• Nie Znaleziono Wyników

Isoparametric elements

N/A
N/A
Protected

Academic year: 2021

Share "Isoparametric elements"

Copied!
15
0
0

Pełen tekst

(1)

Isoparametric elements

Piotr Pluciński

e-mail: Piotr.Plucinski@pk.edu.pl

Jerzy Pamin

e-mail: Jerzy.Pamin@pk.edu.pl

Chair for Computational Engineering

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl

(2)

Isoparametric transformation

x y

(xi, yi)

(xj, yj)

(xk, yk) (xl, yl)

i k

j l

e ξ

η

i

k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e transformation

actual element ’parent’ element

(3)

Isoparametric transformation

x y

(xi, yi)

(xj, yj)

(xk, yk) (xl, yl)

i k

j l

e ξ

η

i

k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e transformation

actual element ’parent’ element

Element stiffness matrix and load vector ke=

Z

Ae

BeTDeBehedxdy

pe= Z

Ae

NeTfehedxdy

Ae, he – area and thickness of FE

(4)

Isoparametric transformation

x y

uk

vk

i k

j l

e ξ

η

i

k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e transformation

actual element ’parent’ element

Interpolation of displacement vector components

u(ξ, η) = N(ξ, η)un v(ξ, η) = N(ξ, η)vn

un = {uiuj uk ul} vn= {vi vj vk vl}

Shape functions

N(ξ, η) = [NiNj NkNl] Ni(ξ, η) =14(1 − ξ)(1 − η) Nj(ξ, η) =14(1 + ξ)(1 − η) Nk(ξ, η) =14(1 + ξ)(1 + η) Nl(ξ, η) =14(1 − ξ)(1 + η)

(5)

Isoparametric transformation

x y

(xi, yi)

(xj, yj)

(xk, yk) (xl, yl)

i k

j l

e ξ

η

i

k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e transformation

actual element ’parent’ element

Interpolation of actual (model) coordinates

x(ξ, η) = N(ξ, η)xn y(ξ, η) = N(ξ, η)yn

xn = {xi xj xk xl} yn= {yiyj yk yl}

Shape functions

N(ξ, η) = [NiNj NkNl] Ni(ξ, η) =14(1 − ξ)(1 − η) Nj(ξ, η) =14(1 + ξ)(1 − η) Nk(ξ, η) =14(1 + ξ)(1 + η) Nl(ξ, η) =14(1 − ξ)(1 + η)

(6)

Isoparametric transformation

x y

(xi, yi)

(xj, yj)

(xk, yk) (xl, yl)

i k

j l

e ξ

η

i

k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e transformation

actual element ’parent’ element

Transformation (chain rule) dx = ∂x

∂ξdξ +∂x

∂ηdη dy = ∂y

∂ξdξ + ∂y

∂ηdη

=⇒ dx dy



=

∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

J – Jacobi matrix

 dξ



(7)

Differentiation of multivariable function

Partial derivatives of function f (ξ, η)

∂f

∂ξ =∂f

∂x

∂x

∂ξ +∂f

∂y

∂y

∂ξ

∂f

∂η =∂f

∂x

∂x

∂η +∂f

∂y

∂y

∂η

=⇒

∂f

∂ξ

∂f

∂η

=

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

JT

∂f

∂x

∂f

∂y

∂f

∂x

∂f

∂y

= J−T

∂f

∂ξ

∂f

∂η

Integration

Z

A

f (x, y)dxdy = Z 1

-1

Z 1 -1

f (x(ξ, η), y(ξ, η)) det Jdξdη

(8)

Differentiation of multivariable function

Partial derivatives of function f (ξ, η)

∂f

∂ξ =∂f

∂x

∂x

∂ξ +∂f

∂y

∂y

∂ξ

∂f

∂η =∂f

∂x

∂x

∂η +∂f

∂y

∂y

∂η

=⇒

∂f

∂ξ

∂f

∂η

=

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

JT

∂f

∂x

∂f

∂y

∂f

∂x

∂f

∂y

= J−T

∂f

∂ξ

∂f

∂η

Integration

Z

A

f (x, y)dxdy = Z 1

-1

Z 1 -1

f (x(ξ, η), y(ξ, η)) det Jdξdη

(9)

Differentiation of multivariable function

Partial derivatives of function f (ξ, η)

∂f

∂ξ =∂f

∂x

∂x

∂ξ +∂f

∂y

∂y

∂ξ

∂f

∂η =∂f

∂x

∂x

∂η +∂f

∂y

∂y

∂η

=⇒

∂f

∂ξ

∂f

∂η

=

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

JT

∂f

∂x

∂f

∂y

∂f

∂x

∂f

∂y

= J−T

∂f

∂ξ

∂f

∂η

Integration

Z

A

f (x, y)dxdy = Z 1

-1

Z 1 -1

f (x(ξ, η), y(ξ, η)) det Jdξdη

(10)

Example - determination of conductivity matrix

x y

(-2, 1)

(0, -2)

(3, 1) (-1, 3)

i k

j l

e ξ

η

i

k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e transformation

actual element ’parent’ element

Interpolation of actual (model) coordinates

x(ξ, η) = −2·1

4(1−ξ)(1−η) + 0·1

4(1+ξ)(1−η) + 3·1

4(1+ξ)(1+η) − 1·1

4(1−ξ)(1+η)

