• Nie Znaleziono Wyników

The geometry of geodetic inverse linear mapping and non-linear adjustment

N/A
N/A
Protected

Academic year: 2021

Share "The geometry of geodetic inverse linear mapping and non-linear adjustment"

Copied!
188
0
0

Pełen tekst

(1)

MM i i ■i u i i M I I ■ • I' i " ■ MM I I ,i I i n ., .1. w. !• ' ' ' ' • •:, : ii■■■ ■i - i ■ . • f ! M' i l i i ! ■ : ! ■ ! ' i - • > f ! |,.1 ■ IT I

' i.' i

i : i ' ■ l . . ' i : , I • ' i ; I I I ' ■ I I i ' i r l ' i - i1! , i ,!; i i i - ! ■ ; . : ! I | 11. 11" il .''

THE GEOMETRY OF

GEODETIG MYERSE LINE AR MAPPING

;!;■ -

:

AND NON-LINEAR

I , Ml ],.,i.i

I ' l I .

M i ii'

ADJUSTMENT

■I " H I I'.-, . . ' . . . I ' I

11 , i M i , ; . i i |- i...

;. IE .r;:ï: M

i' i 1'i-r.i' a

tm

I i ';' I I'- . I '

i|. Mi' I-1..i' I I

I ' I Hi ! 11 ".; II -t 'I'M I Ml I l - ' . r l l - l • I . . , in i ! , ll." !'! ri . ;,'! ' I I . ' i ' Fl.''|-'I ■ " • . ! , H ' I". W " l I ' M I ' j i , i Mi I.. , 11.1 I- h>;|i;-"i'"i| Ml; . .; i.i. ,, i ; 1.1 I T | , I'i I ' | , ' . i ! i - ! M i'l "I - i >'■ ' i '

\'. H ! " i < ifi'i'iMi-a

■■■ : - H ' ' ! • . '■> ; . ' r i . ! 4 ! :;■ ■:;■.';;!■ 1 " . "hi. • , , ! r . ,■ . , ^ I'll I ' i u. !| 'I I l l . 1 1 I ' M . . l l > ^ ■ M : Ü 1 , M ' ! . Ü ,1' I " I '■I ■ t i n ' : ! ' ■ !.! . ] . ' r ;,<■■ « . . I . M1 ' I 'I I' ' ' I I"—'!!"» 'I> " | ■' «-►■■.. « f . ■;:••■■ i 11 • i . i i n ii" ■ •! r | . ' ' ' ! i. .-I ' " I I M l i " ' I ' II I " - I . I r,, . : i ■ ; , : * i i " i : I I i T i i j i " ',' . M'-" I,i|l',|'-i TM..|i!lli»|lM!. A '■*,■.. ' !l ;' i -i ' ' -i ;. ■ Ü ' :■ I-I !' '•!'! . i , .

';|

1 " I f r l l l l i n . , I' ' I • KM l - M ' l l ' l i ,1 ■■ i . , 1 . |, I i ' | . ' . , ' . ' i ! ■ I ' I'll l l : I i i ,i I. , i | I-' , ! . , - . ! . II-'HI-'"

;

;MI I

i

i I I '■ ;■ 11 ■.'ll I . I i M'.. . ' l ! U ! M

.!'

! : U " : l - ! l ' |. I , , '. M I I ' , i ■ - ; ' * ■ ' ■ ";c i 1,1,1;., i..; ƒ:?

1 i f ^ ^ ' i !

, !

! r , ! t

;

t i

J!H:lH^M

!i:

.

M

;

''

b

-'

k

4riMI" ":

! :

'!;.''■:

iflilrlli I I'll • (!■ .jlf .1 i ; | | : , r - i ( , t - ' i i . i ' i i.i i - 1 i | . H ' , . ' ; • . i ' ' . ; ; ; ; ' . , ' . . . I 'i ;.. i :

•<PWM& JIG'. i*ËÜNISSËN'i-. •-$:■■ „

; ii"!.,..; • i Mr, H i f|.|

*i'h§to

'.-i'?&>:?}'<■-■ f i:-11 i'i' i i i . M ' i | . , i ' » ' ! ■ ■ . » . ■ I I I I , , | , "! ' I. ' I ! I ' i:' I l l ..,|i ;l I | i | : I' I

i:

