• Nie Znaleziono Wyników

Wind Coefficients for nine ship models

N/A
N/A
Protected

Academic year: 2021

Share "Wind Coefficients for nine ship models"

Copied!
18
0
0

Pełen tekst

(1)

WLND COEFFICIENTS FOR NINE SEI? MODELS

by

Christian Aage

Aerodynamic s Department

(2)

TABLE OF CONIENTS Page ABSThACT 1 INThODUC'IION i 'lEST EQUIPMENT i COEFFICIENTS 2 BOUNDARY LAYER

SECONDARY WIND EFFECTS

ACKNOWLEDGEMENTS 5 REFERENCES 5 LIST OF FIGURES Figtxre Page i Coordinate System 2 2 Velocity Profile 3

3 CARGO SHIP A. (Full-load) 6

l-t CARGO SHIP A. (Ballast) 7

5 CARGO SHIP B. (Without Containers) 8

6 CARGO SHIP B. (With Containers) 9

7 CARGO SHIP C. 10

8 TAM(ER

li

9 PASSJNGER LINER 12

10 FERRY 13

(3)

ABSIRACT

Four-component wind coefficients for nine ship models are presented with a short description of the test equipment and the boundary layers in

model and full scale. Mention is made of two

important secondary wind effects.

INIRODUC1ON

Accurate wind force data are needed in connection with trial trip analyses as well as manoeuvring and stability investigations.

Theoretical calculation of the air flow around the ship is not possible

today, so we have to rely on model tests. In cases where a special

model test with the ship in question cannot be performed for economic or other reasons, one can either use one of the general formulae

proposed by some authors or pick one specific model test with a model

as similar as possible to the ship in question. With the present

state of knowledge the latter method seems to be the most accurate. Therefore, a very large "fund" of published model test results

is needed to cover the wide variety of ship forms. And furthermore,

the constantly changing ship forms and the arrival of new types of'

ships should be followed up by new model tests. As a contribution

to this, a series of nine model tests carried out at RyA during the last few years is presented here.

The test series comprises three careo ships in different condi-tions, a tanker, a passenger liner, a ferry, and a fishing boat.

TEST EQUIPMENT

The tests were performed in the HyA circulation wind tunnel

with a wind speed of' 60 rn/sec. The test section is 1.0 x 0.7 m. The

models were about 0.5 m long, which gives Reynolds' numbers of about

6

1.7 x 10 based on lengih. Blockage corrections have not been made.

A special four-component strain-gauge balance was used to mea-sure the components X, Y, N and K (longitudinal force, transverse force, yawing moment and heeling moment) as functions of wind

direc-tion angle l . The components Z and M (vertical force and pitching

moment) were considered unimportant for the ship models tested. For sign conventions, see Figure 1.

(4)

-2-z

OrigLn at the intersection of Centerline-, Waterline-, and Midship- (Lpp/2) planes.

Figure 1 - Coordinate System.

COEFFICIENTS

The results are presented as the non-dimensional coefficients:

Cx = +

CY=

CN=

CK =

Y

v2 N g V2 As Loa

+V2AsHs

(5)

where

g =

mass

density of

air.

V = wind velocity in the free

'treain.

M' = projected front area of ship model above the waterline.

As = projected side area of ship model above the waterline.

Loa

length-over-all of ship model.

Hs = height of centre of gravity of As above the waterline.

Distance from tunnel wall

120-100

80

60- 20-0 L

m

Natural boundary layer over open sea, scale 1:300 Boundary layer at

tunnel wall, scale 1:1

U

= local wind velocity

V = wind velocity in the free stream

Figure 2 - Velocity Profiles.

V

0i

(6)

BOUNDARY LAYER

The tests were carried out in the natural boundary layer

existing at the tunnel wall. In Figure 2 the velocity profile of

the tunnel boundary layer is shown together with a typical natural

wind profile scaled down to model size (1:300). With the model

scales used, the tunnel boundary layer forms an average between the natural wind profile and the uniform wind with no boundary layer.

