• Nie Znaleziono Wyników

Modelowanie Nanostruktur

N/A
N/A
Protected

Academic year: 2021

Share "Modelowanie Nanostruktur"

Copied!
12
0
0

Pełen tekst

(1)

1!

Modelowanie Nanostruktur

Semester Zimowy 2012/2013 Wyk!ad

Jacek A. Majewski Chair of Condensed Matter Physics Institute of Theoretical Physics

Faculty of Physics, Universityof Warsaw

E-mail: Jacek.Majewski@fuw.edu.pl

Modelowanie Nanostruktur, 2012/2013 Jacek A. Majewski

Wyk!ad 3 9 X 2012

Metody ci"g!e w modelowaniu nanostruktur

Metoda masy efektywnej dla studni kwantowej

Nanotechnology –

Low Dimensional Structures

Quantum

Wells Quantum

Wires Quantum Dots A B

Simple heterostructure

What about realistic nanostructures ?

2D (quantum wells): 10-100 atoms in the unit cell 1D (quantum wires): 1 K-10 K atoms in the unit cell 0D (quantum dots): 100K-1000 K atoms in the unit cell

Organics

Nanotubes, DNA: 100-1000 atoms (or more)

Inorganics

3D (bulks) : 1-10 atoms in the unit cell

(2)
(3)
(4)
(5)
(6)
(7)
(8)

2!

Synthesis of colloidal nanocrystals Injection of organometallic precursors

Mixture of surfactants Heating mantle

Nanostructures: colloidal crystals!

- !Crystal from sub-!m spheres of PMMA (perpex) suspended in organic solvent;

-! self-assembly when spheres density high enough;

0 2 4 6 8 10 12 14 1

10 100 1 000 10 000 100 000 1e+06

Number of atoms

R (nm)

Tight-Binding

Pseudo-

potential Ab initio

Atomistic vs. Continuous Methods

Microscopic approaches can be applied

to calculate properties of realistic nanostructures

Number of atoms in a spherical Si nanocrystal as a function of its radius R.

Current limits of the main techniques for calculating electronic structure.

Nanostructures commonly studied experimentally lie in the size range 2-15 nm.

Continuous methods

Atomistic methods for modeling of nanostructures

Ab initio methods (up to few hundred atoms)

Semiempirical methods (up to 1M atoms)

(Empirical Pseudopotential) Tight-Binding Methods

Continuum Methods

(e.g., effective mass approximation)

(9)

3!

Continuum theory- Envelope Function Theory

Electron in an external field

!ˆp

2

2m + +V (!r) ++U(!r)

!!

""

## ##

$$

%%

&&

&& ! ! (!r) == !!" " (!r)

Periodic potential of crystal Non-periodic external potential

Strongly varying on atomic scale Slowly varying on atomic scale

0

-5 5

!1

"3

"1

"1

"1

"3

# ‘2

# ‘25

#15

#1

$ ‘2

$ ‘2

$5

$1

$5

L ‘2 L1 L ‘3 L3

L1 !4

!1

Energy [eV]

Wave vector k

$1

"1

Ge

Band structure of Germanium

!!

n

( ! k) U( r ) == 0 !

Band Structure

Electron in an external field

!ˆp

2

2m + +V (!r) ++U(!r)

!!

""

## ##

$$

%%

&&

&& ! ! (!r) == !!" " (!r)

Periodic potential of crystal Non-periodic external potential Strongly varying on atomic scale Slowly varying on atomic scale

Which external fields ?

!! Shallow impurities, e.g., donors

!! Magnetic field B,

!!Heterostructures, Quantum Wells, Quantum wires, Q. Dots U(!r) == !! e2

!!| !r | B == curl! !

A ==!

!

! ""! A

GaAs GaAlAs cbb

GaAs

GaAlAs GaAlAs

Does equation that involves the effective mass and a slowly varying function exist ? !ˆp2

2m*++U(!r)

!!

""

#### $$

%%&&&&F(!r) ==!!F(!r)

F(!r) == ?

Envelope Function Theory – Effective Mass Equation

J. M. Luttinger & W. Kohn, Phys. Rev. B 97, 869 (1955).

[ !! (!!i !

"

") ++U(!r) !! !! ]F

n

(!r) == 0

!