;

,;

'if !f:tv' t.Mfc

■ 'I | .. , | . ■ - , „ , - l , - ! , I ' M ' l i i 'v.1 ' H l r l . l M l h i ' i I'M'. i I . I •"■ i t 1.1 ■I. ■!■: i| |' | M . . ! ! ' , ! M , i l*'M ■iif 11 -I • i I' 11

Ji.1 JFtt ' '

i , M i '. i i : i , i n i i i ' i., ' i i . . M' Ml:',], , . I ' i , : , i ■ : • , I I . ; 11 : !, i, 11- ..i: i |i ' , i |:,,i ,;. , ,i«Mjj II .i •! I I !

r t R dlss

1446

i i ii i . : i i . ' » ' - M M ! M,l I ' l ' ! ' ■ ! i ' 1.1 "i-, i Mi ■;; ri 11. 'I'*M. li 1 1 t l' I i < IH.'M'H"

i'

1

"'"!! ^■■""iii'Mf/ipiHv.'.'i

• . • - • V r - ! r i 4 l

i

, p . \ r . i . : i r . - H f ' ! l

I , . i ,i-•■' li-' • ■ !'. Mi|!|i i-'.\:< i l . i b"".,in|N M I . I |,( ilUMll,;,,! |.;, I,,-,! -;i|i,i,:l!!| M.i i . i . " , I : , 1 " , ' , l ' l Li • '|.-i (,'i. MI,,:I|;,I ','i

, I ' 1 ' ' • I I T ' I I '; I I ' " I ' J . l

' I ' M. .i.n,|, s <.]■"'! - i "

:

'"!l;!'|! b!JMii;li

:

i:' :|".' '

l

"

; i ,

, H i ; MU'Ml! !:

t;.|||.:! j|J I'. I; , j . ■ • I, . . . I I . " ' I' I I," l l ' , ■ i " ; ;:■' I '! . i

!!'•

' | ; , i : • ■ < " ! | . |' | ' f I'i " I f

4 - ; . ' :

-

: r L " i i ^ , U :

M,.n ,:,..-> ir. . r ; l

I " ' I ' : ■' ' . i '' , ' , , • " I .'' '' n.ii .- , l i r • ■

(2)

-* -*# ^

r ^ t

v

b

T

\ '

■o ^

THE GEOMETRY OF

GEODETIC INVERSE LINEAR MAPPING

AND NON-LINEAR ADJUSTMENT

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN

DE TECHNISCHE WETENSCHAPPEN AAN DE TECH­

NISCHE HOGESCHOOL DELFT, OP GEZAG VAN DE

RECTOR MAGNIFICUS, PROF. DR. J. M. DIRKEN,

IN HET OPENBAAR TE VERDEDIGEN TEN OVER­

STAAN VAN HET COLLEGE VAN DEKANEN OP

DONDERDAG 5 SEPTEMBER 1985, TE 14.00 UUR

DOOR

PETER J.G. TEUNISSEN

GEODETISCH INGENIEUR

GEBOREN TE OWERRI (NIGERIA)

TR diss

1446

(3)

Dit proefschrift is goedgekeurd door de

(4)

SAMENVATTING

D i t p r o e f s c h r i f t behandelt:

1 ° de theorie van de inverse lineaire afbeeldingen en

2 ° het probleem van de niet-lineaire v e r e f f e n i n g .

Na de i n l e i d i n g , die de m o t i v e r i n g voor de in het p r o e f s c h r i f t gehanteerde geometrische benadering bevat, w o r d t in hoofdstuk II de theorie van de inverse lineaire afbeeldingen behandeld. Er w o r d t onder andere aangetoond dat iedere inverse B van een gegeven l i n e a i r e afbeelding A ondubbelzinnig geka­ r a k t e r i s e e r d kan worden via de keuze van drie l i n e a i r e d e e l r u i m t e n , die we S, C en V noemen.

