon A., Szikszai Z., Uzonyi I., Gaydarska B., Chap man J. (2012) Mi cro-PIXE geo chem i cal fin ger print ing of neph rite Neo lithic ar ti - facts from South west Bul garia. Geoarchaeology: an In ter na - tional Jour nal, 27: 457–469.

Kovalev K.R., Kalinin Y.A., Naumov E.A., Kolesnikova M.K., Korolyuk V.N. (2011) Gold-bear ing ar seno py rite in east ern Kazakhstan gold-sul fide de pos its. Rus sian Ge ol ogy and Geo - phys ics, 52: 178–192.

Kryza R. (2011) Early Car bon if er ous (~337 Ma) gran ite in tru sion in De vo nian (~400 Ma) ophiolite of the Cen tral-Eu ro pean Varis - cides. Geo log i cal Quar terly, 55 (3): 213–222.

Kryza R., Mazur S., Oberc-Dziedzic T. (2004) The Sudetic geo log i - cal mo saic: In sights into the root of the Variscan orogen. Prze - gl¹d Geologiczny, 52 (8/2): 761–773.

Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert C.M., Grice J.D., Haw thorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G. (1997) No men cla ture of am phi boles: re port of the sub com - mit tee on am phi boles of the in ter na tional min er al og i cal as so ci a - tion, com mis sion on new min er als and min eral names. Ca na - dian Min er al o gist, 35: 219–246.

Liu Y., Deng J., Shi G., Sun X., Yang L. (2011a) Geo chem is try and petro gen esis of placer neph rite from Hetian, Xinjiang, North - west China. Ore Ge ol ogy Re views, 41: 122–132.

Liu Y., Deng J., Shi G., Yui T.-F., Zhang G., Abuduwayiti M., Yang L., Sun X. (2011b) Geo chem is try and pe trol ogy of neph rite from

Alamas, Xinjiang, NW China. Jour nal of Asian Earth Sci ences, 42: 440–451.

Losey R.J., Bazaliiskii V.I., Garvie-Lok S., Germonpré M., Leon - ard J.A., Allen A.L., Katzenberg M.A., Sablin M.V. (2011) Canids as per sons: Early Neo lithic dog and wolf buri als, Cis-Baikal, Si be ria. Jour nal of An thro po log i cal Ar chae ol ogy, 30:

174–189.

£apot W. (2004) Pe cu liar neph rite from the East Saian Mts (Si be - ria). Mineralogia Polonica, 35 (1): 49–58.

£obos K., Sachanbiñski M., Pawlik T. (2008) Neph rite from Nas³awice in Lower Silesia (SW Po land) (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 56 (11): 991–999.

Majerowicz A. (2006) Krótki przewodnik terenowy po ska³ach ofiolitowego zespo³u Œlê¿y oraz ich petrologicznej i geologicznej historii. Wroc³aw Uni ver sity Press. Wroc³aw.

Makepeace K., Simandl G.J. (2001) Jade (neph rite) in Brit ish Co - lum bia, Can ada. Pro gram and Ex tended Ab stracts for 37th Fo - rum on the Ge ol ogy of In dus trial Min er als, 37 (2001): 209–210.

Maœlankiewicz K. (1982) Kamienie szlachetne. Wydawnictwa Geolo giczne, Warszawa.

Mazur S., Aleksandrowski P., Kryza R., Oberc-Dziedzic T. (2006) The Variscan orogen in Po land. Geo log i cal Quar terly, 50 (1):

89–118.

Middle ton A. (2006) JADE – Ge ol ogy and Min er al ogy. In: Gems (ed. M. O’Donoghue): 332–354. Elsevier Ltd., Ox ford.

Morimoto N., Fabries J., Fer gu son A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J., Aoki K., Gottardi G. (1988) No men - cla ture of py rox enes. Amer i can Min er al o gist, 73: 1123–1133.

Muszer A. (1988) Charakterystyka mineralizacji rozproszonej w strefie dyslokacyjnej Z³oty Stok-Skrzynka na przyk³adzie blasto - mylonitów ³yszczykowych w rejonie Or³owca. In: Wybrane zaga - dnienia geologii i mineralizacji metamorfiku Œnie¿nika (ed. I.