! (!r) == F

n

(!r)u

n0

(!r)

U(!r) == 0

Fn

(!r) == exp(i !

k !! !r)

(EME) EME does not couple different bands

Envelope Function

Periodic Bloch Function

“True”

wavefunction

Special case of constant (or zero) external potential

!

! (!r)

Bloch function

( )

U z

Fn

(!r) == exp[i(k

xx ++ kyy)]Fn

(z)

(10)

4!

Electronic states in Quantum Wells

Envelope Function Theory- Electrons in Quantum Wells

Effect of Quantum Confinement on Electrons

Let us consider an electron in the conduction band near point

! !

GaAs

GaAlAs GaAlAs

cbb

Growth direction (z – direction )

Potential ? U(!r)

U(!r) is constant in the xy plane

!!c(!

k) ==!!c0++ !2 2m*

k!2

U(!r) == U(z) == !!c0 z !! GaAs

!!c0++!!Ec z !! GaAlAs

""

##$$

%%$$

!! !2 2m*

!!2

!!x2++!!2

!!y2++!!2

!!z2

""

##$$$$ %%

&&

''''F(x, y,z)++U(z)F(x, y,z) == EF(x, y,z) Effective Mass Equation for the Envelope Function F

( , , ) x( ) ( ) ( )y z F x y z ==F x F y F z Separation Ansatz

!! !2 2m*

""2Fx

""x2 FyFz++""2Fy

""y2 FxFz++""2Fz

""z2 FxFy

##

$$

%%%%

&&

''

((((++U(z)FxFyFz==EFxFyFz

!! !2 2m*

""2Fx

""x2 FyFz++""2Fy

""y2 FxFz++""2Fz

""z2 FxFy

##

$$

%%%%

&&

''

((((++U(z)FxFyFz==EFxFyFz

x y z

E E== ++E ++E

!! !2 2m*

!!2Fx

!!x2 FyFz==ExFxFyFz !! !2 2m*

!!2Fy

!!y2 FxFz==EyFxFyFz

!! !2 2m*

""2Fz

""z2 FxFy++U(z)FxFyFz==EzFxFyFz

!! !2 2m*

!!2Fx

!!x2 ==ExFx !!Fx~ eikxx, Ex== !2 2m*kx2

Effective Mass Equation of an Electron in a Quantum Well

!! !2 2m*

!!2Fy

!!y2 ==EyFy !!Fy~ eikyy, Ey== !2 2m*ky2

!! !2 2m*

!!2Fzn

!!z2 ++U(z)Fzn==EznFzn

Conduction band states of a Quantum Well

Fk!

||(!r||) == 1

Aexp[i(kxx ++ kyy)] == 1 Aexp(i!

k||!!!r||) Fn,k!

||(!r) == Fk!

||(!r||)Fzn(z) == 1 Aexp(i!

k||!!!r||)Fzn(z) En(!

k||) == !2 2m*

"

k||2++Ezn Energies of bound states in Quantum Well

!! !2 2m*

!!2Fzn

!!z2 ++U(z)Fzn==EznFzn

Energy

n=1 n=2 n=3

0

!!

c

c0 Ec

!! ++""

Ezn

E

n

( !

k

||

)

k !

||

E == E1++ !2 2m*

k!||2 E == E2++ !2

2m*

k!||2

E

1

E

2

Wave functions Fzn(z) Ezn

zn( ) F z

(11)

5!

Band structure Engineering

The major goal of the fabrication of heterostructures is the controllable modification of the energy bands of carriers

Lattice constant

Energy Gap [eV]

Band lineups in semiconductors!

-12



-10



-8



-6



-4



0





SiCSiGe

InSbGaSb

InAs AlSb

GaAsAlAsInPGaPAlPInNGaNAlNZnOZnSCdSZnSeCdSe 





ENERGY (eV) HgTe CdTe ZnTe



Band edges compile by: Van de Walle (UCSB) Neugebauer (Padeborn), Nature’04





e.g., GaAs/GaAlAs InAs/GaSb

Band lineup in GaAs / GaAlAs Quantum Well with Al mole fraction equal 20%

Envelope Function Theory- Electrons in Quantum Structures

Type-I Type-II

cbb

vbt

A B E

v

!

!

Ec

!

!

gapA E

gapB

E vbt

cbb A B

E

v

!

!

Ec

!