Hoofdstuk i n laat hiervan de consequenties zien voor het inversieprobleem bij 2- en 3 dimensionele geodetische n e t w e r k e n . Voor verschillende s i t u a t i e s worden basisvectoren geconstrueerd die de n u l r u i m t e Mu(A) opspannen. Daarna w o r d t het probleem van de aansluiting van n e t w e r k e n besproken. Onder v r i j algemene aannamen betreffende de vrijheidsgraden van de betrokken n e t w e r k e n worden drie a l t e r n a t i e v e oplossingsmethoden gepresenteerd.

Hoofdstuk IV behandelt het probleem van de n i e t - l i n e a i r e v e r e f f e n i n g . Na de probleemstelling en een beknopte i n t r o d u c t i e in de d i f f e r e n t i a a l g e o m e t r i e , w o r d t het convergentiegedrag van de Gausse i t e r a ­ t i e a l g o r i t m e (GM) beschreven. Voor zowel één dimensionele als meer dimensionele gekromde varië­ t e i t e n w o r d t aangetoond dat het lokale gedrag van GM over het algemeen asymptotisch lineair is. Be­ l a n g r i j k e conclusies z i j n verder dat het lokale convergentie gedrag van GM, 1 ° . overwegend bepaald w o r d t door de kleinste kwadraten residuen v e c t o r en de u i t e r l i j k e k r o m m i n g van de v a r i ë t e i t , 2 ° . in het asymptotisch l i n e a i r e geval invariant is onder h e r p a r a m e t r i s e r i n g e n , 3 . asymptotisch k w a d r a t i s c h is indien de kleinste kwadraten residuen vector of het orthogonale normaal v e c t o r v e l d B gelijk nul z i j n , 4 ° . bepaald w o r d t door de C h r i s t o f f e l s y m b o l e n van de tweede soort in h e t geval van asymptotisch kwadratische convergentie, en 5 ° . praktisch geen versnelling zal ondergaan door toepassing van " l i n e search strategies" indien z o w e l de u i t e r l i j k e k r o m m i n g en de kleinste kwadraten residuen v e c t o r k l e i n z i j n . Vervolgens geven we condities die globale convergentie van G M naar een lokaal m i n i m u m garanderen.

We l a t e n zien dat voor een bepaald type van v a r i ë t e i t e n , namelijk regeloppervlakken, een belangrijke vereenvoudiging door r e d u c t i e van dimensie m o g e l i j k is. Door toepassing van d i t idee werd een i n v e r s i e - v r i j e oplossing van een niet-lineaire v a r i a n t van de klassieke twee-dimensionele H e l m e r t t r a n s f o r m a t i e m o g e l i j k . Deze niet-lineaire v a r i a n t hebben we de Symmetrische H e l m e r t t r a n s f o r m a t i e genoemd. Bovendien geven we een i n v e r s i e - v r i j e oplossing van de twee dimensionele Symmetrische H e l m e r t t r a n s f o r m a t i e wanneer een n i e t - t r i v i a l e r o t a t i e invariante c o v a r i a n t i e s t r u c t u u r w o r d t aangenomen. Hierna generaliseren we de r e s u l t a t e n naar drie dimensies. In de l a a t s t e paragrafen van hoofdstuk IV geven we enkele suggesties voor de a f s c h a t t i n g van de u i t e r l i j k e k r o m m i n g , geven we bovengrenzen voor de u i t e r l i j k e k r o m m i n g van enkele eenvoudige geo­ detische netwerken en beschrijven we in het k o r t enkele consequenties van de n i e t - l i n e a r i t e i t voor de s t a t i s t i s c h e behandeling van een vereffening. H i e r b i j w o r d t tevens aangetoond dat de onzuiverheid in

(5)

de kleinste kwadraten residuen vector bepaald w o r d t door de gemiddelde k r o m m i n g van de v a r i ë t e i t en dat de onzuiverheid in de kleinste k w a d r a t e n p a r a m e t e r s c h a t t e r s bepaald w o r d t door het spoor van de C h r i s t o f f e l s y m b o l e n van de tweede s o o r t .

In de afsluitende discussie geven we t e n s l o t t e aan welke deelproblemen nog een nader onderzoek v e r ­ eisen.

