• Nie Znaleziono Wyników

Numerical study of a flexible sail plan submitted to pitching: Hysteresis phenomenon and effect of rig adjustments

N/A
N/A
Protected

Academic year: 2021

Share "Numerical study of a flexible sail plan submitted to pitching: Hysteresis phenomenon and effect of rig adjustments"

Copied!
10
0
0

Pełen tekst

(1)

2L-1

Ocean Engineering 90 (2014) 119-128

ELSEVIER

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Numerical study of a flexible sail plan submitted to pitching: Hysteresis (SN

phenomenon and effect of rig adjustments

B e n o i t A u g i e r ^ F r e d e r i c H a u v i l l e ^ , P a t r i c k B o t ^ ' * N i c o l a s A u b i n ^ M a t h i e u D u r a n d ^ ' ' '

CrossMarl?

= Naval Academy Research Institute - IRENAV CC600, 29240 BREST Cedex 9, France ^ K-Epsilon Company, 1300 route des Cretes - B.P. 255 06905 Sophia Antipolis Cedex, France

A R T I C L E I N F O

Article histoiy:

Received 20 December 2013 Accepted 24 June 2014 Available online 17 July 2014

Keywords:

Fluid structure interaction Dynamic behaviour Yacht sails Pitching Hysteresis Parametric study A B S T R A C T

A n u m e r i c a l i n v e s t i g a t i o n of the d y n a m i c fluid s t r u c t u r e i n t e r a c t i o n ( F S I ) of a y a c h t sail p l a n s u b m i t t e d to h a r m o n i c p i t c h i n g is p r e s e n t e d to analyse the system's d y n a m i c b e h a v i o u r a n d the effects of m o t i o n s i m p l i f i c a t i o n s a n d rigging a d j u s t m e n t s on a e r o d y n a m i c forces. It is s h o w n t h a t the d y n a m i c b e h a v i o u r of a sail p l a n s u b j e c t to y a c h t m o t i o n clearly deviates f r o m the q u a s i - s t e a d y theory. T h e a e r o d y n a m i c forces p r e s e n t e d as a f u n c t i o n of the instantaneous a p p a r e n t w i n d angle s h o w h y s t e r e s i s loops. It is s h o w n that the h y s t e r e s i s p h e n o m e n o n dissipates s o m e e n e r g y a n d t h a t the d i s s i p a t e d e n e r g y i n c r e a s e s strongly w i t h the p i t c h i n g r e d u c e d f r e q u e n c y a n d a m p l i t u d e . T h e effect of r e d u c i n g the real p i t c h i n g m o t i o n to a s i m p l e r s u r g e m o t i o n is investigated. Results s h o w s i g n i f i c a n t d i s c r e p a n c i e s w i t h u n d e r -e s t i m a t -e d a -e r o d y n a m i c forc-es a n d no m o r -e hyst-er-esis w h -e n a surg-e m o t i o n is c o n s i d -e r -e d . H o w -e v -e r , t h -e s u p e r p o s i t i o n a s s u m p t i o n consisting in a d e c o m p o s i t i o n of the surge into t w o t r a n s l a t i o n s n o r m a l a n d c o l l i n e a r to the a p p a r e n t w i n d is v e r i f i e d . T h e n , s i m u l a t i o n s w i t h d i f f e r e n t d o c k tunes a n d b a c k s t a y loads highlight the i m p o r t a n c e of rig a d j u s t m e n t s on the a e r o d y n a m i c forces a n d the d y n a m i c b e h a v i o u r of a sail p l a n . T h e e n e r g y d i s s i p a t e d by the hysteresis is h i g h e r for looser s h r o u d s a n d a tighter backstay.

© 2 0 1 4 E l s e v i e r Ltd. A l l rights r e s e r v e d .

1. Introduction

W h e n a n a l y s i n g t h e b e h a v i o u r o f y a c h t sails, a n i m p o r t a n t d i f f i c u l t y comes f r o m t h e f l u i d s t r u c t u r e i n t e r a c d o n (FSI) o f t h e air f l o w a n d t h e sails a n d r i g ( M a r c h a j , 1996; G a r r e t t , 1 9 9 6 ; Fossad, 2 0 1 0 ) . Yacht sails are s o f t s t r u c t u r e s w h o s e shapes change a c c o r d -i n g t o t h e a e r o d y n a m -i c l o a d -i n g . The r e s u l t -i n g m o d -i f -i e d shape a f f e c t s t h e a i r f l o w a n d t h u s , t h e a e r o d y n a m i c l o a d i n g a p p l i e d t o t h e s t r u c t u r e . This f l u i d s t r u c t u r e i n t e r a c t i o n is s t r o n g a n d n o n - l i n e a r , because sails are s o f t a n d l i g h t m e m b r a n e s w h i c h e x p e r i e n c e l a r g e d i s p l a c e m e n t s a n d accelerations, e v e n f o r s m a l l stresses. As a consequence, t h e actual sail's shape w h i l e s a i l i n g — t h e so-called f l y i n g shape - is d i f f e r e n t f r o m t h e d e s i g n shape d e f i n e d b y t h e sail m a k e r a n d is g e n e r a l l y n o t k n o w n . Recently, s e v e r a l a u t h o r s have f o c u s e d o n t h e fluid s t r u c t u r e i n t e r a c t i o n p r o b l e m t o address t h e issue o f t h e i m p a c t o f t h e s t r u c t u r a l d e f o r m a t i o n o n t h e flow a n d hence t h e a e r o d y n a m i c forces g e n e r a t e d ( C h a p i n a n d H e p p e l , 2010; Renzsh a n d G r a f 2 0 1 0 ) .

A n o t h e r c h a l l e n g i n g task i n m o d e l l i n g r a c i n g y a c h t s is t o c o n s i d e r t h e y a c h t b e h a v i o u r i n a realistic e n v i r o n m e n t ( C h a r v e t e t al., 1996; M a r c h a j , 1996; G a r r e t t , 1996; Fossati, 2010). T r a d i t i o n a l V e l o c i t y P r e d i c t i o n Programs (VPPs) used b y y a c h t designers

'Corresponding author. Tel.: +33 2 98 23 39 86. E-mail address: patrick.bot@ecole-navale.fr (P. Bot).

c o n s i d e r a static e q u i l i b r i u m b e t w e e n h y d r o d y n a m i c a n d aero-d y n a m i c forces. Hence, t h e f o r c e m o aero-d e l s classically useaero-d are e s t i m a t e d i n a steady state. H o w e v e r , i n r e a l i s t i c s a i l i n g c o n d i t i o n s , t h e flow a r o u n d t h e sails is m o s t o f t e n l a r g e l y u n s t e a d y because o f w i n d v a r i a t i o n s , actions o f t h e c r e w a n d m o r e i m p o r t a n t l y because o f y a c h t m o t i o n d u e t o w a v e s . To a c c o u n t f o r t h i s d y n a m i c b e h a v i o u r , several D y n a m i c V e l o c i t y P r e d i c t i o n P r o g r a m s (DVPPs) have b e e n d e v e l o p e d , (e.g. M a s u y a m a et al., 1993; M a s u y a m a a n d Fukasawa, 1997; R i c h a r d t et al., 2 0 0 5 ; K e u n i n g e t al., 2 0 0 5 ) w h i c h n e e d m o d e l s o f d y n a m i c a e r o d y n a m i c a n d h y d r o d y n a m i c forces. W h i l e t h e d y n a m i c e f f e c t s o n h y d r o d y n a m i c f o r c e s have b e e n l a r g e l y s t u d i e d , t h e u n s t e a d y a e r o d y n a m i c b e h a v i o u r o f t h e sails has received m u c h less a t t e n t i o n . Schoop a n d Bessert ( 2 0 0 1 ) first d e v e l o p e d a n u n s t e a d y aeroelastic m o d e l i n p o t e n t i a l flow d e d i cated t o flexible m e m b r a n e s b u t n e g l e c t e d t h e i n e r t i a . I n a q u a s i -static a p p r o a c h , a first step is t o a d d t h e v e l o c i t y i n d u c e d b y t h e yacht's m o t i o n t o t h e steady a p p a r e n t w i n d t o b u i l d a n i n s t a n t a -neous a p p a r e n t w i n d (see R i c h a r d t e t a l , 2 0 0 5 ; K e u n i n g e t a l , 2 0 0 5 ) a n d t o c o n s i d e r t h e a e r o d y n a m i c forces c o r r e s p o n d i n g t o t h i s i n s t a n t a n e o u s a p p a r e n t w i n d u s i n g f o r c e m o d e l s o b t a i n e d i n t h e steady state. I n a r e c e n t s t u d y , G e r h a r d t et a l . ( 2 0 1 1 ) d e v e l o p e d a n a n a l y t i c a l m o d e l t o p r e d i c t t h e u n s t e a d y a e r o d y n a m i c s o f i n t e r a c t i n g y a c h t sails i n 2 D p o t e n t i a l flow a n d p e r f o r m e d 2 D w i n d t u n n e l o s c i l l a t i o n tests w i t h a m o t i o n range t y p i c a l o f a 9 0 -f o o t ( 2 6 m ) r a c i n g y a c h t ( I n t e r n a t i o n a l A m e r i c a ' s Cup Class 3 3 ) . Recently, Fossati a n d M u g g i a s c a ( 2 0 0 9 , 2010, 2 0 1 1 ) s t u d i e d t h e http://dx.doi.org/10.101S/j.oceaneng.2014.06.040 0 0 2 9 - 8 0 1 8 / © 2014 Elsevier Ltd. All rights reserved.