!

gapA

E

gapB

E vbt

cbb A

v

B E

!

!

Ec

!

!

gapA

E EgapB

Various possible band-edge lineups in heterostructures

GaN/SiC

(staggered)

(

misaligned

)

- Valence Band Offset (VBO)

E

v

!

!

!!Ec- Conduction band offset

GaAlAs vbt

cbb

1.75 eV 1.52 eV 0.14 eV

0.09 eV GaAs

VBO’s can be only obtained either from experiment or ab-initio calculatio

Effective Mass Theory with Position Dependent Electron Effective Mass

* *

A B

m !!m

*A

m m*B 0 z ==

!! !2 2m*(z)d2

dz2 !!!2

2 d dz 1

m*(z)d dz

!!!2 2 d dz

1 m*(z)

d dz

!!

""

## $$

%%&&F(z) ++U(z)F(z) == EF(z)

ˆ ˆ

[ *( )] z[ *( )] z[ *( )]

T== m z !!p m z ""p m z !! 2!! ""++ == ##1 ( )

F z m z* ( )1 dF zdz( ) z ==0

*A

m

*( ) m zB

“Graded structures”

IS NOT HERMITIAN !!

Symetrization of the kinetic energy operator

General form of the kinetic energy operator with

IS HERMITIAN !

and ARE CONTINOUOS !

(12)

6!

Doping in Semiconductor Low Dimensional Structures

E

v

!

! E

c

!

!

Energy band diagram of a selectively doped AlGAAs/GaAs Heterostructure before (left) and after (right) charge transfer

AlGaAs

GaAs VACUUM LEVEL

Ev

!

!

EF

gA

E

Bg

E

!!A

!!B

gA

E

!!

1 ld

LA

Negatively charged region Positively charged region

!!Aand - The electron affinities of material !!B A & B

The Fermi level in the GaAlAs material is supposed to be pinned on the donor level.

The narrow bandgap material GaAs is slightly p doped.

gB

E

( ) (0)( ) ( ) U z ==U z e z++ !!

Effects of Doping on Electron States in Heterostructures +

+

Ec

+ +

EF

+

+ + + + +

Ec (z) EF E1

Unstable Charge transfer Thermal equilibrium

!

!2!!(!r) == 4!!e

!! ""(!r "" !RA) "" !!(!r "" !RD) "" f!!|""!!(!r) |2

!!

#

(don)

# # #

(acc)

# #

$$

%%

&&

&&

'' ((

)) )) Resulting electrostatic potential

should be taken into account in the Effective Mass Equation

!! !2

2m*

""2

""x2++""2

""y2++""2

""z2

##

$$%%%% &&

''((((++U(x, y,z)!! e!!(!r)

))

**

++++

,, -- ..

..!!""(!r) == E!!""!!(!r)

!

!2!!(!r) == 4!!e

!! NA(!r) "" ND(!r) "" f!!|""!!(!r) |2

!!

#

$$

#

%%

&&

&&

'' ((

))))

Electrostatic potential can be obtained from the averaged acceptor and donor concentrations

Fermi distribution function

The self-consistent problem, so-called “Schrödinger-Poisson” problem

To be continued!

Cytaty

Powiązane dokumenty

absorption corresponds to the frequency of the orbital movement of the electron (this does not fit for small n) → we compare n and n'= n-1 → determining the constant R... falls

Przy istniejącym poziom ie rozw oju przem ysłu i rolnictw a system ten staw ał się ham ulcem dalszego p ostęp u.. Jed nak władze nie zdecydow ały się na jeg o

Majewski Chair of Condensed Matter Physics Institute of Theoretical Physics.. Faculty of Physics,

Making a reasonable estimate for the size of an Angry Bird and determine the value of ‘g’ in the Angry Birds world?. If ‘g’ is different to the real world why would the

27 and different type of high-pressure measurements. To date, various of materials including solids, liquids and gases have been proposed for pressure transmitting media. In this

Another breakthrough was associated with further improvements of the MOCVD technique, leading to a successful deposition of a high quality InGaN layers, de- signed to form the

associated with proton–proton, proton–neutron, and neutron–neutron interactions are approximately the same, apart from the additional repulsive Coulomb force for the

1) At low temperature the conductivity increases with temperature increasing (because the number of electrons passing from donor levels to the conduction band