(6)

C U R R I C U L U M VTTAE

P e t e r Teunissen werd op 9 oktober 1957 geboren te O w e r r i (Nigeria). De lagere school doorliep hij in r e s p e c t i e v e l i j k P o r t H a r c o u r t (Nigeria), Willemstad (Curacao) en Paramaribo (Suriname). Na een jaar HBS in Paramaribo, doorliep hij de Atheneum-B in Nederland r e s p e c t i e v e l i j k te Venray, U t r e c h t en Assen. De studie geodesie aan de T . H . t e D e l f t ving h i j aan in 1975. Tijdens zijn studie heeft hij deelgenomen aan het Doppler-projekt Opper Volta (tegenwoordig: B u r k i n a Faso) en aan het o p g r a v i n g s - p r o j e k t . S a t r i c u m (construeren van een meetkundige grondslag voor de akropolis van de 2500 j a a r oude stad S a t r i c u m , 50 k m . t e n zuiden van Rome). Naast de studie was hij a c t i e f in het studentenleven en in enkele bestuursorganen en commissies van de a f d e l i n g der geodesie. Het p r a k t i s c h werk is bij de Topo. D e p t . Shell UK te Londen gedaan. In het l a a t s t e jaar van zijn studie vervulde hij een student-assistentschap op het L a b o r a t o r i u m voor Geodetische Rekentechniek. In november 1980 studeerde hij cum laude af, bij p r o f . d r . i r . W. Baarda. Na z i j n afstuderen t r a d hij als wetenschappelijk medewerker in dienst van de afdeling der geodesie en w e r d hem de mogelijkheid gegeven de studie te v e r r i c h t e n die ten grondslag ligt aan d i t p r o e f s c h r i f t .

In 1981 heeft hij met een stagebeurs van de Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek (Z.W.O.) een half jaar aan de U n i v e r s i t e i t S t u t t g a r t in samenwerking m e t p r o f . d r . - i n g . E.W. G r a f a r e n d onderzoek v e r r i c h t op het gebied van de geodetische d i f f e r e n t i a a l g e o m e t r i e . In 1984 was hij l e c t u r e r van de I n t e r n a t i o n a l School on Advanced Geodesy ( " O p t i m i z a t i o n and Design of Geodetic N e t w o r k s " ) . H i j is l i d van de Special Study Groups 4.56 ( " D i f f e r e n t i a l geometry of the g r a v i t y f i e l d " ) en 4.60 ("Statistical methods for e s t i m a t i o n and testing of geodetic data") van de I n t e r n a t i o n a l Association of Geodesy.

Sinds september 1985 is hij in het kader van het Constantijn en C h r i s t i a a n Huygens programma als wetenschappelijk medewerker in dienst van Z.W.O.

DANKWOORD

Voor de verkregen ondersteuning bij het onderzoek is de auteur veel dank verschuldigd aan de volgende organisaties:

De Rijkscommissie voor Geodesie voor het toekennen van reisbeurzen,

De Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (Z.W.O.) voor het verlenen van een stage beurs, en

H e t Geodetisch I n s t i t u u t van de U n i v e r s i t e i t S t u t t g a r t voor de geboden f a c i l i t e i t e n tijdens het v e r b l i j f van de auteur aldaar.

T e n s l o t t e is de auteur Janna B l o t w i j k bijzonder erkentelijk voor de v o o r t r e f f e l i j k e wijze waarop z i j de vaak m o e i l i j k e en " n e r v e - r a c k i n g " t e k s t v e r w e r k i n g van het onderhavige p r o e f s c h r i f t t e r hand heeft genomen. C o l o f o n : T e k s t v e r w e r k i n g & t y p e w e r k : Tekeningen: D r u k : M . J . B l o t w i j k M.G.G.J. J u t t e A . B . Smits Meinema B.V., D e l f t .