(2)

Nomenclature

A p i t c h i n g o s c i l l a t i o n a m p l i t u d e (deg"")

C sail p l a n c h o r d a t ZCE ( f r o m h e a d - s a i l l e a d i n g edge t o

m a i n s a i l t r a i l i n g edge) ( m ) Cx d r i v i n g f o r c e c o e f f i c i e n t Cy h e e l i n g f o r c e c o e f f i c i e n t ƒ,• f l o w r e d u c e d f r e q u e n c y Fx d r i v i n g f o r c e ( N ) Fy side f o r c e ( N ) Mx h e e l i n g m o m e n t ( N m ) My p i t c h i n g m o m e n t ( N m ) PTOT t o t a l p o w e r o f a e r o d y n a m i c forces ( W ) PLOOP d i s s i p a t e d p o w e r : p o w e r c o n t a i n e d i n t h e hysteresis l o o p ( W ) Pvj5 u s e f u l p o w e r : p o w e r d r i v i n g t h e b o a t f o r w a r d ( W ) S t o t a l sail area ( m ^ ) {0,X,Y,Z) I n e r t i a l f r a m e d e f i n e d f o r a n u p r i g h t b o a t ( o r i g i n 0 at t h e m a s t step, X t h e y a c h t d i r e c t i o n p o i n t i n g f o r w a r d , Y a t h w a r t s h i p s ( u p r i g h t ) p o i n t i n g p o r t s i d e ( l e f t ) , Z v e r t i c a l p o i n t i n g u p w a r d s ) ( m ) ( 0 , x , y , z ) Boat f r a m e d e f i n e d f o r a p i t c h e d a n d h e e l e d b o a t (x y a c h t d i r e c t i o n p o i n t i n g f o r w a r d , y a t h w a r t s h i p s ( h e e l e d ) p o i n t i n g p o r t s i d e ( l e f t ) , z a l o n g m a s t p o i n t i n g u p w a r d s ) ( m ) T p i t c h i n g o s c i l l a t i o n p e r i o d (s) VAW a p p a r e n t w i n d speed ( m s ~ ^ ) VBS b o a t speed ( m s ~ ^ ) VTW ti'ue w i n d speed ( m s - ^ ) Vr flow r e d u c e d v e l o c i t y ZCE i n s t a n t a n e o u s a l t i t u d e o f t h e c e n t r e o f a e r o d y n a m i c forces i n t h e i n e r t i a l f r a m e ( m ) ZCE i n s t a n t a n e o u s z c o o r d i n a t e o f t h e c e n t r e o f a e r o d y -n a m i c forces i -n t h e b o a t f r a m e ( p i t c h e d a -n d h e e l e d ) ( m ) /ï^vv a p p a r e n t w i n d angle (deg"") fieff e f f e c t i v e w i n d a n g l e (deg^) t r u e w i n d angle ( d e g ' ) <p h e e l angle (deg^) 0 t r i m angle (deg'') a h e a d i n g angle ( d e g ' ) p fluid d e n s i t y ( k g m " ^ ) T phase s h i f t (s) i t ( N ) Q[M ( N m ) /i^erodynamic f o r c e m a t r i x : r e s u l t a n t a n d m o m e n t w r i t t e n i n 0 ji^ ( r a d s - ' ) (ms ' ) Boat k i n e m a t i c m a t r i x : r o t a t i o n a n d v e l o c i t y w r i t t e n i n 0 a e r o d y n a m i c s o f m o d e l - s c a l e r i g i d sails i n a w i n d t u n n e l , a n d s h o w e d t h a t a p i t c h i n g m o t i o n has a s t r o n g a n d n o n - t r i v i a l e f f e c t o n a e r o d y n a m i c forces. T h e y s h o w e d t h a t t h e r e l a t i o n s h i p b e t w e e n i n s t a n t a n e o u s forces a n d a p p a r e n t w i n d d e v i a t e s — phase s h i f t s , hysteresis — f r o m t h e e q u i v a l e n t r e l a t i o n s h i p o b t a i n e d i n a s t e a d y state, w h i c h o n e c o u l d have t h o u g h t t o a p p l y i n a q u a s i - s t a t i c a p p r o a c h . T h e y also i n v e s t i g a t e d s o f t sails i n t h e s a m e c o n d i t i o n s t o h i g h l i g h t t h e effects o f t h e s t r u c t u r a l d e f o r m a -t i o n (Fossa-ti a n d Muggiasca, 2 0 1 2 ) .

I n a previous w o r k (Augier et al., 2013), the aero-elastic behaviour o f t h e sail p l a n subjected t o a simple h a r m o n i c p i t c h i n g w a s n u m e r i c a l l y investigated. This study has s h o w n hysteresis p h e n o m e n a b e t w e e n t h e aerodynamic forces and instantaneous apparent w i n d angle. A c o m p a r i s o n b e t w e e n a rigid structure and a realistic s o f t structure s h o w e d t h a t the hysteresis still exists f o r a rigid structure b u t i t is l o w e r t h a n w h e n the structure d e f o r m a t i o n is t a k e n i n t o a c c o u n t However, i n this first w o r k (Augier et al., 2013), t h e question w h e t h e r this hysteresis could be represented b y a simple phase s h i f t b e t w e e n b o t h oscillating signals was n o t clearly elucidated. Moreover, t h e energy exchange associated w i t h the hysteresis p h e n o m e n o n w a s n o t d e t e i T n i n e d . Hence, t h e first a i m o f the present w o r k is to investigate f u r t h e r t h i s hysteresis p h e n o m e n o n , t o q u a n t i f y the phase s h i f t b e t w e e n aerodynamic forces and apparent w i n d angle, and to d e t e r m i n e a n d analyse the associated energy.

M o s t studies o f t h e u n s t e a d y effects d u e t o y a c h t p i t c h i n g h a v e c o n s i d e r e d a 2 D s i m p l i f i e d p r o b l e m a n d t h u s a p p r o x i m a t e d t h e p i t c h i n g m o t i o n b y a t r a n s l a t i o n a l o s c i l l a t i o n a h g n e d w i t h t h e y a c h t c e n t r e l i n e (e.g. F i t t a n d L a t t i m e r , 2 0 0 0 ; G e r h a r d t e t al., 2011). T h e n , t h e u s u a l p r o c e d u r e is t o d e c o m p o s e t h i s surge m o t i o n i n t o o s c i l l a t i o n s p e r p e n d i c u l a r t o a n d a l o n g t h e d i r e c t i o n o f t h e i n c i d e n t flow, w h i c h results i n o s c i l l a t i o n s o f a p p a r e n t w i n d a n g l e a n d speed r e s p e c t i v e l y (Fig. 8 ) . The second a i m o f t h i s w o r k is t o i n v e s t i g a t e t h e e f f e c t s o f s u c h s i m p l i f i c a t i o n s i n t h e y a c h t m o t i o n ,

' In degrees when a value Is mentioned In the text and in radians in all formulae.

t h i s is c o n s i d e r e d b y c o m p a r i n g t h e results o b t a i n e d w i t h t h e sail p l a n s u b j e c t e d t o d i f f e r e n t types o f m o t i o n .

The t h i r d a i m o f t h i s w o r k is t o address t h e e f f e c t o f v a r i o u s r i g a n d sail t r i m s a n d a d j u s t m e n t s c o m m o n l y u s e d b y sailors o n t h e unsteady aero-elastic b e h a v i o u r o f t h e sail p l a n s u b j e c t e d t o p i t c h i n g . T h i s is i n v e s t i g a t e d b y c o m p a r i n g t h e r e s u h s o b t a i n e d w i t h several d o c k t u n e s a n d backstay tensions w h i c h are t y p i c a l l y used w h i l e r a c i n g a 2 8 - f o o t (8 m , J80 class) cruiser-racer.

A n unsteady FSI m o d e l has been developed and validated w i t h experiments i n real sailing conditions (Augier et al„ 2010, 2011, 2012). Calculations are made o n a J80 dass yacht n u m e r i c a l m o d e l w i t h her standard rigging a n d sails designed b y the sail m a k e r DeltaVoiles. The FSI m o d e l is b r i e f l y presented i n Section 2. The m e t h o d o l o g y o f t h e d y n a m i c investigation is g i v e n i n Section 3. I n the c o n t i n u i t y o f a previous w o r k (Augier et al., 2013), Section 4 gives f u r t h e r precisions o n the d y n a m i c behaviour w i t h a particular a t t e n t i o n t o the energy exchange related t o t h e hysteresis p h e n o m e n o n . The analysis o f p i t c h i n g m o t i o n d e c o m p o s i t i o n i n simple translations is given i n Section 5 and the effects o f various dock tunes a n d backstay loads are presented i n Sections 6.1 and 6.2. I n t h e last section, some condusions o f this study are given, w i t h ideas f o r f u m r e w o r k .

2. Numerical model

To n u m e r i c a l l y i n v e s t i g a t e aero-elastic p r o b l e m s c o m m o n l y f o u n d w i t h sails, t h e c o m p a n y K - E p s i l o n a n d t h e N a v a l A c a d e m y Research I n s t i t u t e have d e v e l o p e d t h e u n s t e a d y f l u i d - s t r u c t u r e m o d e l ARAVANTI m a d e b y c o u p l i n g t h e i n v i s c i d flow s o l v e r A V A N T I w i t h t h e s t r u c t u r a l solver ARA. T h e A R A V A N T I code is able t o m o d e l a c o m p l e t e sail b o a t r i g i n o r d e r t o p r e d i c t forces, t e n s i l e stresses a n d shape o f sails a c c o r d i n g t o t h e l o a d i n g i n d y n a m i c c o n d i t i o n s . For m o r e details, t h e r e a d e r is r e f e r r e d t o Roux e t a l . ( 2 0 0 2 ) f o r t h e fluid s o l v e r A V A N T I a n d t o H a u v i l l e et a l . ( 2 0 0 8 ) a n d Roux e t al. ( 2 0 0 8 ) f o r t h e s t r u c t u r a l s o l v e r A R A a n d t h e FSI c o u p l i n g m e t h o d .

