• Nie Znaleziono Wyników

Energetic criterion

N/A
N/A
Protected

Academic year: 2021

Share "Energetic criterion"

Copied!
44
0
0

Pełen tekst

(1)

Piotr Pluciński

e-mail: Piotr.Plucinski@pk.edu.pl

Jerzy Pamin

e-mail: Jerzy.Pamin@pk.edu.pl

Chair for Computational Engineering

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl

(2)

1 Introduction

2 Derivation of FEM equations Frame finite element

3 Example

(3)

Observation

Bending stiffness is increased by tensile forces and decreased by compressive forces.

A sufficiently large compressive force can reduce the bending stiffness to zero and structural buckling (instability mode) occurs.

Assumptions

linear elasticity: σx= Eεx

static one-parameter load ideal system (no imperfections) equilibrium of buckled configuration

εx(x) = u0(x) − zw00(x) + 1

2(w0(x))2

w w

P

Pcr

λ ¯P1 λ ¯P2 λ ¯P3

x, u z, w

y

(4)

Derivation of FEM equations

Energetic criterion of equilibrium

Φ = U − W Φ – total energy

U – elastic energy: U = 12R

V

εxσxdV W – work of external forces: W = dTf

d – dof vector (nodal displacement vector) f – external force vector

l = εx, σx=

A, σx= Eεx, εx= u0 =⇒ N (x) = EAu0(x)

(5)

Energetic criterion of equilibrium

Φ = U − W Φ – total energy

U – elastic energy: U = 12R

V

εxσxdV W – work of external forces: W = dTf

d – dof vector (nodal displacement vector) f – external force vector

Value of (compressive) normal force before buckling

∆l

l = εx, σx=N

A, σx= Eεx, εx= u0 =⇒ N (x) = EAu0(x)

(6)

Energetic criterion

Elastic energy

U = 1 2 Z

V

εxσxdV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2

dVe )

(7)

Energetic criterion

Elastic energy

U = 1 2 Z

V

εx σx

x

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2

dVe )

(8)

Energetic criterion

Elastic energy

U = 1 2 Z

V

2xdV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2

dVe )

(9)

Energetic criterion

Elastic energy

U = 1 2 Z

V

2xdV

U =1 2 Z

V

E



u0− zw00+1 2w02

2

dV

U = 2

e=1 Ve

E ue0− zwe00+

2we02 dVe

(10)

Elastic energy

U = 1 2 Z

V

2xdV

U =1 2 Z

V

E



u0− zw00+1 2w02

2

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2 dVe

)

(11)

Elastic energy

U = 1 2 Z

V

2xdV

U =1 2 Z

V

E



u0− zw00+1 2w02

2

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2 dVe

)

U=1 2

E

X

e=1

Z le 0

Z

Ae

E



ue02+z2we002+1

4we04−2zue0we00+ue0we02−zwe00we02



dAe



dxe



(12)

Elastic energy

U = 1 2 Z

V

2xdV

U =1 2 Z

V

E



u0− zw00+1 2w02

2

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2 dVe

)

U=1 2

E

X

e=1

Z le 0

Z

Ae

E



ue02+z2we002+14we04

nonlinear term, upon linearization ∼= 0

−2zue0we00+ue0we02−zwe00we02



dAe



dxe



(13)

Elastic energy

U = 1 2 Z

V

2xdV

U =1 2 Z

V

E



u0− zw00+1 2w02

2

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2 dVe

)

U=1 2

E

X

e=1

Z le 0

Z

Ae

E ue02+z2we002−2zue0we00+ue0we02−zwe00we02

dAe



dxe



(14)

Elastic energy

U = 1 2 Z

V

2xdV

U =1 2 Z

V

E



u0− zw00+1 2w02

2

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2

dVe )

U=1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+EAeue0we02 dxe

)

(15)

Elastic energy

U = 1 2 Z

V

2xdV

U =1 2 Z

V

E



u0− zw00+1 2w02

2

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2

dVe )

U=1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+ EAeue0 normal force Ne(x)

we02 dxe

)

(16)

Elastic energy

U = 1 2 Z

V

2xdV

U =1 2 Z

V

E



u0− zw00+1 2w02

2

dV

Elastic energy of discretized system

U = 1 2

E

X

e=1

(Z

Ve

E



ue0− zwe00+1 2we02

2

dVe )

