• Nie Znaleziono Wyników

Modelowanie Nanostruktur

N/A
N/A
Protected

Academic year: 2021

Share "Modelowanie Nanostruktur"

Copied!
7
0
0

Pełen tekst

(1)

Modelowanie Nanostruktur

Semester Zimowy 2011/2012 Wykład

Jacek A. Majewski Chair of Condensed Matter Physics Institute of Theoretical Physics

Faculty of Physics, Universityof Warsaw

E-mail: Jacek.Majewski@fuw.edu.pl

Coherentny Transport w Nanostrukturach

Przewodnosc poprzez transmisje Tunelowanie w nanostrukturach

Modelowanie Nanostruktur, 2011/2012

Jacek A. Majewski

Wykład 5 8 XI 2011

2D-Electron Gas

Coherent quantum transport: Conductance from Transmission General expression for the current

Tunneling in semiconductors

Resonant Tunneling Diode Negative Differential Resistance

Recommended reading:

Supriyo Datta, “Quantum Transport, Atom to Transistor”

Cambridge University Press 2005

Supriyo Datta, “Electronic Transport in Mesoscopic Systems”

Cambridge University Press 1995

Coherent Transport

2D-Electron Gas

Electron mobility

Bulk GaAs at T=300 K – 9 000 cm2V-1 s-1 2DEG at T=300 K in HEMT –

10 000-12 000 cm2 V-1 s-1

Electron mobility in 2DEG at low temperatures ( < 1 K) can reach 20 000 000 cm2 V-1 s-1 !!!

EF

M AlGaAs GaAs

z

2DEG Ec

EF AlGaAs GaAs

z

2DEG Ec Gated AlGaAs/GaAs heterostructure AlGaAS/GaAs heterostructure

Classical in-plane transport

Ballistic, Coherent Quantum Transport

GaAs - substrate AlGaAs 2DEG

Mesoscopic devices – macroscopic with quantum effects present

(2)

Conductance from Transmission

( , ) ( , )

F L F F

f E

 

f E E

V

( , ) ( , )

F R F F

f E f E E

Device

Lead Lead

Contact

Contact

m

L= EF + V

L R m

R= EF

mL- electrochemical potential = chemical potential + voltage V – external bias

EF – Fermi energy (chemical potential in the absence of bias)

The Landauer approach – very useful in describing mesoscopic transport

The current through a conductor (device) is expressed in terms of

probability that an electron can transmit through it

Leads are reservoirs of electrons in which energy- and momentum relaxation processes are so effective that the electron system remains in equilibrium even under a given applied voltage bias

( , ) 1

exp[ ( )] 1 fF E

E

 

The electron concentration in the leads is so high that the electrostatic potential in each lead is taken to be constant (as for the case of metal)

Fullerene-based molecular nanobridges

Ab-initio studies of the electrical transport in nanocontacts

Al Al

C

60

Conductance from Transmission

Time-independent transport; Inelastic processes are negligible Schrödinger Equation:

2 2

*

( , , ) ( , , ) ( , , ) 2 V x y z x y z E x y z

m  

    

 

 

1 2

( , , ) ( )

( , )

V x y z

V x

V y z

 ( , , ) x y z   ( ) x

T

( , ) y z

( , ) , ( , )

T y z n m y z

  ETEn m,

( ), x E

||

The potential energy

Transverse modes Scattering states

Transport in x-direction

|| T

EEE

Asymptotic solutions for energy

I R

( )

T

l l

r

ik x ik x

l L

ik x

r R

e r e x x

t e x x

   

   

The wave function of electrons incoming from the left lead Incoming wave Reflected wave

Transmitted wave

E

|| V x1( ), x 

Conductance from Transmission

I R T

The wave function of electrons incoming from the right lead Incoming wave Reflected wave

Transmitted wave

( )

r r

l

ik x ik x

r R

ik x

l L

e r e x x

t e x x

 

   

( ) & ( )

Two linearly independent solutions for energy

E

||

0 x

divj  j constjconst Continuity equation for current (particle flow)

j x (

L

)  j x (

R

)

: *( * *)

2

i d d

j m dx dx

 

 

  

* *

(1 )

l l l r r r

kr rk t t

* *

(1 )

r r r l l l

kr rk t t

Continuity of current for

scattering states

( )

( )

(3)

* *

* *

( ) (2 2 ) (1 )

L 2 l l l l l l l

j x i ik ik r r k r r

m m

    

exp( ) R exp( )

R r r r r r

t ik x d ik t ik x

dx

   

*

* * *

exp( ) R exp( )

R r r r r r

t ik x d ik t ik x

dx

     

*

* *

* *

( ) ( )

2

R R

R R R r r r

d d

j x i k t t

m dx dx m

 

 

   

* *

(1 )

l l l r r r

kr rk t t

*

*

: *( )

2

i d d

j m dx dx

 

 

  

exp( ) exp( ) L exp( ) exp( )

L l l l l l l l l

ik x r ik x d ik ik x ik r ik x

dx

       

*

* * *

exp( ) exp( ) L exp( ) exp( )

L l l l l l l l l

ik x r ik x d ik ik x ik r ik x

dx

        

* * *

exp( 2 ) exp(2 )

L

L l l l l l l l l l l

d ik ik r ik x ik r ik x ik r r

dx

      

*

* *

exp( 2 ) exp(2 )

L

L l l l l l l l l l l

d ik ik r ik x ik r ik x ik r r

dx

       

  

( )