As the real wind field around the full-scale ship in fact is composed of the natural boundary-layer wind and the uniform speed wind, we believe that using the tunnel boundary layer gives us the

best compromise for practical purposes. Therefore we do not remove

the boundary layer with fences or suction.

The whole boundary-layer problem has been investigated at HyA by means of the so-called "slice method", in which a segmented model

of the passenger liner was used. By a combination of model testing

and calculation it was possible to find the wind forces for any composition of speed wind and natural wind, so that the different directions and velocities of the natural wind relative to the speed

wind could be taken into account. The results have supported

the correctness of using the tunnel boundary layer for normal

ship-model tests in the wind tunnel. Further details about the "slice

method" can be found in [i]

SECONDARY WIND EFFECTS

In addition to the primary wind forces on the ship a number of secondary wind effects influence its behaviour.

The side force and the yawing moment make the ship sail with certain drift and rudder angles which increase the resistance of

the ship. HUGHES [2] and WAGNER [3] have found these augmentations.

Especially WAGNER's results show a surprisingly high effective wind

resistance (several hundred per cent larger than CX). If WAGNER's

findings are correct they certainly make the direct use of CX in trial trip analyses somewhat illusory.

Another secondary wind effect is the influence of a drift angle

on the wake pattern. This was first pointed out by JGENSEN and

P1o1iASFC [it] who showed that a drift angle changes the wake appreciably

(7)

with drift angle, so that for a right-handed propeller the wake

frac-tion can be

50 %

larger with starboard drift angle than with port

drift angle. Later tests at HyA seem to indicate that this is typical

for fast cargo ships, whereas the wake patterns of tanker hulls are less influenced by drift.

There might be a clue to better trial trip analyses in these two secondary wind effects, which are not incorporated in any standard trial trip analysis code today.

ACKNOWLEDGEMENTS

The author wishes to acknowledge, with thanks, the co-operation of his colleagues Messrs. Finn Jensen, Verner Jensen, and Holger

Pedersen of the HyA Aero-Department in the preparation of this report.

REFERENCES

Aagé, C.: WIND FORCES ON SHIPS, Report No. A_Li.,

Hydro- og Aerodynamisk Laboratorium, Lyngby, Denmark,

1971.

(Not yet published).

Hughes, G.: THE EF.I'JiCT 0F WIND ON SHIP PERFORMANCE, T.I.N.A.

1933, pp. 79-121.

Wagner, B.: WINDKRI4FIT AN tJBERWASSERSCUIFIi'EN, JaLhrbuch der

Schiffbautechnischen Gesellschaft

61.

Band

1967,

pp. 226-250.

[Li] Jorgensen, H.D. and Prohaska, C.W.,: WIND RESISTANCE, 11th I.T.T.C.

(8)

0.40 0 20 o.oe -0.20 -0.40 0 20 o20 0.15 0.10 0.05 0 oe -0.05 -0.10 -0.15 -020 o 20 cx s CARGO 5111F A. (8th-bad) 008 6

Fire

3 140 120 oe 0 0 0 40 0 20 o05 0 20 140 120 t 05 o o j 0 40 0 20 005 0 20 cy 40 ) 3 105 120 140 1 1 I 3 Oc

Scale ¿:273.00 Model SnIp

Sengt h hot -lo-oc. cgo IO 46.?0e2 127.50

LeegtO osera I 55e e S1.6b-2 141.10

Breadth R n (TAo--I 18.50

Orasoflt «s,

Gracchi aft 1fTa

e 2.64-2

2.60p-2 7.327.32

anglo cf hcol (ant,

Projected Orcos areate o-th.) Q

Ac n+2dog 0.00 kl.iOo--O 316.000.00 PrcJecbedsdo-area At 0+2 LG0.CO'4 1192.46 Cefltre nf At 0000 SC As e 2,j0-2 5.73 3 loe 120 40 140 40 i05 120 140 1 l 40 J 105 120 140 i &J 130

