• Nie Znaleziono Wyników

Simple proofs of some plethysm formulasWe present simple proofs of plethysm formulas for

N/A
N/A
Protected

Academic year: 2021

Share "Simple proofs of some plethysm formulasWe present simple proofs of plethysm formulas for"

Copied!
5
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXVII (1987)

S tanislaw B alcerzyk (Torun)

Simple proofs of some plethysm formulas

We present simple proofs of plethysm formulas for SpA 2(E) and S 2 A P(E), where E is a complex linear space of finite dimension, i.e., we give a reduction of those complex representations of a group G = GL(£), by explicit computation of generating vectors of heighest weight (we follow terminology of [2]). These formulas are due to Thrall [3] who proved them by the use of symmetric functions.

1. For each finite dimensional complex linear space E with a basis el5 eN and for each integer p ^ Г we have a map, natural with respect to linear maps of E

Cp,2: A 2p( E ) ^ E ® 2p —— >(A2(E))® p ->S p (A2(E)),

where v: E(g)E -> A 2(E) is a canonical epimorphism, Sp is a functor of pth component of a symmetric algebra functor and A denotes a comultiplication A' (E)-> A' (E)®A' (E) (induced by a map x i—>x(x)l + 1 ® x for x e E ) as well as its components A l+J(E)-* A l (E)<g>AJ(E) and compositions (as above). It is easy to check that for all x l5 ..., x 2pe E

(1) Zp .2 (*1 Л . . . л x 2p) = 2P - p l ' Z U u •••, Jp)Xj1 . . . xJp,

where J l f . . . , J p runs over all decompositions of {1,2, ..., 2p] in two element subsets, J l < ... < J p in lexicographic order and x ÿJi = x, л Xj for i

< j. Moreover, (J l5 ..., J p) is a sign of a corresponding permutation, where each J k is written in a natural order. It is easy to compute that

( 2 )

2 p

Ç p , l ( X 1 A . . . Л X 2 p ) = 2 p £ ( - l ) 4 p - i , 2 ( ^ 2 A . . . A X j л . . . Л X 2 p ) - X j Л X ; , 7 = 2

2 p + 1

(3) X ( - 1 У £p,2 (*1 A . . . Л Xj A . . . Л X2p+ x) ' X,- Л Xj = 0

7 = 1

for i' = l , . . . , 2p+ 1.

(2)

A map çPt2 transforms a vector of heighest weight ex л ... л e2p of a representation Л 2р(Е) of a group G = G L(£) onto non-zero vector w2p

= Çp,2 (*1 A ... A e2p) 6 Sp Л 2 (E).

T heorem 1. I f N ^ 2p then monomials w22 = w2Al . ..w 22s /o r all partitions A = (Alf A2, . . AJ о / p form a generating set of heighest weight vectors of SpA 2(E) thus

SPA 2(E) = © C(G)w2A^ © L 2 x (E),

A | - p Af - p

where L 2k = L 2k t2kg denotes a Schur functor corresponding to a Young diagram with columns of length 2A1, ..., 2AS.

P ro o f. For p = 1 the theorem is obvious. Let us assume that it holds for p. We use an epimorphic map of multiplication

mP, i : SPA 2(E)®A2( E) —>SP+1A 2(E). '

All monomials w2fl for p |- ( p + l ) are non-zero heighest weight vectors and have different weights. Thus Sp+lA 2(E) contains a G-submodule V

= © C{G)w2fl, and it is sufficient to prove that Immp l = К

рИ р+ i )

An inductive assumption and Pieri’s formula (see Remark 2) imply

f

(4) S2 A 2(E)®A2(E) * ® L 2X(E) ®A2(E) * ® L 2U+ei)(E)®@L2A+ej+Ek(E), where £,• denotes a sequence (0, ’..., 0, 1, 0, ...) with 1 in its ith place and the first .summation is over all A = (A1? ..., As) |- p and i ^ 1 such that Af_ x > A,, the second summation is over such A, j, к that l ^ j c / c ^ s + l and Ау_! > Aj ^ ... ^ Afc_! > Ak. To find heighest weight vectors corresponding to the decomposition (4) we define for q = 1, 2, ... natural maps

t]q: Л2я + ' (E) A£®<2«+ » v8>"®1 >(Л2(Е))8-®Е - S, Л2(£)®Е,

Л2ч + 2(Е) A 2(E) Л2(£)®Л2(£),

where As denotes a comultiplication in the symmetric algebra S A 2(E). Thus for x lt ..., x 2q + 2e E we have

2q + 1

riq{Xi л ... л Х2ч+1) = X ( - l ) a £„,2(*l A ... A xa A ... Л X2q+l)®*a,

a = 1

Cq (*1 A ... A X2q+2)

= 2 ( q + l ) X + л ... A Xa A ... A Xp A ... A X2q+2)®Xa Л Хдч

a </?