(7)

T H E G E O M E T R Y OF GEODETIC INVERSE L I N E A R M A P P I N G A N D N O N - L I N E A R ADJUSTMENT SAMENVATTING i i i C U R R I C U L U M V I T A E v D A N K W O O R D v I INTRODUCTION 1

H GEOMETRY OF INVERSE L I N E A R MAPPING

1 . The Principles 10 2. A r b i t r a r y Inverses Uniquely Characterized 13

3. Injective and Surjective Maps 18 4. A r b i t r a r y Systems of L i n e a r Equations and A r b i t r a r y Inverses 22

5. Some Common Type of Inverses and their R e l a t i o n

t o the Subspaces S, C and V 24 6. C - and 5 - T r a n s f o r m a t i o n s 30

m GEODETIC INVERSE M A P P I N G

1 . Introduction 35 2. Geodetic N e t w o r k s and t h e i r Degrees of Freedom 36

2 . 1 . Planar networks 36 2.2. Ellipsoidal networks 42 2.3. Three dimensional networks . 52

3. (Free)Networks and t h e i r Connection 65 3.1. Types of networks considered 65

3.2. Three a l t e r n a t i v e s 68

IV GEOMETRY OF N O N - L I N E A R ADJUSTMENT

1 . General Problem S t a t e m e n t 84 2. A B r i e f I n t r o d u c t i o n i n t o Riemannian G e o m e t r y 87

3. Orthogonal P r o j e c t i o n onto a P a r a m e t r i z e d Space Curve 91

3 . 1 . Gauss' i t e r a t i o n m e t h o d 91 3.2. The F r e n e t f r a m e 92 3.3. The " K i s s i n g " c i r c l e 95 3.4. One dimensional Gauss- and Weingarten equations 97

(8)

3.6. Examples 102 3.7. Conclusions 109 4. Orthogonal P r o j e c t i o n onto a P a r a m e t r i z e d Submanifold 110

4 . 1 . Gauss' method 110 4.2. The Gauss' equation 112 4 . 3 . The n o r m a l f i e l d B 116 4.4. The local r a t e of convergence 118

4.5. Global convergence 125 5. Supplements and Examples 134

5 . 1 . The two dimensional H e l m e r t t r a n s f o r m a t i o n 134 5.2. Orthogonal p r o j e c t i o n onto a ruled surface ' 139 5.3. The t w o dimensional S y m m e t r i c H e l m e r t t r a n s f o r m a t i o n 141 5.4. The t w o dimensional Symmetric H e l m e r t t r a n s f o r m a t i o n w i t h a n o n - t r i v i a l

r o t a t i o n a l invariant covariance s t r u c t u r e 145 5.5. The three dimensional H e l m e r t t r a n s f o r m a t i o n and its s y m m e t r i c a l

generalization 148

5.6. The extrinsic curvatures estimated 156

5.7. Some t w o dimensional networks 163 6. Some S t a t i s t i c a l Considerations 166

7. Epilogue 170

(9)

I. I N T R O D U C T I O N

This p u b l i c a t i o n has the i n t e n t i o n to give a c o n t r i b u t i o n to the theory of geodetic adjustment. The t w o main topics discussed are

1 ° The problem of inverse linear mapping and

2 ° The problem of non-linear adjustment

In our discussion of these t w o problems there is a strong emphasis on geometric thinking as a means of visualizing and thereby improving our understanding of methods of adjustment. I t is namely our belief t h a t a geometric approach to adjustment renders a more general and simpler t r e a t m e n t of various aspects of adjustment theory possible. So is i t possible to carry through quite rigorous trains of reasoning in g e o m e t r i c a l terms w i t h o u t t r a n s l a t i n g them into algebra. This gives a considerable economy both in thought and in c o m m u n i c a t i o n of thought. Also does i t enable us to recognize and understand more easily the basic notions and essential concepts i n v o l v e d . And most i m p o r t a n t , perhaps, is the f a c t t h a t our g e o m e t r i c a l imagery in two and three dimensions suggests results for more dimensions and o f f e r s us a p o w e r f u l t o o l of inductive and creative reasoning. A t the same t i m e , when precise m a t h e m a t i c a l reasoning is required i t w i l l be carried out in terms of the theory of f i n i t e dimensional vector spaces. This theory may be regarded as a precise m a t h e m a t i c a l framework underlying the heuristic patterns of g e o m e t r i c thought.

In Geodesy i t is very common to use g e o m e t r i c reasoning. In f a c t , geodesy b e n e f i t e d considerably f r o m the development of the study of d i f f e r e n t i a l geometry which was begun very early in history. P r a c t i c a l tasks in cartography and geodesy caused and influenced the c r e a t i o n of the classical theory of surfaces (Gauss, 1827; H e l m e r t , 1880). And d i f f e r e n t i a l geometry can now be said to constitute an essential p a r t of the foundation of both m a t h e m a t i c a l and physical geodesy (Marussi, 1952; H o t i n e , 1969; G r a f a r e n d , 1973).