U=1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+ Ne(x)we02 dxe

)

(17)

Frame finite element

A, I

xe ze

0 le

de2

de1 de3

de5

de4 de6

xe ze

i j

(18)

Frame finite element

A, I

xe ze

0 le

de2

de1 de3

de5

de4 de6

xe ze

i j

Displacement u(x)e= Nude, Nu= [Le1 0 0 Le2 0 0]

0 le

1

xe Le1(xe) = 1 −xlee

0 le

1

xe Le2(xe) = xlee

(19)

Frame finite element

A, I

xe ze

0 le

de2

de1 de3

de5

de4 de6

xe ze

i j

Deflection w(x)e= Nwde, Nw= [0 H1e H2e 0 H3e H4e]

0 le

1

xe H1e(xe) = 1 − 3 xlee

2

+ 2 xlee

3

0 le

1

xe H3e(xe) = 3 xlee

2

− 2 xlee3

0 le xe

H2e(xe) = xe

1 − xlee

2

0 le xe

H4e(xe) = xe

h xe le

2

xleei

(20)

Elastic energy for discretized structure

U =1 2

E

X

e=1

(Z le 0

EAeue02+EIyewe002+ Ne(x)we02 dxe

)

u(x)e= Nude= NuTIed, w(x)e= Nwde= NwTIed

(21)

Elastic energy for discretized structure

U =1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+ Ne(x)we02 dxe

)

u(x)e= Nude= NuTIed, w(x)e= Nwde= NwTIed

U=1 2

E

X

e=1

(Z le 0



EAedTTIeTNu0TN0uTIed+EIyedTTIeTN00wTN00wTIed

+ Ne(x)dTTIeTNw0 TN0wTIed dxeo

(22)

Elastic energy for discretized structure

U =1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+ Ne(x)we02 dxe

)

u(x)e= Nude= NuTIed, w(x)e= Nwde= NwTIed

U=1 2dT

E

X

e=1

(Z le 0



EAeTIeTN0uTN0uTIe+EIyeTIeTN00wTN00wTIe

+ Ne(x) ITeTN0wTN0wTIe dxeo

d

(23)

Elastic energy for discretized structure

U =1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+ Ne(x)we02 dxe

)

u(x)e= Nude= NuTIed, w(x)e= Nwde= NwTIed

U = 1 2dT

( E X

e=1

I TeT

Z le 0



EAeN0uTN0u+ EIyeN00wTN00w dxeTIe

+

E

X

e=1

I TeT

Z le 0

Ne(x)N0wTN0wdxeTIe )

d

(24)

Elastic energy for discretized structure

U =1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+ Ne(x)we02 dxe

)

u(x)e= Nude= NuTIed, w(x)e= Nwde= NwTIed

U = 1 2dT

E

X

e=1

I TeT

Z le 0



EAeN0uTN0u+ EIyeN00wTN00w dxe Ke– linear stiffness matrix

I Te

+

E

X

e=1

I TeT

Z le 0

Ne(x)N0wTN0wdxe Keσ – initial stress matrix

I Te

d

(25)

Elastic energy for discretized structure

U =1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+ Ne(x)we02 dxe

)

u(x)e= Nude= NuTIed, w(x)e= Nwde= NwTIed

U = 1 2dT

E

X

e=1

I

TeTKeTIe+

E

X

e=1

I

TeTKeσTIe

! d

(26)

Elastic energy for discretized structure

U =1 2

E

X

e=1

(Z le 0



EAeue02+EIyewe002+ Ne(x)we02 dxe

)

u(x)e= Nude= NuTIed, w(x)e= Nwde= NwTIed

U =1 2dT

E

X

e=1

I

TeTKeTIe K

+

E

X

e=1

I

TeTKeσTIe Kσ

d

(27)

Elastic energy for discretized structure

U =1 2

E

X

e=1

(Z le 0

EAeue02+EIyewe002+ Ne(x)we02 dxe

)

u(x)e= Nude= NuTIed, w(x)e= Nwde= NwTIed

U = 1

2dT(K + Kσ) d

(28)