(3)

Vectors rjq(el л ... л e2q+l), Cq(^i л л ^iq + 2 ) are non-zero, then they are heighest weight vectors. Moreover,

™q,i °Cq = mqA o A s o £ q+lt2 = (q+ l)Zq+1,2-

Any vector in Sp Л 2(Е)®Л2(Е) admits a unique presentation in a form y = £ л е р; a non-zero term уаоц0®еЯо a ePo corresponding to a

tx </}

largest (with respect to a lexicographic order) pair (a0, fi0) is called a leading term of у and we write у = уаод0®<?яо а ePo + ...

(a) Let us fix A|—p and such i that Я,_1 > A, and let us denote т

= (Я1? ..., X,, ..., As), q = Я,-. The vector of heighest weight (5) mp_M <g) 1 (»V2t <g)£e (<?i A ... A f?2(J + 2 )

= 2(^+ 1) X ( - l ) a + /J_1 W2 t C9>2(C i a ... A £a A ... Л Сд A ... A É?2, + 2) <8>*?e A £д a </J

= 2(^ + 1) w2A® e2e+1 А в2ч + 2+ . . .

has weight corresponding to 2 (A+ £,•). Its image in 5Р+1Л 2(£) by mp>1 is W2t-We>1(Ce(ei л ... A é> 2 9+2)) - ( ? + l) w 2t- ^ +lf2(e1 A ... A é>2(J + 2)

= { q + l ) w 2U+ei) and this vector belongs to К

(b) Let us fix A (- p and j, к such that Aj_ ! > Xj ^ ^ Afc_ ! > Afc and let us denote £ = (Aj, ..., Àj, ..., Ak, ..., As), r — Xjy t = Xk. We define one more natural map

t]ry. A 2r+1 (E)®A2, + l (E) A^L-*Sf.A2(E)(g)E(S!S/ /12(£)® £ 1 —> Sr+i A Z(E)®A2(E).

The vector of heighest weight

(6) mp_r_ur+t® \ ( w 2e®qr4(e1 л ... л e2r+1 л ... л e2t+1))

= Z Z ( - i r ^ 2^ r , 2( « l A . . . A 4 A . . . A e 2r+1) a= 1 0=1

•£,t2(e 1 A ... А ёд A ... A e2f+1)®ea Л £д

= w2A(g)e2r+1 л e2t + 1+ ...

has weight corresponding to 2A+ £,- + £*. Its image in 5Р+1Л2(£) is zero,

(4)

because by (3) we get

£ ( - l )<x+pw2e^r,2(e1 a ... л ex a ... a e2r+ i)

«./»

2r+ 1

• ^ ,

2 ( ^ 1

Л . . . A f y Л . . . л e 2 t + l ) ' еа Л ^ = Z Л . . , A êp А . . . )

Р= 1

2r + 1

• Z Л ... л еа а ...)еа а ер = 0.

а= 1

Leading terms of vectors (5), (6) are linearly independent for all A, i, j, к then those vectors are linearly independent and consequently, they form a generating system of heighest weight vectors for all summands in (4). This

implies V = \ m m pl and the theorem follows.

R e m a rk 1. For each pair p, q of positive integers we define a natural map

£p<q: A pq(E) ~^E®pq A q(E))®p -» SpAq(E).

It is easy to write for £p>9 a formula analogous to (1) and to see that a map of transposition of two components in (A q(E))®p composed with v®poA is equal to ( — l)q2 v®poA. Thus Çp<q = 0 for odd q. Moreover, for even q, wp q

= CP>q(e 1 л . . . л €pq) Ф 0 is a vector of heighest weight in SpA q(E) and similarly as above the representation SpA q(E) contains a direct sum

© C(G)wqÀ ^ ® L qÀ(E), but is not equal to it for q > 2, p > 1.