(3)

B. Augier et al. / Ocean Engineering SO (2014) 119-128 121

A R A V A N T I i n o d e l has been v a l i d a t e d . N u m e r i c a l a n d e x p e r i -m e n t a l c o -m p a r i s o n s w i t h t h e -m o d e l ARAVANTI are based o n m e a s u r e m e n t s at f u l l scale o n a n i n s t r u m e n t e d 2 8 - f o o t y a c h t (J80 class, 8 m ) . The t i m e - r e s o l v e d sails' flying shape, loads i n t h e rig, yacht's m o t i o n a n d a p p a r e n t w i n d have been m e a s u r e d i n b o t h s a i l i n g c o n d i t i o n s o f flat sea a n d m o d e r a t e head waves a n d c o m p a r e d t o t h e s i m u l a t i o n . The code has s h o w n i t s a b i l i t y t o s i m u l a t e t h e rig's response t o y a c h t m o t i o n f o r c i n g , and t o c o r r e c t l y estimate t h e loads. Thereby, ARAVANTI is a r e l i a b l e t o o l t o s t u d y t h e d y n a m i c b e h a v i o u r o f a sail p l a n s u b j e c t to p i t c h i n g m o t i o n . For a d e t a i l e d d e s c r i p t i o n o f t h e e x p e r i m e n t a l s y s t e m a n d t h e n u m e r i c a l a n d e x p e r i m e n t a l c o m p a r i s o n , see A u g i e r et al. (2010, 2 0 1 1 , 2 0 1 2 ) .

3. Simulation procedure

The y a c h t m o t i o n i n w a v e s i n d u c e s u n s t e a d y effects i n t h e sails' a e r o d y n a m i c s . I n t h i s p a p e r w e w i l l s t u d y separately o n e degree o f f r e e d o m , b y a p p l y i n g s i m p l e h a r m o n i c p i t c h i n g . The reference f r a m e a n d t h e c o o r d i n a t e s y s t e m a t t a c h e d t o t h e y a c h t are i l l u s t r a t e d i n Fig. 1.

3.1. Reference steady case

First, t h e reference steady case is c o m p u t e d w i t h t h e f o l l o w i n g p a r a m e t e r s : t r u e w i n d speed at 10 m h e i g h t VTW = 6.7 m • s " ' (a l o g a r i t h m i c v e r t i c a l w i n d p r o f i l e is i m p o s e d w i t h a roughness l e n g t h o f 0.2 m m ( F l a y 1996)), t r u e w i n d angle / ? j ^ = 4 0 ° , b o a t speed UBs = 2 . 6 m - s - ' , h e e l angle <p = 20° a n d t r i m angle 6=0°. This first c o m p u t a t i o n y i e l d s t h e c o n v e r g e d steady flow, t h e r i g a n d sails' flying shape, a n d enables t h e steady state a e r o d y n a m i c forces a n d centre o f e f f o r t t o be d e t e r m i n e d . The c e n t r e o f e f f o r t is d e f i n e d as t h e i n t e r s e c t i o n o f t h e b o a t s y m m e t r y p l a n e w i t h t h e a e r o d y n a m i c forces m a t r i x c e n t r a l axis, w h i c h is t h e l i n e o f p o i n t s w h e r e t h e m o m e n t o f a e r o d y n a m i c forces is m i n i m a l ( n o t e t h a t t h e r e is n o p o i n t w h e r e t h i s m o m e n t is e x a c t i y zero i n general because t h e sails' shape is n o t d e v e l o p a b l e ) . T h i s c o n v e r g e d steady state is used as t h e i n i t i a l c o n d i t i o n f o r t h e c o m p u t a t i o n s w i t h p i t c h i n g f o r c i n g . The h e i g h t o f t h e c e n t r e o f a e r o d y n a m i c forces ^cEs^,j, = 4.97 m is used t o d e f i n e t h e flow characteristic q u a n t i -t i e s : a p p a r e n -t w i n d speed V / i w = 8 . 3 9 m • s " ' , a p p a r e n -t w i n d angle fi^y^ = 2 8 . 6 4 ° a n d sail p l a n c h o r d C = 4 . 2 5 m d e f i n e d as t h e distance f r o m t h e head-sail l e a d i n g edge t o t h e m a i n sail t r a i l i n g edge a t Zc£s,„„.

Corrections o f t h e a p p a r e n t w i n d angle /J^^y d u e t o c o n s t a n t heel (p ( f i r s t i n t r o d u c e d b y M a r c h a j ( 1 9 9 6 ) ) a n d t r i m 6 are

c o n s i d e r e d t h r o u g h t h e use o f t h e e f f e c t i v e a p p a r e n t w i n d angle fieff (see Jackson, 2 0 0 1 f o r heel e f f e c t , a n d Fossati a n d Muggiasca,

2011 f o r p i t c h e f f e c t ) :

fi^ff

= 2 7 . 1 6 ° i n t h e steady state.

3.2. Harmonic pitctiing T h e u n s t e a d y c o m p u t a t i o n s consist o f a 18 s r u n , w i t h f o r c e d h a r m o n i c p i t c h i n g b e i n g i m p o s e d o n t h e r i g , c h a r a c t e r i s e d b y t h e o s c i l l a t i o n a m p l i t u d e A a n d p e r i o d T (Eq. ( 2 ) ) , o t h e r p a r a m e t e r s b e i n g c o n s t a n t a n d e q u a l t o those o f t h e r e f e r e n c e state. 0 = Acos(^ty (2) To a v o i d d i s c o n t i n u i t i e s i n t h e accelerations, t h e b e g i n n i n g o f m o t i o n is g r a d u a l l y i m p o s e d b y a p p l y i n g a r a m p w h i c h increases s m o o t h l y f r o m 0 t o 1 d u r i n g t h e first 3 s o f i m p o s e d m o t i o n (see first p e r i o d i n Fig. 3 ) . The i n v e s t i g a t i o n has b e e n m a d e w i t h variables i n t h e range A = 3 - 6 ° , a n d 1 = 1 . 5 - 6 s, c o r r e s p o n d i n g t o t h e t y p i c a l e n v i r o n m e n t a l c o n d i t i o n s e n c o u n t e r e d , as s h o w n i n t h e e x p e r i m e n t o f A u g i e r et al. ( 2 0 1 2 ) . The u n s t e a d y n a t u r e o f t h e flow is c h a r a c t e r i s e d b y a d i m e n s i o n l e s s p a r a m e t e r d e f i n e d b y t h e r a t i o o f t h e m o t i o n p e r i o d T t o t h e fluid a d v e c t i o n t i m e a l o n g t h e t o t a l sail p l a n c h o r d C. S i m i l a r l y t o t h e closely r e l a t e d l i t e r a t u r e (e.g. Fossati a n d Muggiasca, 2 0 1 2 ; G e r h a r d t e t al., 2011), t h i s p a r a m e t e r is c a l l e d t h e flow r e d u c e d v e l o c i t y Vr ( o r t h e i n v e r s e : t h e r e d u c e d f r e q u e n c y f ) d e f i n e d b y Vr = ^ , f r = ^ . (3) T h e r e d u c e d f r e q u e n c y w a s s h o w n t o be t h e r e l e v a n t p a r a m e t e r t o characterise t h e unsteadiness o f l i f t i n g b o d i e s a e r o d y -n a m i c s (e.g. G l a u e r t , 1926; A b b o t t , 1949; G e r h a r d t e t al., 2011). T h e case Vr <1(fr c o r r e s p o n d s t o quasisteady a e r o d y n a m i c c o n -d i t i o n s . The p i t c h i n g p e r i o -d values i n v e s t i g a t e -d c o r r e s p o n -d t o a r e d u c e d v e l o c i t y Vr f r o m 2.96 t o 11.84 ( r e d u c e d f r e q u e n c y Jr f r o m 0.08 t o 0.34), w h i c h p o s i t i o n s t h i s n u m e r i c a l s t u d y i n a s i m i l a r d y n a m i c range t o t h e e x p e r i m e n t s o f Fossati a n d M u g g i a s c a ( 2 0 1 1 ) w h e r e Vr w a s f r o m 2.3 t o 56 ( r e d u c e d f r e q u e n c y fr f r o m 0.02 t o 0.43) c o r r e s p o n d i n g t o t y p i c a l c o n d i t i o n s e n c o u n t e r e d b y a 4 8 - f o o t y a c h t (14.6 m ) . The c o m p u t e d cases are s u m m a r i s e d i n Table 1.

W h e n t h e y a c h t is s u b j e c t e d t o p i t c h i n g m o t i o n , t h e a p p a r e n t w i n d is p e r i o d i c a l l y m o d i f i e d as t h e r o t a t i o n adds a n e w c o m p o -n e -n t o f a p p a r e -n t w i -n d w h i c h varies w i t h h e i g h t . F o l l o w i -n g t h e

Fig. 1. Coordinate, angle and motion references for ttie yacht. Z-axis is attached to the earth vertical.

Table 1

Reduced velocity VV, reduced frequency fr, phase shift T determined by cross-correlation between Cx and fieff, phase delay, averaged total power Prar. time-averaged dissipated power Pwop. time-time-averaged useful power Pv^. time-time-averaged driving force Fx, and time-averaged heeling moment Mj" for different pitching amplitudes A and periods T.

T A Vr fr T 2)!r/T PTOT Pv„ Fx Mx Cs) (deg) (s) (rad) (W) (W) ( W ) (N) ( N - m ) 1.5 5 2.96 0.34 0.16 0.670 1454 - 1 0 6 . 4 3 1561 608.8 8290 2 5 3.95 0.25 0.29 0.921 1518 - 5 5 . 5 7 1574 613.3 8274 2.5 5 4.94 0.20 0.50 1.257 1540 - 3 5 . 6 0 1576 614.1 8244 3 5 5.92 0.17 0.76 1.592 1558 - 2 4 . 8 9 1583 616.3 8260 5 5 9.87 0.10 2.70 3.393 1580 - 9 . 9 8 1590 618.5 8266 6 5 11.84 0.08 4.12 4.314 1584 - 7 . 3 7 1592 619.1 8270 5 3 9.87 0.10 2.70 3.393 1588 - 3 . 6 3 1591 619.1 8262 5 5 9.87 0.10 2.70 3.393 1580 - 9 . 9 8 1590 618.5 8266 5 6 9.87 0.10 2.70 3.393 1574 - 1 4 . 4 4 1589 618.0 8268

(4)

analysis o f Fossati a n d M u g g i a s c a (2011), t h e a p p a r e n t w i n d a n d p i t c h i n d u c e d v e l o c i t y are c o n s i d e r e d at t h e c e n t r e o f a e r o d y -n a m i c f o r c e a l t i t u d e ZCE- This c e -n t r e o f e f f o r t is a c t u a l l y m o v i -n g d u e t o p i t c h o s c i l l a t i o n , a n d t h e t i m e - d e p e n d e n t c e n t r e o f e f f o r t h e i g h t is considered. T h i s y i e l d s d m e - d e p e n d e n t a p p a r e n t w i n d speed a n d angle, g i v e n b y VAwit)=(iVTw(ZcE) sinflnvf

+ (VTW(ZCE) cos

fijw

+ VBs+ZcEd cos 0 cos

(/))^y^^

(4)

(5) A „ < O = S , „ - . ( M H ) .