Right lead Left lead

Conductance from Transmission

Proof of the relation

k

l

(1  r r

l l*

)  k t t

r r r* for

Conductance from Transmission

More relations for transmission and reflection coefficients

( ) ( )

&

Two linearly independent solutions for energy

( )* & ( )*

Are also solutions of the Schrödinger Equation for energy

E

||

E

||

Schrödinger equation – equation of the 2nd order

ONLY TWO LINEARLY INDEPENDENT SOLUTIONS

( )*

A

( )

B

( )

 

 

( )*

C

( )

D

( )

( ) ( ) ( )

( ) ( ) ( )

* L A L B L

   

exp(ik xl )rl*exp(ik xl ) Aexp(ik xl )Arlexp(ik xl ))Btlexp(ik xl )

1

Ar

l

Bt

l

A

r

l*

( ) ( ) ( )

( ) ( ) ( )

* R A R B R

   

*

exp( ) exp( ) exp( ) exp( )

r r r r r r r

t

ik x

At ik x

B

ik x

Br ik x

0  At

r

Br

r

Bt

r*

1  r r

l l*

t t

r*l

r t

l*r

t r

r*r

 0

(I) (II)

From Eq. (II) one obtains

* *

,

l r

C

t D

r 1  r r

r r*

t t

r l*

rt

l l*

t r

l r*

 0

Conductance from Transmission

More relations for transmission and reflection coefficients

* *

1r rl lt tr*l r tl rt rr*r0 1r rr r*t tr l* r tl l*t rl r*0

* *

l r r r 0 r tt r

*

* r r l

r

r t r t



*

* l r l

l

r t r t



* *

* *

l r

r l l r

r l

t

t t t t t

tt  

(*) & (**) (**)

* * 2 2

| | | |

l l r r l r

r rr rrr

Previously it was proved

* 2

1

l l r

|

r

|

l

r r k t

  k

* 2

1

r r l

|

l

|

r

r r k t

  k

2 2 2 2

| | | |

r r l l

k tk t

2 2

| |

l

| |

r

r l

l r

k

k t t

k

k

(*)

Conductance from Transmission

Definition of transmission coefficients

*

*

: *( )

2

i d d

j m dx dx

 

 

 

exp( )

in ik xl

  outtrexp(ik xr ) reflrlexp(ik xl )

2 2

| | | |

*

r

out r r r

j k t v t

m

/ *

in l l

jk mv

| |2 l

R L l

r

T k t

k

2 2

( )

refl

|

l

| |

r

|

in

R E j r r

j

 

( ) ( ) 1

T E

R E

2 2

| | | |

out r r

L R r r

in l l

j k v

T t t

j k v

  

Incoming and outgoing electron flows

ratio of outgoing to incoming flow

( )

Components of state

Transmission coefficient through the device for state ( )

( )

Transmission coefficient through the device for state

(

||

)

R L L R

T

T

T E

|| 2||2

2 *

E k

m Kinetic energy Reflection coefficient=the ratio of reflected and incoming flows

(4)

Conductance from Transmission

Electric current through the device

||

, , k n m

|| ||

( , , ) T( , )

EE k n mEE n m

||

|| || ||

, 0

2 ( ) ( ( , , ) )

L L

n m k c

I e v T E f E k n m

L





||

|| || ||

, 0

2 ( ) ( ( , , ) )

R R

n m k c

I e v T E f E k n m

L





||

|| || || ||

, 0

2 ( )[ ( ( , , ) ) ( ( , , ) )]

L R R L

n m k c

I I I e v T E f E k n m f E k n m

L  

  



  

v

||

The number of electrons in state per unit length 2 ( ( , ,f E k n m|| )L) /Lc The total contribution to the electric current from the electrons entering from the left

Similarly, for the electrons entering from the right

The total electric current through the device

It is convenient to introduce the function || ||

,

( ) : 2 ( ( , , ) )

n m

F E 

f E k n m 

||

|| ||

||

{ } { } { }

2 2

c c

k

dk dE

L L

  v

 

  

||

|| || ||

( )[ ( ) ( )]

2

R L

I e dE T E F EF E

 

  

The total electric current independent on

L EF V

  

R EF

 

n-GaAs substrate GaAs QW

GaAs GaAs AlGaAs

Barriers

EC Z

Example of Quantum Transport: Coherent Tunneling Resonant Tunneling Diode (RTD)

Esaki, Chang, Tsu (IBM, 1974)

A

(5)

Transfer Matrix Approach (2)

(6)
(7)

Cytaty

Powiązane dokumenty

Majewski Chair of Condensed Matter Physics Institute of Theoretical Physics.. Faculty of Physics,

Przy istniejącym poziom ie rozw oju przem ysłu i rolnictw a system ten staw ał się ham ulcem dalszego p ostęp u.. Jed nak władze nie zdecydow ały się na jeg o

absorption corresponds to the frequency of the orbital movement of the electron (this does not fit for small n) → we compare n and n'= n-1 → determining the constant R... falls

Making a reasonable estimate for the size of an Angry Bird and determine the value of ‘g’ in the Angry Birds world?. If ‘g’ is different to the real world why would the

27 and different type of high-pressure measurements. To date, various of materials including solids, liquids and gases have been proposed for pressure transmitting media. In this

Another breakthrough was associated with further improvements of the MOCVD technique, leading to a successful deposition of a high quality InGaN layers, de- signed to form the

associated with proton–proton, proton–neutron, and neutron–neutron interactions are approximately the same, apart from the additional repulsive Coulomb force for the

1) At low temperature the conductivity increases with temperature increasing (because the number of electrons passing from donor levels to the conduction band