2\- p

2. For each integer p ^ 1 and i = 0, 1, ..., p we have natural maps (pPti: А р+1(Е)®Ар~1(Е) - ^ ^ А Р{Е)®А'(Е)®АР~1(Е) -* A P(E)®AP(E).

It is easy to check that

Vi = (pPti{e 1 л ... л ер+\ ® е г a ... a ep_,)

= ( _ l ) ( p - 0 i £ ( j ? I)eJ® e l a ... л ep-i л £?,,

where /, J runs over all decompositions of [1, 2, ..., p + i] such that \J\ = p,

|/| = i. Thus Vi Ф 0 is a vector of heighest weight and it generates a representation isomorphic to Lp+i>p_ ,•(£). By Pieri’s formula (see Remark 2) it follows A P(E)®AP{E) = ® C (G )v-.

It is clear that J, I term in the above sum is non-zero iff J = {1, ..., p — i}<jK with disjoint /, К contained in [p — i + 1, ..., p + i] and \K\ = i.

Consequently

Vi = ( - 1 ) (Р~1)1^ { К , I ) e t л ... л ep-i a eK® e x a ... a c p_,- a e,

(5)

and it is obvious that the transposition of components in A P(E)®AP(E) maps onto ( — l)'2 и,-. Thus the canonical map x p: A P(E)®AP(E) .—*■ S 2 ЛР(Е) maps V, onto non-zero vector iff i is even. We have proved

T

heorem

2. I f N ^ 2p then for j — 0, 1 [p/2] vectors x p(v2j) = 2 £ ( K , I ) e x л ... л ep_ 2j л е к -е1 л ... л ep_ 2J л

where К, I runs over all decompositions of {p — 2 j + l , . . . , p + 2j} into 2,}- element subsets, К < /, form a generating system of heighest weight vectors of S 2A p (E), then

IPl 2]

S 2 Ap(E)= © C(G)xp(v2j) * LPtP(E)@Lp+2'P_ 2®

j= о

where the last term is either L 2p(E) or

^ 2 p - 1,1 ( £ ) .

R e m a rk 2. For Pieri’s formula we can either invoke (5.17) in [1] (in terms of symmetric functions) or directly compute using a determinantal expression det (dx._.+ ) of a class of representation LX(E) in the representation ring of G, where dk corresponds to A k(E). This is particularly simple for A P(E)®AP(E) because

dp dp i= 0 I

d p + i t

dp—I — i ? dp+i +

dp-i Î LP+i,P-

i = 0

i ( E ) .

(

References

[1] I. G. M a c d o n a ld , Symmetric functions and Hall polynomials, Oxford University Press, 1979.

[2] M. A. N a im a r k , A. I. S tern , Theory o f group representations, Springer, Berlin 1982.

[3] R. M. T h r a ll, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371-388.

INSTYTUT MATEMATYCZNY POLSKIF.I AKADFMII N A l’K MATHEMATICAL INSTITUTE POLISH ACADEMY OF SCIENCES

Cytaty

Powiązane dokumenty

In ordinary (classical or intuitionistic) logic, you can use an hypothesis as many times as you want: this feature is expressed by the rules of weakening and contraction of

That is, we can attempt to save the intuitionistic concept of truth by still equating truth with the existence of proof, or verification, while denying that proofs, or

• kiedy mówimy o czynnościach, które się powtarzają, są wykonywane regularnie, są rutynowe lub trwają przez dłuższy czas, np.. I go to school

osobie liczby pojedynczej używamy czasownika posiłkowego does, po czym posługujemy się formą podstawową czasownika głównego?. Niepoprawnie

Wpisz brakującą część zdania używając wyrazów podanych w nawiasie w. odpowiedniej formie wraz z

The effect of the domain size is illustrated, and it is concluded that a large domain size of the order of 100 chords or including a vortex correction, is necessary to have

Konstrukcja takich zdań jest identyczna jak w zdaniach warunkowych typu 1(1st. conditional), ale poznamy więcej możliwości ich zastosowania.. Proszę otworzyć podręcznik FOCUS 3

Remember that if we want to show that a number is divisible by k, then we need to show that it can be written as k × m, where m is an integer.. Tomasz Lechowski Batory preIB