=3

2ξ + η +1 2ξη y(ξ, η) = 1·1

4(1−ξ)(1−η) − 2·1

4(1+ξ)(1−η) + 1·1

4(1+ξ)(1+η) + 3·1

4(1−ξ)(1+η)

=3 45

4ξ +5 4η +1

4ξη

(11)

Example - determination of conductivity matrix

Jacobian

J =

∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

=

" 3

2+12η 1 +12ξ

54 +14η 54+14ξ

#

det J = 25

8 + ξ + 3 8η

Conductivity matrix k = 100, h = 0.1

k = Z

A

BTkhBdxdy, B=

∂N

∂x

∂N

∂y

= J−T

∂N

∂ξ

∂N

∂η

x y

(-2, 1)

(0, -2)

(3, 1) (-1, 3)

i k

j l

e

ξ η

i k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e

x(ξ, η) =3 2ξ +η +1

2ξη

y(ξ, η) =3 4

5 4

ξ +5 4

η +1 4 ξη

Matrix of shape function derivatives

B = 1

25 + 8ξ + 3η

−5 + 2ξ + 3η −2ξ − 2η 5 + 3ξ + 2η −3ξ − 3η

−1 + 4ξ − 3η −5 − 4ξ + η 1 + 2ξ − η 5 − 2ξ + 3η



(12)

Example - determination of conductivity matrix

Jacobian

J =

∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

=

" 3

2+12η 1 +12ξ

54 +14η 54+14ξ

#

det J = 25

8 + ξ + 3 8η

Conductivity matrix k = 100, h = 0.1

k = Z

A

BTkhBdxdy, B=

∂N

∂x

∂N

∂y

= J−T

∂N

∂ξ

∂N

∂η

x y

(-2, 1)

(0, -2)

(3, 1) (-1, 3)

i k

j l

e

ξ η

i k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e

x(ξ, η) =3 2ξ +η +1

2ξη

y(ξ, η) =3 4

5 4

ξ +5 4

η +1 4 ξη

Matrix of shape function derivatives

B = 1

25 + 8ξ + 3η

−5 + 2ξ + 3η −2ξ − 2η 5 + 3ξ + 2η −3ξ − 3η

−1 + 4ξ − 3η −5 − 4ξ + η 1 + 2ξ − η 5 − 2ξ + 3η



(13)

Example - determination of conductivity matrix

Shape function derivatives

J-1= 1 25 + 8ξ + 3η

 10 + 2ξ −8 − 4ξ 10 − 2η 12 + 4η



∂N

∂ξ

∂N

∂η

= 1 4

 −1 + η 1 − η 1 + η −1 − η

−1 + ξ −1 − ξ 1 + ξ 1 − ξ



x y

(-2, 1)

(0, -2)

(3, 1) (-1, 3)

i k

j l

e

ξ η

i k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e

x(ξ, η) =3 2

ξ +η +1 2

ξη

y(ξ, η) =3 4

5 4

ξ +5 4

η +1 4 ξη

Matrix of shape function derivatives

B = 1

25 + 8ξ + 3η

−5 + 2ξ + 3η −2ξ − 2η 5 + 3ξ + 2η −3ξ − 3η

−1 + 4ξ − 3η −5 − 4ξ + η 1 + 2ξ − η 5 − 2ξ + 3η



(14)

Example - determination of conductivity matrix

Shape function derivatives

J-1= 1 25 + 8ξ + 3η

 10 + 2ξ −8 − 4ξ 10 − 2η 12 + 4η



∂N

∂ξ

∂N

∂η

=1 4

 −1 + η 1 − η 1 + η −1 − η

−1 + ξ −1 − ξ 1 + ξ 1 − ξ



x y

(-2, 1)

(0, -2)

(3, 1) (-1, 3)

i k

j l

e

ξ η

i k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e

Matrix of shape function derivatives

B = 1

25 + 8ξ + 3η

−5 + 2ξ + 3η −2ξ − 2η 5 + 3ξ + 2η −3ξ − 3η

−1 + 4ξ − 3η −5 − 4ξ + η 1 + 2ξ − η 5 − 2ξ + 3η



(15)

Example - determination of conductivity matrix

Conductivity matrix k = 100, h = 0.1

k = Z

A

B(x, y)TkhB(x, y)dxdy

= Z 1

-1

Z 1 -1

B(x(ξ, η), y(ξ, η))TkhB(x(ξ, η), y(ξ, η)) det Jdξdη

k =

8.9488 −1.0827 −3.7421 −4.1240

−1.0827 6.1570 −1.8099 −3.2644

−3.7421 −1.8099 5.7670 −0.2149

−4.1240 −3.2644 −0.2149 7.6034

x y

(-2, 1)

(0, -2)

(3, 1) (-1, 3)

i k

j l

e

ξ η

i k

j l

(-1, -1)

(1, 1)

(1, -1) (-1, 1)

e

Matrix of shape function derivatives

B = 1

25 + 8ξ + 3η

−5 + 2ξ + 3η −2ξ − 2η 5 + 3ξ + 2η −3ξ − 3η

−1 + 4ξ − 3η −5 − 4ξ + η 1 + 2ξ − η 5 − 2ξ + 3η



Cytaty

Powiązane dokumenty

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Civil Engineering Department, Cracow University of Technology URL: www.L5.pk.edu.pl. Computational Methods, 2015

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology

Regarding selected aspects of CSR and the established policy, the company should define a specific range of activities to support the successful implementation of

One of the most important challenges for the readout electronics designers from the analog electronics point of view, is the noise level reduction (stemming from the