But i t was not only in the development of geodetic models t h a t geometry played such a p i v o t a l röle. Also in geodetic adjustment theory, adjustment was soon considered as a g e o m e t r i c a l problem. Very early ( T i e n s t r a , 1947; 1948; 1956) already advocated the use of the R i c c i - c a l c u l u s in adjustment t h e o r y . I t p e r m i t s a consistent g e o m e t r i z a t i o n of the adjustment of c o r r e l a t e d observations. His approach was l a t e r f o l l o w e d by (Baarda, 1967 a,b; 1969), (Kooimans, 1958) and many others.

More r e c e n t l y we witness a renewed i n t e r e s t in the geometrization of adjustment theory. See e.g. (Vanicek, 1979), (Eeg, 1982), (Meissl, 1982), (Blais, 1983) or (Blaha, 1984). The incentive to this re­ newed i n t e r e s t is probably due to the i n t r o d u c t i o n into geodesy of the modern theory of H i l b e r t spaces w i t h kernel functions ( K r a r u p , 1969). As ( M o r i t z , 1979) has put i t r a t h e r plainly, this theory can be seen as an i n f i n i t e l y dimensional generalization of Tienstra's theory of c o r r e l a t e d observations in its g e o m e t r i c a l i n t e r p r e t a t i o n .

Probably the best m o t i v a t i o n for t a k i n g a geometric standpoint in discussing adjustment problems in linear models is given by the f o l l o w i n g discussion which emphasizes the g e o m e t r i c interplay between

(10)

best linear unbiased estimation and least-squares e s t i m a t i o n :

L e t y be a random vector in the m-dimensional Euclidean space M w i t h m e t r i c tensor { . , . " ) • We assume t h a t y has an expected value y e M , i.e.,

E{y} = y e M, (1.1)

where E { . } is the m a t h e m a t i c a l expectation operator, and that y has a covariance map

Q : M* + M , defined by Q_ 1y1 = ( y , , . > V y . e M . (1.2)

y y 1 x 1 'M 1

The linear vector space M * denotes the dual space of M and is defined as the set of a l l real-valued (homogeneous) linear functions defined on M . Thus each y e M is a linear f u n c t i o n

y : M ■*■ IR . Instead of w r i t i n g y ( y . ) we w i l l use a more s y m m e t r i c f o r m u l a t i o n , by

* .

considering y ( y1) as a bilinear f u n c t i o n in the two variables y and y-^. This bilinear f u n c t i o n is denoted by ( . , . ) : M x M ■* IR and is defined by ( y , y , ) = y ( y , ) V y e M , y , e M . The f u n c t i o n ( . , . ) is called the duality pairing of M* and M i n t o l R .

We define a linear model as

y e N c M , Q , (1.3)

where W is a linear manifold in Al. A linear m a n i f o l d can best be viewed as a translated subspace. We w i l l assume that W = { y . } + U , where y-i is a f i x e d vector of M and U is an n-dimensional proper subspace of M.

The problem of linear e s t i m a t i o n can now be f o r m u l a t e d as: given an observation ys on the random vector y, its covariance map Qy and the linear m a n i f o l d M, e s t i m a t e the position of y i n N c M . If we r e s t r i c t ourselves t o Best Linear Unbiased E s t i m a t i o n (BLUE), then the problem of linear estimation can be f o r m u l a t e d dually as: given an y e M , f i n d a e IR and y e M such t h a t

s« * * ~

the inhomogeneous linear f u n c t i o n h ( y ) = a + ( y , y ) is a BLUE's e s t i m a t o r of ( y , y ) . The

* ~

s

f u n c t i o n h(y) is said to be a BLUE's e s t i m a t o r of ( y , y ) i f , s

1 ° h(y) is a linear unbiased e s t i m a t o r of ( y , y ) , i.e., i f E { h ( y ) } = ( y * , y ) , V y e N , S

and (1.4) 2 ° h(y) is best, i.e.,

Variance { h ( y ) } <_ Variance { g ( y ) } for all linear unbiased

estimators g ( y ) = a + ( y , y ) , a e IR, y e M , of ( y , y ) .