(9)

0.60 1160 0.40 0.20 0.05 -0.20 -0.40 -0.60 -0.60 o 0.20 0.15 0_10 0.05 0.05 -0.05 -0.10 -0.15 -0.20 cx

/

CARG' SHIP A. (bal last)

160 140 120 105 O 60 o 60 o 40 U 20 O cc O 60 740 120 105 0 60 0 60 0 40 0 20 U OC U

Figure

4 cy 20 40 60 60 105 120 140 20 40 60 60 ¶0)0 120 140 160 160 160 ¶60 27$ SA

LaHOLI, b.,t. pert. Lee SC. 7t2 127.50

Irt alt n LP,IS e 5..! 8-:G.1«,-2 .5.101t.57

Prn.,It «H,.- TP 0.93,-2 2.55

OS 2.$i-2 5.31

A«j. aP bvI lw's. t, sSC.) W la lOS 0.00

AP Ht .+2,42 S8.2S,t*J.2O,S 1551.11355.53 Centr.-af Atc,er 5 lt H 2.50,-2 (.82 160 160 20 40 60 60 OC 120 140 U 20 40 60 120 140 160 160

(10)

0.20 -020 -0.40 -0.20 -0.20 0.20 0.15 0.10 0.05 0.20 -0.05 -0.10 -0.15 -020 D _coIa29..00 LOH9RI. Set. PC'S. PraagSt fer Prao!jflS aft Orole Of flfiCI (pe.

PrOJeCOHA P,-HjeSSI AC HCCO CeeSre Hf AH OH., HL

ii guusuuu

120 120 140 120 120 a'I 20 8

CARGO SHIP 2. (HIthCtCHfltSIHH,)

o 20 0 20 0 40 0 20 120 O 20 0 20 0 40 0 20 0.20 O

Figure

5 20 20 20 120

R--....

lull"

WRRSUUUkI

r

120 140 120 120 120 120 LAO!! lIonel 2.000< Sl-lp iUS.75 LOa 9 fl . 9..52a27.A3 ¡55.59 23.00 7f 2.232 2.69 Ia e 2'o2 tO sOb.) Ar 0,,cfI 0CC 55. 7OS 520.020.06 AS cfI ¡)OCCH ¡735.65 1H e ILe,-: 7.70 0.0 D. 20 0.40 o 20 I 20 40 920 loe 0 20 D 20 40 I 20 oc 40 120 40 20 20 120 120 140 40 20 20 120 120 140 120 1

(11)

0.60 0.60 0.40 0.20 0.20 -0.20 -0.40 -0.60 -0.60 0 20 0.20 0.15 0.10 o.c 0.20 -0.20 -0.10 -0.15 -0.20 0 20

ORtI 01210.00 lIndel Ofl p

Congo h let. loop.

all

O oo000 h

0,aoglt MoP

ClPepgflt ft

Angle pi Opel (ARS. to StO.)

POOJOCLO? i?PO.t

bed tide toot C00600pfA,ptoo oIL

CARGO lOUP t. (Cit flcOTttl000s)

160 140 120 20 0 60 0 60 0 40 0 20 0 03 60 140 120 1133 0 60 0 60 0 40 o 20 0 20 C?

Fig.ire

6 60 103 120 ¶40 60 120 120 140 160 160

/

7

cpp o b2.O.-2 4O.72 Opto 52.52-2 153.'.0 M 7.i3-2 23.06 TO t Z .932 8.11° le to 2.)3-2 8.6°) 8 7pM 0.60 0.00 Ai f2 15.70-O 018.02 At of) 275.00,_1, 0071.36 05 0] 2.60-Z 7.70 o 20 40 60 o 20 40 60 160 160 40 60 60 120 120 140 160 160 40 60 60 120 120 140 160 160

(12)

0.00 0.00 0.40 o 20 0.LX 20 -0.40 o oe -0.05 -0.10 -0.15 -020 cx Scale 0:297.00

Length bet. peep. L,eUth over all

M,e.adth

Dravnht for Orawgnt aft Acole of heel (pow. to Projected fpopt arpa Peejacted side area

of AS over SL 120

-

10

-CARGO Snip C. 100 100 140 20 i oe 0 00 o 00 0 40 0 20 ooe 100 140 120 120 0 00 O 00 0 40 0 20 0 20

Figure

7

U. UUUUUU

U-U...