A n d hence t h e t i m e - d e p e n d e n t e f f e c t i v e w i n d angle reads

^ . ^ ( 0 = t a n - ' ( ^ ^ ^ cos cp).

Fig. 2 i l l u s t r a t e s t h e d y n a m i c v e c t o r c o m p o s i t i o n f o r p i t c h i n g v e l o c i t i e s 0 = 0max ( p o i n t b i n Fig. 3 ) , 0 ( p o i n t s a a n d c i n Fig. 3 ) a n d èmin ( p o i n t d i n Fig. 3 ) , a n d Fig. 3 s h o w s t h e r e s u l t i n g d y n a m i c a p p a r e n t w i n d v e l o c i t y a n d angle c o m p u t e d w i t h Eqs. ( 4 ) a n d ( 5 ) . As s h o w n i n Fig. 3, t h e v a r i a t i o n s o f t h e a p p a r e n t w i n d angle are i n phase o p p o s i t i o n w i t h t h e v a r i a t i o n s o f a p p a r e n t w i n d speed.

3.3. Heeling and driving force coefficients

A e r o d y n a m i c forces are c o m p u t e d b y ARAVANTI as t h e r e s u l -t a n -t o f pressures o n -t h e sails a n d -t h e a e r o d y n a m i c f o r c e s m a -t r i x ( r e s u l t a n t a n d m o m e n t ) is w r i t t e n at t h e o r i g i n 0 i n t h e i n e r t i a l f r a m e i l l u s t r a t e d i n Fig. 1.

A t r a n s i t i o n m a t r i x [RT] can be used i n o r d e r to^get f o r c e s i n t h e b o a t Inertialframe T h e [Ra]lReIR^] w i t h ; i 0 u s i n g t h e f o l l o w i n g t r a n s i t i o n m a t r i x e q u a t i o n F Baatframe = [RT] ~ [RT] is d e f i n e d b y [RT] = cos (p sin (p 0 - s i n cos 4 [Rs] = cos 0 0 - s i n 0 sin 0 0 cos 0 lRa] = COS a — s i n a 0 s i n a cos a 0 0 0 1

Fig. 2. Dynamic effect of pitching on the wind triangle (top view). is the wind velocity, VBS is the boat speed, ZCE is the altitude of the aerodynamic centre of effort, Ó is the pitching velocity, p Is the apparent wind angle, subscripts TW and AW stand for true and apparent wind, respectively.

9.4 9.2 9 8.8 8.4 8.2 7.8 7.6 b V^^^ steady - » - V ^ ^ ^ ( t ) pitch V^^^ steady - » - V ^ ^ ^ ( t ) pitch 1: ai Ic i . . . 10 12 14 16 t(s)

Fig. 3. Time dependent apparent wind speed VAW (a); apparent wind angle /?^n, and effective wind angle fieff (b), resulting from pitching oscillation at ZCE with period r = 3 s and a m p l i t u d e / I = 5 ° . We define four reference points to be identified in further figures: bow up for point a 0 = 0,9= -A), horizontal going down (no trim) for point b (fl > 0, ö = 0), bow down for point c (ö = 0, e=A), horizontal going up (no trim) for point d (é < 0, ö = 0).

D r i v i n g a n d h e e l i n g f o r c e c o e f f i c i e n t s i n t h e b o a t f r a m e are o b t a i n e d b y t h e n o r m a l i s a t i o n w i t h t h e p r o d u c t o f t h e i n s t a n t a -neous a p p a r e n t d y n a m i c pressure a n d t h e t o t a l sail area S:

Fx Cx(t)--0.5pVl^(t)S Cy(t) = (6) (7) 0.5pViw(.t)S I n t h e s t e a d y state c a l c u l a t i o n , d r i v i n g f o r c e c o e f f i c i e n t = 0.423 a n d h e e l i n g f o r c e c o e f f i c i e n t Cy = - 1 . 0 8 0 are o b t a i n e d .

4. Dynamic behaviour

Previous studies (Fossati a n d M u g g i a s c a , 2 0 1 1 ; A u g i e r e t al., 2013) h a v e s h o w n t h a t t h e d y n a m i c b e h a v i o u r o f a y a c h t sail p l a n s u b j e c t e d t o p i t c h i n g c l e a r i y d e v i a t e s f r o m t h e q u a s i - s t a t i c a p p r o a c h . Particularly, t h e a e r o d y n a m i c f o r c e s p r e s e n t e d as a f u n c t i o n o f t h e i n s t a n t a n e o u s a p p a r e n t w i n d angle s h o w h y s t e r -esis l o o p s as i l l u s t r a t e d i n Fig. 4 . D i f f e r e n t q u e s t i o n s h a v e b e e n

(5)

B. Augier et al. / Ocean Engineering 90 (2014) 119-128 123 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 — é f - P i t c h A 5 T 1 , 5 • PitchA5T3 — © - PitchA5T5 PitohA5T6 - • - steady 22 24 26 2B 30 32 34 36

Fig. 4. Driving (a) and lieeling (b) force coefficients versus effective wind angle

r a i s e d b y t h i s result, ( i ) Can t h e l o o p s i n t h e Lissajous p l o t s be r e p r e s e n t e d b y a s i m p l e phase s h i f t b e t w e e n t h e signals? This hysteresis p h e n o m e n o n suggests t h a t t h e u n s t e a d y b e h a v i o u r leads t o a e r o d y n a m i c e q u i v a l e n t d a m p i n g a n d s t i f f e n i n g e f f e c t s . T h e area i n c l u d e d i n t h e hysteresis l o o p w a s s h o w n t o increase w i t h t h e m o t i o n r e d u c e d f r e q u e n c y a n d a m p l i t u d e , b u t t h e e x c h a n g e d e n e r g y w a s n o t i n v e s t i g a t e d , ( i i ) Can t h e e n e r g y associated t o t h e hysteresis be d e t e r m i n e d a n d analysed f o r d i f f e r e n t p i t c h i n g f r e q u e n c i e s a n d a m p l i t u d e s ?

4.1. Phase shift r

T h e values o f t h e phase s h i f t t b e t w e e n a e r o d y n a m i c forces a n d i n s t a n t a n e o u s w i n d angle have b e e n d e t e r m i n e d f o r each p i t c h i n g p e r i o d a n d a m p l i t u d e b y c r o s s - c o r r e l a t i o n (Table 1). The phase d e l a y 2 ; r T / r i n radians increases ( a l m o s t l i n e a r l y i n t h e i n v e s t i -g a t e d r a n -g e ) w i t h t h e f l o w r e d u c e d v e l o c i t y , m e a n i n -g w i t h t h e m o t i o n p e r i o d , b u t is n o t a f f e c t e d b y t h e o s c i l l a t i o n a m p l i t u d e . W h e n f o r c e c o e f f i c i e n t s Cxj,(t) are p l o t t e d versus t h e t i m e s h i f t e d w i n d a n g l e Peff{'^+-t), t h e l o o p area is s i g n i f i c a n t l y decreased b u t does n o t v a n i s h (see Fig. 5). IVIoreover, as s h o w n i n Figs. 4 a n d 6, t h e l o o p s are n o t p u r e l y e l l i p t i c a l because o f n o n - l i n e a r effects. T h i s s h o w s t h a t t h e hysteresis p h e n o m e n o n c a n n o t be r e d u c e d t o a s i m p l e phase s h i f t b e t w e e n t h e signals. 0.54 0.52 0.5 0.48 PilchA5T5 PitohA5T5, • • = steady

Fig. 5. Driving force coefficient vs. instantaneous apparent wind angle /3,j(t) (blue line with markers), and vs, tlie time shifted instantaneous apparent wind angle Peffit+r) (red line without marker), for a pitching period T = 5 s and amplitude A=5°. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

4.2. Exchanged energy The hysteresis p h e n o m e n o n o b s e r v e d i n t h e a e r o d y n a m i c s o f t h e p i t c h i n g sail p l a n c o r r e s p o n d s t o a n e x c h a n g e o f e n e r g y b e t w e e n t h e y a c h t m o t i o n a n d t h e aeroelastic s y s t e m . T h e a i m o f t h i s s e c t i o n is t o d e t e r m i n e a n d analyse t h i s e n e r g y f o r d i f f e r e n t values o f t h e m o t i o n p a r a m e t e r s . I n d e e d , t h e e n e r g y p e r u n i t t i m e is c o n s i d e r e d , i.e. t h e e x c h a n g e d p o w e r , w h i c h is m o r e r e l e v a n t to c o m p a r e d i f f e r e n t m o t i o n f r e q u e n c i e s . The area c o n t a i n e d i n t h e hysteresis l o o p o f Fig. 4 does n o t f o r m a l l y c o r r e s p o n d t o a n e n e r g y n o r a p o w e r as fieff is t h e e f f e c t i v e a p p a r e n t w i n d a n g l e a n d i t s r e l a t i o n s h i p t o a d i s p l a c e m e n t o r v e l o c i t y is n o t s t r a i g h t f o r w a r d . T h e d i m e n s i o n a l e n e r g y i n Joules — or d i m e n s i o n a l p o w e r i n W a t t s — is c o n s i d e r e d i n s t e a d o f d i m e n s i o n l e s s q u a n t i t i e s t o a v o i d biased e f f e c t s i n t r o d u c e d b y n o r m a l i z i n g w i t h t h e v a r y i n g d y n a m i c pressure. The i n s t a n t a n e o u s m e c h a n i c a l p o w e r is d e f i n e d b y its g e n e r a l e x p r e s s i o n c o m b i n i n g t h e k i n e m a t i c a n d d y n a m i c m a t r i c e s : PTOT(t) = " ? - + ( 8 ) w h e r e "•" d e n o t e s t h e scalar p r o d u c t b e t w e e n v e c t o r s . For t h e m o t i o n c o n s i d e r e d i n t h i s w o r k ( f o r w a r d t r a n s l a t i o n a n d p i t c h i n g ) , t h i s e x p r e s s i o n reduces t o P r o r ( f ) = f x V B S + l W v ö . (9)