FEM equations for stability

Total energy

Φ = 1

2dT(K + Kσ) d − dTf

Minimization of energy

δΦ = 0 =⇒ (K + Kσ) d − f = 0

Equations for two adjacent equilibrium states – before and after buckling –eigenproblem

(K + Kσ)d1= f (K + Kσ)d2= f



=⇒(K + Kσ)∆d = 0

(29)

FEM equations for stability

Total energy

Φ = 1

2dT(K + Kσ) d − dTf

Minimization of energy

δΦ = 0 =⇒ (K + Kσ) d − f = 0

Equations for two adjacent equilibrium states – before and after buckling –eigenproblem

(K + Kσ)d1= f (K + Kσ)d2= f



=⇒(K + Kσ)∆d = 0

(30)

FEM equations for stability

Total energy

Φ = 1

2dT(K + Kσ) d − dTf

Minimization of energy

δΦ = 0 =⇒ (K + Kσ) d − f = 0

Equations for two adjacent equilibrium states – before and after buckling –eigenproblem

(K + Kσ)d1= f (K + Kσ)d2= f



=⇒(K + Kσ)∆d = 0

(31)

Total energy

Φ = 1

2dT(K + Kσ) d − dTf

Minimization of energy

δΦ = 0 =⇒ (K + Kσ) d − f = 0

Equations for two adjacent equilibrium states – before and after buckling –eigenproblem

(K + Kσ)d1= f (K + Kσ)d2= f



=⇒(K + Kσ)∆d = 0 equation is satisfied when

det (K + Kσ) = 0 or ∆d = 0

(32)

Total energy

Φ = 1

2dT(K + Kσ) d − dTf

Minimization of energy

δΦ = 0 =⇒ (K + Kσ) d − f = 0

Equations for two adjacent equilibrium states – before and after buckling –eigenproblem

(K + Kσ)d1= f (K + Kσ)d2= f



=⇒(K + Kσ)∆d = 0 equation is satisfied when

det (K + Kσ) = 0

(33)

Linear stiffness matrix – frame element Ke=

Z le 0

BeTDeBedxe

Ne=

hNe u

New

i

, Be= LNe, L =

d dxe

d2 dxe2

, De=

hEAe 0 0 EIe

i

Ke=

EA

l 0 0 EA

l 0 0

0 12EI

l3 6EI

l2 0 12EI l3

6EI l2

0 6EI

l2 4EI

l 0 6EI

l2 2EI

l

EA

l 0 0 EA

l 0 0

0 12EI l3 6EI

l2 0 12EI l3 6EI

l2

0 6EI

l2 2EI

l 0 6EI

l2 4EI

l

e

(34)

Initial stress matrix – frame element

Keσ= Z le

0

Ne(x)N0wTN0wdxe

keσ= Ne(x) 30le

0 0 0 0 0 0

0 36 3l 0 −36 3l 0 3l 4l2 0 −3l −l2

0 0 0 0 0 0

0 −36 −3l 0 36 −3l 0 3l −l2 0 −3l 4l2

e

f = λ¯f =⇒ keσ= λ¯keσ

One-parameter loading f

λ ¯P1 λ ¯P2 λ ¯P3

Configurational loading ¯f

P¯1 P¯2

P¯3

(35)

FEM algorithm

1 Statics – determination of normal forces Kd = ¯f =⇒ Ne=⇒ ¯keσ

2 Buckling – eigenproblem

(K + λ ¯Kσ)∆d = 0 =⇒ λkr=⇒ ∆d – buckling mode

(36)

λ · 1 E, A, I, l

d2

d1

d3

d5

d4

d6

X Z

i j

Statics

After computations of pre-buckling state:

N (x) = −1

(37)

Example

Cantilever

λ · 1 E, A, I, l

d2

d1

d3

d5

d4

d6

X Z

i j

Buckling

(K + λ ¯Kσ)∆d = 0

EI l3

Al2

I 0 0 -AlI2 0 0 0 12 6l 0 -12 6l 0 6l 4l2 0 -6l 2l2 -AlI2 0 0 AlI2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l2 0 -6l 4l2

1 30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l20 -3l -l2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l2 0 -3l 4l2

∆d4

∆d5

∆d6

=

0 0 0 0 0 0

EI l3

"Al2

I 0 0

0 12 -6l 0 -6l 4l2

#

1 30l

"

0 0 0 0 36 -3l 0 -3l 4l2

#!"