1UU

--U..

U.U.-...

AUUUUUUUI

20 40 00 00 loe 120 140 100 100 00

N

L

Model Sflp Loo e GA.23,-? 0G3.25 Loa o 5.3(,_ 152.52 M w .3 TM Ia On 2.9522.75,-2 8.70 S. 7G tth.) 0 den 0.00 0.00 of .o+2 Gibo-O 510.39 At e+2 175.00,-O 0c0.13 PS O 2.202 6.53 -0.00 -0.00 0 0.20 0.15 0.10 0.05 20 40 00 00 120 104 o so 40 00 120 140 100 100 o 20 40 00 00 120 120 140 100 100

(13)

0.40 0.20 0.20 -020 -0.40 020 0.15 0.10 0.05 0.20 -0.05 -0.10 -0.15 -020 o

X

20 40 50 50 120 120 140 150)

Fire 8

120 120 o 50 o 60 0 40 0 20 0 20 I 50 40 120 20 O 50 o 50 0 40 0 20 DO. 60 103 120 140 150 150 t OlIO ER

Scale 1:3'.fi.00 EInfiel Shin

J

LOrOS!, bet. Pere. leo S0.0fi,,-2 110.50

Oracylt Fn-o In., O e n, 51.00,-2 7.R9-2 0.19e2 122.05 15.50 8.25 Sralflfl aft

Rag of fleet (pns - first! - Ofia

o,

Iba O.19e20.01 0.008.25

PrOJ OttO,! fr,,! arco *0 nf: 48.20»-!. 560.8!.

Rs cf2 ..40a4 2015.20 CentO, nf Rs near 0.J 160 140 cx cy 150 0 20 40 50 120 120 140 160 60 o 20 40 60 50 120 120 140 40 20

(14)

o s: o s: 0.40 020 o.oe -020 -040 o o20 0.15 0.10 o.oe -o.oe -0.10 -0.15 -020 o cx aol

-

12

-PASSENGER LINER 1 s: 140 120 loe o s: o s: o 40 0 20 o oe o

Figre

9 00.

1U

-R---

r

1 i :250.00 MOdel Ship

Lepytflbet. are. Lop Rl.10-Z 1i8.60 all Lpp 53.Gtl.t-( ¡39.50

BrnaAGb B l0R 09.90

Deqht «pro Te ?.0G0-2 5.00 DraUght ses îa O.CC2 5.00 Angle of heel (ont. t tEn.> P0(1 0.00 0.00

Projected front area Ac +: b3.9G-4 399.31

Projet titI., ClOd Pt 10+> 3$N.CGp-L 0>01.5>

Centro pÇ .00er RL lit n 3.Cl-> 9.00

o s: loe ¶20 140 is: i s: 20 40 s: s: ioe 120 140 is: 1SJ 40 120 140 is: l&) 20 s: i &D i s: 120 &0 loe 140 s: 20 40 140 120 loe o s: o s: 0 40 020 o.oe

(15)

0 20 0.20 0.40 0.20 0.05 -020 -0.40 -0.20 -0.20 020 0 15 0 10 005 0 05 -005 -0.10 0.15 -0.20 o

H

20 105 scaIC_:_S. 40

LenqtF hit. PD(I). Eh 050(ail ina.iti' i.rao,;It fo,D D(iyht aft An,ji.- f leDi (000. t0t1 .) PfljCtfl22700E Ce7t(e of As 00e-iL 120 120 Q-4 20 40 20 20 lOE) 120 140 120 /