The first t e r m o n t h e right h a n d side FXVBS = f is t h e u s e f u l p o w e r d r i v i n g t h e y a c h t f o r w a r d . T h e second t e r m M y ö = Pioop is t h e p o w e r e x c h a n g e d b y t h e s y s t e m d u e t o t h e hysteresis p h e n o m e n o n . Fig. 6 s h o w s t h e a e r o d y n a m i c f o r c e p i t c h i n g m o m e n t MY as a f u n c t i o n o f t h e t r i m a n g l e 0 f o r d i f f e r e n t values o f t h e o s c i l l a t i o n p e r i o d T f r o m 1.5 u p t o 6 s w i t h a p i t c h i n g a m p l i t u d e A=5°. T h e area c o n t a i n e d i n t h e s e l o o p s is t h e e n e r g y e x c h a n g e d d u r i n g o n e o s c i l l a t i o n p e r i o d b e t w e e n t h e s y s t e m a n d t h e i m p o s e d p i t c h i n g m o t i o n d u e t o t h e hysteresis p h e n o m e n o n . A s s h o w n b y t h e r o t a t i o n d i r e c t i o n i n t h e loops ( F i g . 6 ) a n d t h e c o m p u t e d r e s u l t s (Table 1), t h i s q u a n t i t y is n e g a t i v e w h i c h m e a n s t h a t s o m e e n e r g y is d i s s i p a t e d b y t h e hysteresis p h e n o m e n o n . I n t h e f o l l o w i n g , t h e m e a n p o w e r averaged o v e r o n e o s c i l l a t i o n p e r i o d is c o n s i d e r e d : PTOT d t ( 1 0 )

(6)

4500 4000 ^ ^ P i t c h A 5 T 1 . 5 - B — PitchAST2 -e— PitchA5T3 PitchA5T6 E z >: 3000 2500 2000 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.05 0.08 0.1 6 (rad)

Fig. 6. Pitctiing moment My vs. pitcti angle e for pitching periods T=1.5, 2, 3, 6 s. The loop area represents the energy dissipated during the corresponding period (7

times P I O O P ) . -120 -100 1700 iBon 1400 1300

Fig. 7. Dissipated power Pioop, useful power Pv^ and total power PTOT for different reduced frequency fr. - - U ' = \ j PLOOP dt = j j M , Ö dt (11) (12) P^T" is t h e u s e f u l m e a n p o w e r d r i v i n g t h e b o a t f o r w a r d a n d e x t r a c t e d f r o m t h e a i r flow b y t h e sail p l a n . P v j j is p r o p o r t i o n a l t o t h e m e a n d r i v i n g f o r c e Fx as t h e b o a t speed is constant. Pioop is t h e m e a n p o w e r d i s s i p a t e d b y t h e Irysteresis p h e n o m -e n o n f r o m t h -e i m p o s -e d p i t c h i n g m o t i o n a n d c o r r -e s p o n d s t o t h -e l o o p s area i n Fig. 6 d i v i d e d b y t h e p i t c h i n g p e r i o d T. A t first order, t h i s q u a n t i t y is d o m i n a t e d b y JJFXZCEÖ dt.

N o t e t h a t t h e p i t c h i n g m o t i o n i t s e l f i n t r o d u c e s a n a d d e d p o w e r t o t h e s y s t e m c o m p a r e d t o t h e steady case ( n o p i t c h i n g ) .

As s h o w n i n Fig. 7, t h e d i s s i p a t e d average p o w e r absolute v a l u e iPioopI s t r o n g l y increases w i t h t h e m o t i o n r e d u c e d f r e q u e n c y , f r o m z e r o f o r t h e steady case ( v a n i s h i n g f r e q u e n c y ) u p t o 106 W f o r / r = 0 . 3 4 . The n o n - h n e a r i t y o f t h e p h e n o m e n o n is h i g h l i g h t e d b y t h e o b s e r v a d o n t h a t t h e l o o p shape b e c o m e s d i s t o r t e d f o r t h e h i g h e s t values o f t h e r e d u c e d f r e q u e n c y (Fig. 6 ) . The m e a n u s e f u l p o w e r P ^ decreases s l i g h t l y ( a b o u t 2% i n t h e i n v e s t i g a t e d r a n g e ) f o r a n i n c r e a s i n g f r e q u e n c y , s u g g e s t i n g a s m a l l r e d u c t i o n o f a e r o d y n a m i c e f f i c i e n c y f o r a f a s t e r p i t c h i n g m o t i o n .

M o r e o v e r , t h e m e a n d r i v i n g f o r c e Fx is d i f f e r e n t f r o m t h e d r i v i n g f o r c e i n t h e steady case Fx steady as a e r o d y n a m i c forces i n t h e d y n a m i c r e g i m e d o n o t f o l l o w t h e q u a s i - s t a t i c a s s u m p t i o n a n d s o m e p o w e r is e x c h a n g e d d u e t o t h e hysteresis. T h e t o t a l m e a n p o w e r P ^ decreases m o r e ( a b o u t 8% i n the i n v e s t i g a t e d r a n g e ) as t h e d i s s i p a t e d e n e r g y is h i g h e r i n absolute v a l u e . As s h o w n i n Table 1, t h e e f f e c t o f t h e p i t c h i n g a m p h t u d e y i e l d s s i m i l a r t r e n d s t o t h e r e d u c e d f r e q u e n c y , i.e. i n c r e a s i n g I P I O O P I . d e c r e a s i n g Pvss.Fx a n d P ^ f o r a h i g h e r p i t c h i n g a m p l i t u d e . I t s h a l l b e n o t i c e d t h a t Pi^ a n d P ^ are o n e t o t w o o r d e r s o f m a g n i t u d e h i g h e r t h a n \Pl^\, w h i c h m e a n s t h a t t h e u s e f u l p o w e r Pv^s is d o m i n a n t . The a e r o d y n a m i c b e h a v i o u r is n o w c l e a r l y c h a r a c t e r i s e d : a hysteresis p h e n o m e n o n is e v i d e n c e d a n d t h e associated e n e r g y is analysed. T h e n e x t sections address t h e v a r i o u s i n f l u e n c e s o f t h e y a c h t m o t i o n s c o n s i d e r e d a n d o f d i f f e r e n t r i g t r i m s .

5. Pitching decomposition

The real p i t c h i n g m o t i o n is m o d e l l e d i n t h i s w o r k b y a n a n g u l a r o s c i l l a t i o n a r o u n d t h e y a x i s (Fig. 8, p i t c h ) , n o r m a l t o t h e c e n t r e -l i n e w i t h a r o t a t i o n c e n t r e -l o c a t e d a t t h e m a s t step. M o s t o f p r e v i o u s studies o n t h e i n f i u e n c e o f p i t c h i n g h a v e c o n s i d e r e d a 2 D s i m p l i f i e d p r o b l e m a n d t h u s a p p r o x i m a t e d t h e p i t c h i n g m o t i o n b y a t r a n s l a t i o n a l o s c i l l a t i o n a l i g n e d w i t h t h e y a c h t c e n t r e l i n e (Fig. 8, surge). T h e n , t h e u s u a l p r o c e d u r e (see e.g. G e r h a r d t et al., 2011) is t o d e c o m p o s e t h i s m o t i o n i n a n o s c i l l a t i o n p a r a l l e l t o t h e a p p a r e n t w i n d , r e s u l t i n g i n a n o s c i l l a t i o n o f a p p a r e n t w i n d speed, a n d a n o s c i l l a t i o n o r t h o g o n a l t o t h e a p p a r e n t w i n d , r e s u l t i n g m a i n l y i n a n o s c i l l a t i o n o f t h e a p p a r e n t w i n d angle (Fig. 8, d e c o m p o s i t i o n ) . Here, w e w a n t t o test these t w o h y p o t h e s e s b y c o m p a r i n g t h e results o f t h e d y n a m i c s i m u l a t i o n w i t h ARAVANTI o b t a i n e d w i t h d i f f e r e n t i m p o s e d m o t i o n s , a n d i n v e s t i g a t e t h e e f f e c t o n t h e s p e c i f i c d y n a m i c f e a t u r e s h i g h l i g h t e d above. M o t i o n s are based o n t h e r e f e r e n c e p i t c h i n g m o t i o n w i t h a m p l i t u d e A = 5 ° a n d p e r i o d T = 5 s ( A 5 T 5 ) .

5.1. Surge

T h e first step is t o c o m p a r e t h e r e s u l t s f o r a real p i t c h i n g m o t i o n ( r o t a t i o n ) t o t h e results f o r a t r a n s l a t i o n a l surge m o t i o n w i t h t h e a m p l i t u d e o f m o t i o n at t h e c e n t r e o f e f f o r t h e i g h t ZCE w h i l e p i t c h i n g . As s h o w n i n Fig. 9 t h e o s c i l l a t i o n o f a e r o d y n a m i c forces is decreased b y 3 0 - 4 0 % a n d phase s h i f t e d ( a r o u n d T / 9 ) w h e n t h e p i t c h i n g is r e d u c e d t o a surge m o t i o n . T h i s r e s u l t gives t h e o r d e r o f t h e e r r o r o n t h e o s c i l l a t i o n a m p l i t u d e o f a e r o d y n a m i c forces i n t r o d u c e d b y c o n s i d e r i n g a surge m o t i o n i n s t e a d o f t h e p i t c h i n g m o t i o n .

Decomposition^/

Fig. 8. Different motions considered: pitching (rotation), surge (translation), surge decomposition into translations collinear to the apparent wind Vc and normal to the apparent wind V„.