∆d4

∆d5

∆d6

#

=

"

0 0 0

#

EI l3

"Al2

I 0 0

0 12 -6l 0 -6l 4l2

#

1 30l

"

0 0 0 0 36 -3l 0 -3l 4l2

#

= 0

λ1= 2.486EI l2 λ2= 32.181EI

l2

(38)

Example

Cantilever

λ · 1 E, A, I, l

d2

d1

d3

d5

d4

d6

X Z

i j

Buckling

(K + λ ¯Kσ)∆d = 0

EI l3

Al2

I 0 0 -AlI2 0 0 0 12 6l 0 -12 6l 0 6l 4l2 0 -6l 2l2 -AlI2 0 0 AlI2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l2 0 -6l 4l2

1 30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l20 -3l -l2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l2 0 -3l 4l2

∆d1

∆d2

∆d3

∆d4

∆d5

∆d6

=

0 0 0 0 0 0

EI l3

"Al2

I 0 0

0 12 -6l 0 -6l 4l2

#

1 30l

"

0 0 0 0 36 -3l 0 -3l 4l2

#!"

∆d4

∆d5

∆d6

#

=

"

0 0 0

#

EI l3

"Al2

I 0 0

0 12 -6l 0 -6l 4l2

#

1 30l

"

0 0 0 0 36 -3l 0 -3l 4l2

#

= 0

λ1= 2.486EI l2 λ2= 32.181EI

l2

(39)

Example

Cantilever

λ · 1 E, A, I, l

d2

d1

d3

d5

d4

d6

X Z

i j

Buckling

(K + λ ¯Kσ)∆d = 0

EI l3

Al2

I 0 0 -AlI2 0 0 0 12 6l 0 -12 6l 0 6l 4l2 0 -6l 2l2 -AlI2 0 0 AlI2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l2 0 -6l 4l2

1 30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l20 -3l -l2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l2 0 -3l 4l2

0 0 0

∆d4

∆d5

∆d6

=

0 0 0 0 0 0

EI l3

"Al2

I 0 0

0 12 -6l 0 -6l 4l2

#

1 30l

"

0 0 0 0 36 -3l 0 -3l 4l2

#!"

∆d4

∆d5

∆d6

#

=

"

0 0 0

#

EI l3

"Al2

I 0 0

0 12 -6l 0 -6l 4l2

#

1 30l

"

0 0 0 0 36 -3l 0 -3l 4l2

#

= 0

λ1= 2.486EI l2 λ2= 32.181EI

l2

(40)

Example

Cantilever

λ · 1 E, A, I, l

d2

d1

d3

d5

d4

d6

X Z

i j

Buckling

(K + λ ¯Kσ)∆d = 0

EI l3

Al2

I 0 0 -AlI2 0 0 0 12 6l 0 -12 6l 0 6l 4l2 0 -6l 2l2 -AlI2 0 0 AlI2 0 0

0 -12 -6l 0 12 -6l 0 6l 2l2 0 -6l 4l2

1 30l

0 0 0 0 0 0 0 36 3l 0 -36 3l 0 3l 4l20 -3l -l2 0 0 0 0 0 0 0 -36 -3l 0 36 -3l 0 3l -l2 0 -3l 4l2

0 0 0

∆d4

∆d5

∆d6

=

0 0 0 0 0 0

EI l3

"Al2

I 0 0

0 12 -6l 0 -6l 4l2

#

1 30l

"

0 0 0 0 36 -3l 0 -3l 4l2

#!"

∆d4

∆d5

∆d6

#

=

"

0 0 0

#

EI l3

"Al2

I 0 0

0 12 -6l 0 -6l 4l2

#

1 30l

"

0 0 0 0 36 -3l 0 -3l 4l2

#

= 0

λ1= 2.486EI l2 λ2= 32.181EI

l2

Cytaty

Powiązane dokumenty

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Civil Engineering Department, Cracow University of Technology URL: www.L5.pk.edu.pl. Computational Methods, 2015

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

One of the most important challenges for the readout electronics designers from the analog electronics point of view, is the noise level reduction (stemming from the

Regarding selected aspects of CSR and the established policy, the company should define a specific range of activities to support the successful implementation of