Wojciechowska): 110–112. Wroc³aw Uni ver sity Press, Wroc³aw.

Niœkiewicz J. (1988) Charakterystyka mineralizacji rudnej wystê - puj¹cej w metabazytach Gór Z³otych i Krowiarek. In: Wybrane zagadnienia geologii i mineralizacji metamorfiku Œnie¿nika (ed.

I. Wojciechowska): 36–49. Wroc³aw Uni ver sity Press, Wroc³aw.

O’Day P.A. (2006) Chem is try and Min er al ogy of Ar senic. El e ments, 2: 77–83.

Root E. (1994) Head for New Zea land to see spec tac u lar carv ings of Pou na mu, the greenstone of the Maori. Lap i dary Jour nal, 47 (11): 40–44.

Sachs A. (1902) Der “Weissstein” des Jordansmühler Nephritvor - kommens. Centralblatt für Mineralogie, Geologie und Paläon - tologie, 1902: 385–396.

Sax M., Meeks N.D., Michaelson C., Middle ton A.P. (2004) The iden ti fi ca tion of carv ing tech niques on Chi nese jade. Jour nal of Ar chae o log i cal Sci ence, 31: 1413–1428.

Schulze D.J. (2003) A clas si fi ca tion scheme for man tle-de rived gar - nets in kimberlite: a tool for in ves ti gat ing the man tle and ex plor - ing for di a monds. Lithos, 71: 195–213.

Simandl G.J., Riveros C.P., Schiarizza P. (2000) Neph rite (jade) de pos its, Mount Ogden area, Cen tral Brit ish Co lum bia (NTS 093N 13W). Geo log i cal Field work, 1999 (1): 339–347.

Sinkankas J. (1959) Jade. In: Gem stones of North Amer ica (ed. J.

Sinkankas): 236–259. D. Van Nostrand Com pany Inc., Prince - ton.

Traube H. (1888) Nephrit. In: Die Minerale Schlesiens (ed. H.

Traube). J.U. Kern Kern’s Verlag., Breslau.

Walendowski H. (2008) Serpentynit (Nas³awice k. Jordanowa Œl.).

Nowy Kamieniarz, 30 (1).

Wan H.-M., Yeh C.-L. (1984) Uvarovite and grossular from the Fengtien neph rite de pos its, east ern Tai wan. Min er al og i cal Mag - a zine, 48: 31–37.

Wicks F.J., Whittaker E.J.W. (1977) Ser pen tine tex tures and serpentinization. Ca na dian Min er al o gist, 15: 459–488.

Yui T.-F., Kwon S.-T. (2002) Or i gin of a do lo mite-re lated jade de - posit at Chuncheon, Ko rea. Eco nomic Ge ol ogy, 97: 593–601.

Cytaty

Powiązane dokumenty

§ test results of cables connected to fireboxes type PMO1, PMO2 and fixed to ceiling by cable clips type UDF in spacing of 300 mm are also applicable for cables of other

The element comprise of cable bearing system BAKS – cable trays KCOP, cable ladders DGOP, ceiling ledges SDOC with clips UKO1 and UKO2, clips UDF and UEF, cable holders

The element comprise of cable bearing system BAKS – cable trays KCOP, cable ladders DGOP, ceiling ledges SDOC with clips UKO1 and UKO2, clips UDF and UEF, and accessories

The element comprise of cable bearing system BAKS – cable trays KBL, KBJ, KBP, KCL, KCP, KFL, KFJ, KGL cable mesh trays KDS, KDSZ, cable ladders DFP, DUD, clips UDFB,

The element comprise of cable bearing system BAKS – cable trays KCOP with T-lengths of trays KKPOP and bends of trays KPPOP, cable mesh trays KDSO, cable ladders DGOP with

Supports type CWP/CWOP are made from steel sheet thickness 1,5 mm. Supports are used to gripping trays or ladders to the ceiling with threaded bar. Fireboxes can be used for

Product comprise of cable bearing system BAKS – cable trays, cable ladders, cable mesh trays, cable single clips KSA and fireboxes PMO3B with accessories, power

Product comprise of fireboxes of company W2 with accessories and cable bearing system BAKS Kazimierz Sielski company – cable trays, ladders, mesh trays with