(7)

B. Augier et al. / Ocean Engineering 90 (2014) 119-128 125 0.55 0.5 0.45 0.4 0.35 1 . . 1 1 i 1 . . . . 1 . . 1 1 1 10 12 14 16 18 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 Pitch - B — Surge - © - O r t h o Coii

Fig. 9. Time series of the driving and heeling force coefficients for FSI simulations of the various motions considered; pitching, surge, translations collinear and perpendicular to the apparent wind (see Fig. 11), corresponding to a pitching amphtude A = 5 ° and period T = 5 s.

-0.8

-1

,=? -1.1

-1.3

25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30

Fig. 10. Driving and heeling force coefficients versus apparent wind angle for pitch and surge motions. The motion period and amplitude at the centre of effort are identical and correspond to a pitching amplitude A=5° and period T = 5 s.

C o n c e r n i n g t l i e d y n a m i c b e h a v i o u r , i t is i n t e r e s t i n g t o n o t i c e t h a t t h e case o f surge does n o t showr t h e same hysteresis p h e n o m e n o n . I n d e e d , t h e a e r o d y n a m i c b e h a v i o u r i n t h e case o f surge is m u c h closer t o t h e quasi-steady t h e o r y t h a n i n t h e p i t c h i n g case, as c l e a r l y s h o w n i n Fig. 10. The loops o f Cx,y(figff) collapse a n d are s u p e r p o s e d t o t h e steady case l i n e .

5.2. Simple translations decomposition

T h e second step is t o analyse separately t h e effects o f t r a n s l a -t i o n a l oscilla-tions p a r a l l e l Vc (Fig. 11a) a n d o r -t h o g o n a l V„ (Fig. l i b ) t o t h e a p p a r e n t w i n d d i r e c t i o n . I t is observed i n Fig. 9 t h a t t h e m a j o r c o n t r i b u t i o n t o t h e f o r c e o s c i l l a t i o n is d u e t o t h e o r t h o g o n a l o s c i l l a t i o n c o m p o n e n t , w h i c h is associated t o t h e o s c i l l a t i o n o f a p p a r e n t w i n d angle. W h e n t h e v a r i a t i o n s d u e t o b o t h c o m p o -n e -n t s o f m o t i o -n are a d d e d as s h o w -n i -n Fig. 12, t h e r e s u l t is i d e n t i c a l t o w h a t is o b t a i n e d w i t h t h e surge m o t i o n as b o t h curves are s u p e r i m p o s e d , w h i c h j u s t i f i e s t h e l i n e a r s u p e r p o s i t i o n p r i n c i -p l e o f t h i s a -p -p r o a c h . The e f f e c t o f -p a r a l l e l o s c i l l a t i o n - v a r i a t i o n o f Vyiw(t) is s m a l l , b u t w i t h a m o r e d i s t o r t e d e v o l u t i o n . N o t e t h a t t h e o r t h o g o n a l o s c i l l a t i o n is associated w i t h a n o s c i l l a t i o n of /)fy^{t), a n d t h e e f f e c t o f angle o f attack i n a n a r r o w

a b

X X

Fig. 11. Wind triangle representation for the surge decomposition into 2 transla-tions (a) Vc collinear to V^w and (b) V„ normal to V/iw

range is a l m o s t l i n e a r o n t h e a e r o d y n a m i c l i f t . C o n t r a r i l y , t h e p a r a l l e l o s c i l l a d o n is associated w i t h a n o s c i l l a t i o n o f Vfiv^t), a n d t h e e f f e c t o f w i n d speed is q u a d r a t i c o n a e r o d y n a m i c forces.

(8)

0.08 0.06 0.04

i •

u " -0.02 -0.04

I A : L I \ ] ] J j

: \ . . L . . / : : : / . J

1 \ \

1 1 1 1 1 1 1 1 1 10 16 t(s) 0.05 - B — Surge - 0 — Orlho+Coli 10 12 14 16 18 l{s)

Fig. 12. Comparison of oscillations of aerodynamic force coefficients obtained for a surge motion witli tire sum of oscillations obtained for both translation compo-nents parallel and orthogonal to the apparent wind.

6. Influence of rig adjustments

Before each race, sailors a d j u s t t h e t e n s i o n i n t h e s h r o u d s ( d o c k t u n e ) a c c o r d i n g t o s a i l i n g c o n d i t i o n s , a n d t h e hackstay t e n s i o n is o f t e n a d j u s t e d c o n t i n u o u s l y w h i l e s a i l i n g u p w i n d . I n t h i s s e c t i o n , t h e analysis o f t h e e f f e c t s o f v a r i o u s d o c k tunes a n d backstay loads o n t h e d y n a m i c b e h a v i o u r a n d t h e exchanged e n e r g y is p r e s e n t e d .

6.1. Influence of dock tune

T h e i n f l u e n c e o f v a r i o u s d o c k t u n e s o n t h e sail p l a n d y n a m i c b e h a v i o u r is i n v e s t i g a t e d . T h e r e f e r e n c e p i t c h i n g m o t i o n {A=5° a n d T = 1 . 5 s ) is s i m u l a t e d w i t h t h r e e realistic d o c k t u n e s u s e d w h i l e r a c i n g i n d i f f e r e n t w i n d c o n d i t i o n s . D o c k tunes are d e f i n e d as t h e n u m b e r o f s c r e w t u r n s a p p l i e d to t h e s h r o u d s ' t u r n - b u c k l e s . Tune2 is t h e r e f e r e n c e d o c k t u n e used f o r t h e c o n s i d e r e d s a i l i n g c o n d i t i o n s . T h e t h r e e d o c k t u n e s are described b e l o w : • tune-t: - 3 t u r n s o n V I s h r o u d s used i n l i g h t w i n d . • tune2: r e f e r e n c e d o c k t u n e f o r Vnv = 6.7 m . s " ' (13 k n o t s ) . • tunes: +3 t u r n s o n V I s h r o u d s used i n m e d i u m w i n d .

w h e r e V I are t h e o u t e r a n d h i g h e s t lateral s h r o u d s . The o t h e r s h r o u d s are n o t m o d i f i e d .

These t h r e e d o c k t u n e s n o t o n l y m o d i f y t h e rigidity o f t h e f u l l r i g g i n g b u t have a s i g n i f i c a n t i n f l u e n c e o n t h e c a m b e r o f t h e m a s t .

I n c r e a s i n g the V I t e n s i o n makes a s t i f f e r rig, a r e d u c e d f o r e s t a y sag a n d a m o r e b e n t mast, w h i c h results i n f l a t t e r sails. The sails' shape a n d m o r e precisely t h e i r c a m b e r a n d t w i s t are m o d i f i e d by t h e d o c k t u n e . Before t h e p i t c h i n g s i m u l a t i o n , t h e m a i n sail a n d j i b are n u m e r i c a l l y t r i m m e d i n o r d e r t o e n s u r e t h a t t h e c h o r d a t the centre o f e f f o r t h e i g h t has t h e same angle o f a t t a c k f o r t h e d i f f e r e n t tunes t o get a r e l e v a n t c o m p a r i s o n .

Fig. 13 shows t h e energy loops o f p i t c h i n g m o m e n t My versus p i t c h angle f o r t h e three tested d o c k tunes. The loops l o o k similar, however, t h e exchanged energy c o m p u t e d as described i n Section 4 shows variations. Table 2 presents t h e r e l a t i v e e v o l u t i o n o f the m e a n t o t a l p o w e r PTOT, dissipated p o w e r Pïööp a n d j i s e f u l p o w e r Pv-Bs vvhich is equivalent t o the average d r i v e force Fx- Compared to t h e reference d o c k t u n e 2, t h e dissipated p o w e r is increased by 8.5% f o r the loosest rig a n d s i m i l a r f o r t h e tightest r i g . The r e d u c t i o n o f dissipated energy w i t h t h e increase o f r i g t e n s i o n seems t o be due t o a s t i f f e r rig. W i t h m o r e stresses, t h e rig is g e t t i n g closer to a r i g i d s t r u c t u r e a n d c o m p a r i s o n b e t w e e n FSI a n d r i g i d s i m u l a t i o n s has s h o w n t h a t the hysteresis p h e n o m e n o n is s i g n i f i -c a n t l y l o w e r i n t h e rigid -case ( A u g i e r et al., 2013). A n o t h e r fa-ctor m a y be t h a t f l a t t e r sails dissipate less p o w e r .

The u s e f u l p o w e r is s l i g h t l y h i g h e r (1.3%) f o r t h e loosest rig and l o w e r (2%) f o r the tightest rig. This w o u l d suggest t h a t t h e reference d o c k t u n e 2 is n o t o p t i m a l a n d a looser r i g w o u l d be f a s t e r However, i t shall b e recalled t h a t t h i s s i m u l a t i o n is based o n a n i n v i s c i d f l o w w h i c h is k n o w n t o f i n d a h i g h e r d r i v e f o r c e f o r sails w i t h m o r e camber t h a n t h e real o p t i m u m because flow separation is n o t m o d e l l e d . As a looser r i g results i n m o r e c a m b e r e d sails, t h i s m a y be t h e reason w h y t h e m e a n u s e f u l power, o r m e a n d r i v i n g force, is p r e d i c t e d t o be h i g h e r f o r t u n e 1 t h a n f o r t u n e 2. Moreover, a p e r f o r m a n c e analysis s h o u l d also consider t h e side force, a n d the

4500 4000 3500 3000 2500 h 2000 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 e (rad)

Fig. 13. Pitching moment My vs. pitch angle O for different dock tunes, for a pitching amplitude A = 5 ° and period T=1.5 s. The loop area represents the energy dissipated during the corresponding period (T times Pioop).

Table 2

Ivlean total power Pjor. mean dissipated power P I O O P . mean useful power and mean heeling moment for different dock tunes, relative to reference case (tunej), for a pitching amplitude A=5' and period T = l.5s.

Dock tune Prnop P v „

Prorre/ Pioopre/ Mxref

tunei 1.008 1.085 1.013 1.017

tune2 1 1 1 1

(9)

B. Augier et al. / Ocean Engineering 90 (2014) 119-128 127

e v o l u t i o n o f t h e m e a n h e e l i n g m o m e n t JWx is also g i v e n i n Table 2 f o r i n f o r m a t i o n .