/JI

1 /1 L/. J/ F ETAT o 120 120 140 120 105 0 20 0 20 0 40 0 20 o o o o o o

Figure 10

I

20 40 20 20 105 120 0 20 40 20 20 105 120 140 1 120 oc 40 20 05 20 20 40 20 OD LTD H 52.O,,-2 23.61 LCD H) 53. 5L- 24. 7'. R 2.45,r2 .3 3 11 2 02-2 4. CL Oa 2.02.- 1 4CL Ç 2.00 CCL 2f o4 o2.C,4 150.5t AS o4C 210.20,.4 704.54 ft 3. £OD_ 4.11 o 20 40 20 120 140 140 120 120

(16)

FIllIN(, BLAt

5U.L Mfl1(1 Sl-ip

ii5t2l NS. NiP. LIA) SL.hC2 22.20 aI I

Laa50. L,2

25.05

5.L0-2 5.80

fliaaIt fiN 1f 5.0¼a22. 50

OaaqIL aft fla 5. 60r 2.51

A151.. ii flfl (pis. Si sLt.) i8fl 0.00 1.00

PiLJaçtNJ fNpita.aa AA .42 90.L010 20.00 PiCjSStAdS)dS as As rn422.. 2L). 72.10 f5 HL -. $.20cC ¡.95

I

0.60 0.60 0.40 o 20) 0.20 -020 -0.40 -0.60 -0.60 0 0 20 0.25 0.10 o.c 0.20 -0.20 -0.10 -0.15 -020 60 140 120 120 0 60 0 60 0 40 0 20 0 20 o 60 140 20 120 0 60 cx cy

I

20 40 60 60 220 120 140 160 160 20 40 60 60 120 120 140 160 160

oc u.... u.

uurniuu

uuuuuii

u...

riuuuuuuui

0 60 0 40 0 20 020 o 20 40 60 120 140 160 160 o 40 60 60 lOE) 120 140 160 160

Figure 11

(17)

Ships and Ship Models 30,00

Hy-14 MOGENS BECH and Analogue Simulation of Ship 20.00

L. WAGNER SMITT Manoeuvres

based on full-scale trials or

free-sailing model tests

Series A

No.: Author: Title: Price: D. Kr.

A.1 TEJLGARD JENSEN, A. An Experimental Analysis of a Pebble Bed Heat 5,00

Exchanger for a Small Hypersonic Wind Tunnel

A.2 JØRGENSEN, H. D. Wind Tunnel Tests in the Field of 15,00

Industrial Aerodynamics

A-3 AAGE, CHRISTIAN Wind Coefficients for 20,00

(18)

Cytaty

Powiązane dokumenty

Gallen und Polen Prace Komisji Historii Nauki Polskiej Akademii Umiejętności 2,

[r]

można by dojść do wniosku, że konsumencki dług niepieniężny ma charakter długu odbiorczego (jak każde świadczenie niepieniężne). Wynikałoby z tego, że to przedsiębiorca

A BLAST search using the EzTaxon-e server ( 3 ) against 16S rRNA genes of valid species revealed that among the valid organisms the most similar sequence belonged to Halovivax

W porównaniu do konwencjonalnych stalowych albo żelbetowych konstrukcji słupowych konstrukcje zespolone stalowo-betonowe typu CFST (Concrete Filled Steel Tube)

There is however no doubt that the book itself presents a balanced view on the most important exegetical and historical problems related to the Dead Sea Scrolls, and as such

4 ustawy o zwalczaniu nieuczciwej konkuren- cji, skutkuje przerzuceniem na byłego pracownika ciężaru dowodu, iż ujawnione informacje nie stanowiły tajemnicy przedsiębiorstwa

Gdy więc nakazuje się nam coś zgodnego z przykazaniem bądź też przyczyniającego się do jego wypełnienia, winniśmy to przyjąć za szczególną gorliwością i uwagą, jako