6.2. Influence of the backstay load

T h e i n f l u e n c e o f a v a r i a t i o n o f t h e backstay t e n s i o n o n t h e d y n a m i c b e h a v i o u r is i n v e s t i g a t e d . The same p i t c h i n g m o t i o n ( A = 5 ° a n d T = 1 . 5 s ) is s i m u l a t e d w i t h f o u r values o f backstay l e n g t h c o r r e s p o n d i n g t o backstay loads o f 1 0 0 0 N , 1500 N , 2 0 0 0 N a n d 2 5 0 0 N i n t h e steady case. T h e case 2 0 0 0 N is t h e reference b a c k s t a y l o a d used f o r t h e p r e v i o u s s i m u l a t i o n s . T h e sail t r i m s are i d e n t i c a l f o r t h e f o u r backstay loads. P r e l i m i n a r y steady s i m u l a -t i o n s w i -t h -t h e f o u r loads have s h o w n -t h e a b i l i -t y o f ARAVANTI m o d e l t o s i m u l a t e t h e e f f e c t o f t h e backstay: t h e m a i n s a i l t w i s t increases, t h e m a i n s a i l c a m b e r decreases a n d moves baclcward w h e n t h e backstay l o a d increases.

Fig. 14 s h o w s t h e e n e r g y loops o f p i t c h i n g m o m e n t M y versus p i t c h angle f o r different_values o f t h e backstay l o a d . As expected, t h e m e a n d r i v i n g f o r c e Fx ( w h i c h is p r o p o r t i o n a l t o P ^ ) a n d t h e m e a n h e e l i n g m o m e n t JWx are g r e a t l y a f f e c t e d b y t h e backstay l o a d , w h i c h changes t h e m a i n s a i l c a m b e r a n d t w i s t (see Table 3 ) .

S i m i l a r l y t o w h a t is s h o w n i n Section 6.1, t h e l o w e s t backstay l o a d l o o k s t o be o p t i m a l i n t e r m s o f m e a n d r i v i n g f o r c e o r u s e f u l p o w e r . Once again, t h e same r e s t r i c t i o n m u s t be m a d e d u e t o t h e i n v i s c i d flow m o d e l w h i c h m a y bias t h e o p t i m i s a t i o n . M o r e o v e r , t h e m e a n h e e l i n g m o m e n t is 20% h i g h e r f o r t h e loosest backstay. T h i s is c o n s i s t e n t w i t h t h e sailors k n o w l e d g e w h o c o m m o n l y tighten t h e backstay t o reduce h e e l .

T h e backstay load also has a g r e a t i n f l u e n c e o n t h e e n e r g y d i s s i p a t e d i n t h e hysteresis l o o p (see Table 3 ) . T h e c o m p u t e d m e a n d i s s i p a t e d p o w e r s t r o n g l y increases w h e n t h e backstay l o a d is

5000

-0.08 -0.06 -0.04 -0.02 0 0.02 0,04 0.06 0.08 8 (rad)

0.1

Fig. 14. Pitching moment My vs. pitch angle 9 for different backstay loads, for a pitching amplitude 4 = 5 ° and period r=1.5 s. The loop area represents the energy dissipated during the corresponding period (T times P^^öF).

Table 3

Mean total power Pror. mean dissipated power Pwop, mean useful power and mean heeling moment iWx for different backstay loads, relative to reference case (2000 N), for a pitching amplitude A=5° and period 7'= 1.5 s.

Load

1000 N 1.174 0.686 1.140 1,198

1500 N 1.088 1.072 1.052 1.098

2 0 0 0 N 1 1 1 1

2 5 0 0 N 0.895 1.211 0.916 0.890

increased (|Pioop| a l m o s t d o u b l e s w h e n t h e backstay is tighten f r o m 1000 N u p t o 2 5 0 0 N ) . I t is w o r t h n o t i c i n g t h a t t h i s t r e n d is opposite t o t h e o n e o b s e r v e d f o r a t i g h t e r d o c k t u n e b e i n g closer t o a r i g i d s t r u c t u r e as s h o w n i n Section 6 . 1 . I n t h e p r e s e n t case, m o r e t e n s i o n o n t h e backstay results i n flatter sails, b u t t h e m a i n sail leech is also looser. T h i s m a y r e s u l t i n m o r e flapping o f t h e m a i n sail w h i l e p i t c h i n g w h i c h can dissipate m o r e p o w e r .

7. Conclusions

The u n s t e a d y fluid s t r u c t u r e i n t e r a c t i o n o f t h e sails a n d r i g o f a 2 8 f o o t (8 m ) y a c h t u n d e r h a r m o n i c p i t c h i n g has b e e n i n v e s t i -gated i n o r d e r t o h i g h l i g h t t h e c o n t r i b u t i o n s o f t h e r i g a d j u s t m e n t s a n d t h e c o n s i d e r a t i o n o f a realistic p i t c h i n g m o t i o n i n t h e d y n a m i c b e h a v i o u r o f a sail p l a n . The ARAVANTI m o d e l is based o n a n i m p l i c i t u n s t e a d y c o u p l i n g b e t w e e n a v o r t e x l a t t i c e fluid m o d e l a n d a finite e l e m e n t s t r u c t u r e m o d e l , a n d has b e e n p r e v i o u s l y v a l i d a t e d w i t h f u l l scale e x p e r i m e n t s i n u p w i n d r e a l c o n d i t i o n s ( A u g i e r et al., 2 0 1 2 ) . Previous studies (Fossati a n d M u g g i a s c a , 2012; A u g i e r et al., 2 0 1 3 ) have s h o w n t h a t t h e a e r o d y n a m i c c o e f f i c i e n t s p l o t t e d against t h e i n s t a n t a n e o u s a p p a r e n t w i n d a n g l e e x h i b i t a n hysteresis l o o p . T h e p r e s e n t results c o n f i r m t h a t t h e d y n a m i c b e h a v i o u r o f a sail p l a n s u b j e c t t o y a c h t m o t i o n deviates f r o m t h e quasi-steady t h e o r y a n d a n a e r o d y n a m i c e q u i v a l e n t d a m p i n g e f f e c t is h i g h l i g h t e d . Oscillations o f t h e a e r o d y n a m i c forces e x h i b i t a n hysteresis p h e n o m e n o n w h i c h increases w i t h t h e m o t i o n r e d u c e d f r e q u e n c y a n d a m p l i t u d e .

I n t h i s paper, i t is s h o w n t h a t t h e hysteresis l o o p area is n o t o n l y d u e t o a phase s h i f t b e t w e e n t h e signals. A f t e r s h i f t i n g b y t h e phase delay T , t h e hysteresis l o o p o f Cx,y=f(fieffit+T)) does n o t collapse i n t o a s i n g l e l i n e . The p o w e r o f a e r o d y n a m i c forces is i n v e s t i g a t e d a n d a n a l y s e d i n t e r m s o f u s e f u l p o w e r a n d p o w e r e x c h a n g e d b e t w e e n t h e s y s t e m a n d m o t i o n t h r o u g h t h e hysteresis p h e n o m e n o n . I t is s h o w n t h a t s o m e e n e r g y is d i s s i p a t e d b y t h e aeroelastic s y s t e m f r o m t h e e n e r g y i n p u t b y t h e m o t i o n . This d i s s i p a t e d e n e r g y increases w i t h t h e m o t i o n r e d u c e d f r e q u e n c y a n d a m p l i t u d e . T h e u s e f u l e n e r g y associated t o t h e d r i v i n g f o r c e is l o w e r f o r a f a s t e r a n d h i g h e r a m p l i t u d e p i t c h i n g m o t i o n . T h e m o t i o n c o n s i d e r e d i n t h i s w o r k is a c o n s t a n t b o a t speed a n d f o r c e d p u r e h a r m o n i c p i t c h i n g only, a n d a l l o t h e r degrees o f f r e e d o m are k e p t c o n s t a n t . I n reality, w h e n t h e a e r o d y n a m i c forces oscillate, t h e heel a n g l e v a r y a c c o r d i n g l y , a n d t o a s m a l l e r e x t e n t t h e b o a t speed a n d leeway, so o t h e r t e r m s m u s t be c o n s i d e r e d i n t h e e x p r e s s i o n o f p o w e r . F u r t h e r w o r k is n e e d e d t o i n v e s t i g a t e t h e e f f e c t o f o t h e r types o f m o t i o n o n t h e e x c h a n g e d energy. I t w o u l d be i n t e r e s t i n g t o t r y a n d find s o m e f a v o u r a b l e m o t i o n r e s u l t i n g i n a h i g h e r u s e f u l p o w e r a n d m e a n d r i v i n g f o r c e t h a n t h e steady case. F r o m sailors experience w h o s o m e t i m e s f o r c e a r o l l i n g m o t i o n , c a l l e d r o c k i n g , w e expect t h a t t h i s m a y be o b t a i n e d f o r a p r o p e r t y chosen r o l l m o t i o n o f t h e r i g . T h i s i n t e r e s t i n g b e h a v i o u r w o u l d r e s e m b l e a flapping w i n g p r o d u c i n g t h r u s t . Pure h a r m o n i c s u r g e m o t i o n is c o m p a r e d to p i t c h i n g m o t i o n i n o r d e r t o h i g h l i g h t t h e i m p o r t a n c e o f a r e a l i s t i c 3 D m o t i o n . Oscillations o f t h e a e r o d y n a m i c c o e f f i c i e n t s decrease b y 3 0 - 4 0 % i n t h e case o f a n e q u i v a l e n t surge m o t i o n c o m p a r e d t o t h e p i t c h i n g m o t i o n case. M o r e o v e r , i n t h e case o f t h e surge m o t i o n , t h e hysteresis p h e n o m e n o n is a l m o s t cancelled, so t h a t t h e d y n a m i c b e h a v i o u r is s i m i l a r t o t h e q u a s i - s t e a d y t h e o r y . W h e n t h e s u r g e m o t i o n is d e c o m p o s e d i n t o t w o c o m p o n e n t s , p e r p e n d i c u l a r t o a n d a l o n g t h e a p p a r e n t w i n d d i r e c t i o n , i t is s h o w n t h a t t h e m a j o r c o n t r i b u t i o n t o f o r c e o s c i l l a t i o n s is d u e t o t h e o r t h o g o n a l o s c i l l a -tion c o m p o n e n t , w h i c h is associated t o t h e o s c i l l a t i o n o f a p p a r e n t w i n d angle.

(10)

F i n a l l y , a p i t c h i n g m o t i o n o f t h e s t r u c t u r e w i t h v a r i o u s s h r o u d s ' d o c k t u n e s a n d b a c k s t a y t e n s i o n loads is s i m u l a t e d i n o r d e r t o s t u d y t h e i n f l u e n c e o f t h e r i g g i n g stresses o n t h e d y n a m i c b e h a v i o u r . T i g h t e r s h r o u d s r e s u l t i n g i n flatter sails a n d a m o r e r i g i d s t r u c t u r e t e n d t o decrease t h e e n e r g y d i s s i p a t e d b y t h e s y s t e m . C o n t r a r i l y , m o r e l o a d o n t h e b a c k s t a y r e s u l t s i n a h i g h e r e n e r g y d i s s i p a t i o n w h i c h m i g h t be e x p l a i n e d b y m o r e flapping o f t h e sails because o f a l o o s e r l e e c h , d e s p i t e t h e i r r e d u c e d c a m b e r . I n b o t h cases, t h e u s e f u l p o w e r p r e d i c t e d b y t h e s i m u l a t i o n is h i g h e r f o r a l o o s e r r i g , c o r r e s p o n d i n g t o m o r e c a m b e r e d sails. D i r e c t a p p l i c a -tion o f t h i s c o n c l u s i o n ( l o o s e r r i g / f u l l e r sails r e s u l t i n g i n a h i g h e r d r i v i n g f o r c e ) t o t h e r e a l case m u s t be m o d e r a t e d b y t h e a s s u m p -t i o n o f i n v i s c i d flow u s e d i n -t h i s w o r k w h i c h is k n o w n -t o l e a d -t o a n o p t i m a l s a i l s h a p e w i t h m o r e c a m b e r t h a n t h e a c t u a l o p t i m a l because flow s e p a r a t i o n is n o t m o d e l l e d . M o r e o v e r , t h e side f o r c e a n d h e e l i n g m o m e n t m u s t b e c o n s i d e r e d as w e l l t o o p t i m i s e t h e sails t r i m as t h e y a f f e c t t h e p e r f o r m a n c e d u e t o l e e w a y a n d h e e l . A f u l l V e l o c i t y P r e d i c t i o n P r o g r a m i n c l u d i n g h y d r o d y n a m i c f o r c e s m u s t b e u s e d f o r a r e a l i s t i c o p t i m i s a t i o n .

Aclmowledgments

T h e a u t h o r s a r e g r a t e f u l t o K - E p s i l o n c o m p a n y f o r c o n t i n u o u s c o l l a b o r a t i o n . T h i s w o r k w a s s u p p o r t e d b y t h e F r e n c h N a v a l A c a d e m y a n d Brest M e t r o p o l e O c é a n e .

References

Abbott, I.H., von Doenhoff A.E., 1949. Theory of Wing Sections, Including a Summary of Airfoil Data. Dover publications, Inc., New York.

Augier, B., Bot, P., Hauville, R, Durand, M., 2010. Experimental validation of unsteady models for wind/sails/rigging fluid structure interaction. In: International Conference on Innovation in High Performance Sailing Yachts, Lorient, France. Augier, B., Bot, P., Hauville, R, Durand, M., 2011. Experimental full scale study on yacht sails and rig under unsteady sailing conditions and comparison to fluid structure interaction unsteady models. In: The 20th Chesapeake Sailing Yacht Symposium, Annapolis, USA.

Augier, B., Bot, P., Hauville, R, Durand, M., 2012. Experimental validation of unsteady models for fluid structure interaction: application to yacht sails and rigs. J. W i n d Eng. Ind. Aerodyn. 101 (0), 53-66.

Augier, B., Bot, R, Hauville, R, Durand, M., 2013. Dynamic behaviour of a flexible yacht sail plan. Ocean Eng. 66, 32-43.

Chapin, V., Heppel, P., 2010. Performance optimization of interacting sails through fluid structure coupling. In: 2nd International Conference on innovation in High Performance Sailing Yachts, Lorient, France.

Charvet, T., Hauville, R, Huberson, S., 1996. Numerical simulation of the flow over sails in real sailing conditions. J. Wind Eng. Ind. Aerodyn. 63 (1-3), 111-129. Fitt, A.D., Lattimer, T.R.B., 2000, On the unsteady motion of two-dimensional sails,

J. Appl, Math 65,147-171.

Flay, R,G,J., 1996. A twisted flow wind tunnel for testing yacht sails, J, Wind Eng, Ind. Aerodyn. 63 (1-3), 171-182 (Special issue on sail aerodynamics). Fossati, R, 2010, Aero-Hydrodynamics and the Performance of Sailing Yachts: The

Science Behind Sailing Yachts and Their Design, Adlard Coles Nautical. Fossati, R, Muggiasca, S., 2009. Sails aerodynamic behavior in dynamic condition.

In: The 19th Chesapeake Sailing Yacht Symposium, Annapolis, USA.

Fossati, R, Muggiasca, S„ 2010. Numerical modelling of sail aerodynamic behavior in dynamic condidons. In: 2nd International Conference on Innovation in High Performance Sailing Yachts, Lorient, France.

Fossati, R, Muggiasca, S., 2011, Experimental investigation of sail aerodynamic behavior in dynamic conditions, J, Sailboat Technol, 1-41, ISSN: 1548-6559, Fossati, R, Muggiasca, S., 2012. A n experimental investigation of unsteady sail

aerodynamics including sail flexibility. In: 4th High Performance Yacht Design Conference Auckland, New Zealand.

Garrett, R., 1996, The Symmetry of Sailing: The Physics of Sailing for Yachtsmen. Sheridan House, Inc., New York.

Gerhardt, R, Flay, R.G.J,, Richards, P,J„ 2011. Unsteady aerodynamics of two interacting yacht sails in two-dimensional potential flow. J. Fluid Mech. 668 (1), 551-581.

Glauert, H„ 1926, The Elements of Aerofoil and Airscrew Theory. Cambridge University Press, Cambridge,

Hauville, R, Durand, M„ Roux, Y„ 2008. Aero elastic model applied to the deformation of a rig. Eun J. Environ. Civil Eng. 12 (5), 549-560,

Jackson, R, 2001. An improved upwind sail model for vpps. In: The 15th Chesapeake Sailing Yacht Symposium, Annapolis, USA.

Keuning, J., Vermeulen, K., de Kidder, E., 2005, A generic mathematical model for the manoeuvring and tacking of a sailing yacht. In: The 17th Chesapeake Sailing Yacht Symposium, Annapolis, USA, pp, 143-163.

Marchaj, C , 1996. Sail Performance: Techniques to Maximize Sail Power. Interna-tional Marine/Ragged Mountain Press, London.

Masuyama, Y., Fukasawa, T., 1997. Full scale measurement of sail force and the validation of numerical calculation method. In: The 13th Chesapeake Sailing Yacht Symposium, Annapolis, USA.

Masuyama, Y , Tahara, Y , Fukasawa, T., Maeda, N., 1993. Dynamic performance of sailing cruiser by a full scale sea reality. In: The 11th Chesapeake Sailing Yacht Symposium, Annapolis, USA.

Renzsh, H., Graf K., 2010. Fluid Structure Interaction simulation of spinnakers -getting closer to reality. In: 2nd International Conference on Innovation in High Performance Sailing Yachts, Lorient, France.

Richardt, T , Harries, S„ Hochkirch, 1<„ 2005, Maneuvering simulations for ships and sailing yachts using friendship-equilibrium as an open modular workbench. In: International Euro-Conference on Computer Applications and Information Technology in the Maritime Industries.

Roux, Y., Durand, M., Leroyer, A., Queutey, R, Visonneau, M., Raymond, J., Finot, J., Hauville, R, Purwanto, A., 2008. Strongly coupled VPP and CFD RANSE code for sailing yacht performance prediction. In: 3rd High Performance Yacht Design Conference Auckland, New Zealand.

Roux, Y., Huberson, S„ Hauville, R, Boin, J., Guilbaud, M„ Ba, M„ 2002. Yacht performance prediction: Towards a numerical vpp. In: High Performance Yacht Design Conference.

Schoop, H., Bessert, N„ 2001. Instationary aeroelastic computation of yacht sails. Int. J, Numer, Methods Eng, 52 (8), 787-803.

Cytaty

Powiązane dokumenty

przez Węgrów Widyniu, cesarz bizantyński Jan V Paleolog (1341-1391) stał się świadkiem masowego nawracania Bułgarów na katolicyzm, zwracając się do króla Ludwika I Wiel-

Eventueel te regenereren. Voor de reduotie van deze trinitroverbin cl ing moet per mol trinitro- benzoezuur ?,5 gramatoom ijzerpoeder gebruikt worden. Dit klopt

[r]

Estuaries are generally ' sunken' valleys in which marine and river sand and mud have deposited. In these deposits the rivers and tides have scoured channels and

Celem głównym pracy jest zbadanie zależności pomiędzy wysokością opadów atmosferycznych docierających do powierzchni zlewni Borucinki, a wielkością odpływu wód w

Wychodząc od opisu przykładów projektów dziecięcych protez 3D redefiniujących sztuczną kończynę odpowied- nio jako pretekst do zabawy z innymi dziećmi, atrybut superbohatera i

Перший – у випад- ках призначення покарання у виді «позбавлення права обіймати певні посади чи займатися певною діяль- ністю», наприклад, у

Skoro definiujemy przestrzeń publiczną jako „dobro wspólnie użytkowane, celowo kształtowane przez człowieka, zgodnie ze społecznymi zasadami i wartościami” (Karta