s

From (1.4.1°) follows that

(11)

a = ( y - y » y ) > V y e N s

a = ( y - y , y , ) f o r some y e M and ( y - y , U ) = 0 , (1.5)

since M

The set of y E M f o r which ( y , U) = 0 , f o r m s a subspace of M . I t is c a l l e d the annihilator of ü c II and is denoted by (J c M , i.e. ( U , (J) = 0 . This gives f o r (1.5),

* A *

a = ( y - y , y , ) for some y , e N, and y - y e U .

s i 1 s

From (1.4.2°) follows with (1.6) that y e { y } + U must satisfy

(1.6)

( y , Q y ) < ( y * , Q y * ) , V y* e { y * } + Uu .

y y s

(1.7)

I f we now define the dual m e t r i c of M* by pulling t h e m e t r i c of M back by Q , i.e.,

<y . y > „ = < Qvy >Qyy > v y , y e M ,

JK*

y y

M

A x X i O

i t f o l l o w s t h a t y e { y } + U must satisfy

<y >y >

MJt

< <y .y >

M

, v

y e

{ y

s

}

+

u .

(1.8) G e o m e t r i c a l l y this problem can be seen as the problem of finding t h a t point y in { y } + U which has least distance to the origin of M*. And i t w i l l be i n t u i t i v e l y clear t h a t y is found by orthogonally p r o j e c t i n g y onto the orthogonal complement ( U ) of U° (see f i g u r e 1).

f i g u r e 1

N o w , before we characterize the map w h i c h maps y into y , l e t us f i r s t present some generalities on linear maps.

(12)

L e t M and M be t w o linear vectorspaces of dimensions n and m respectively, and l e t A : N -+- M be a linear map between t h e m . Then we define the image of II c N under A as

A Ü = { y e M | y = A x for some x e U } . (1.9)

The inverse image of V c M under A is defined as

A "1 ( 1 / ) = { X E N I A x e l / } . (1.10)

In the special case t h a t U = W , the image of U under A is called the range space R ( A ) of A . And the inverse image of { 0} e M under A is called the nullspace N a ( A ) of A. I t is easily v e r i f i e d t h a t i f V and U are linear subspaces of M and N r e s p e c t i v e l y , so are A U and A ( V ) .

A linear map A : W -»■ M is injective or one-to-one if f o r every x1 , x e W , x ^ x „ implies t h a t A x , / A Xy. The map A is surjective or onto i f A N = M . And A is called bijective or a b i j e c t i o n if A is both i n j e c t i v e and s u r j e c t i v e .

W i t h the linear map A : N -»■ M and the dual vector (or 1-form) y e M i t follows t h a t the x x x composition y o A is a linear f u n c t i o n which maps W i n t o |R, i.e. y o A e W . Since the map

x x x x

A assigns the 1 - f o r m y o A e W t o y E M we see that the map A induces another linear map, A * say, w h i c h maps M* into N * . This map A * is c a l l e d the dual map t o A and is defined as

X X X

A y = y o A . W i t h the duality p a i r i n g i t is easily v e r i f i e d t h a t

(A*y*,x) = ( y * , A x ) . (1.11)

A n i m p o r t a n t consequence of this b i l i n e a r i d e n t i t y is t h a t f o r a non-empty inverse image of subspace 1/ c M under A , we have the duality r e l a t i o n

( A

_ 1

( l / ) )

0

= A*(l/°) . (1.12)

N o t e t h a t here the four concepts of i m a g e , inverse i m a g e , a n n i h i l a t i o n and d u a l i t y come together i n one f o r m u l a . For the special case t h a t 1/= { 0} the r e l a t i o n reduces t o N u ( A ) = R ( A ) .

Maps t h a t play an i m p o r t a n t role in l i n e a r e s t i m a t i o n are t h e so-called p r o j e c t o r maps. Assume t h a t the subspaces U and V of N are c o m p l e m e n t a r y , i.e. W = 1/ ffl f , w i t h "©" denoting the d i r e c t sum. Then for x e W we have the unique decomposition x = x + x w i t h x e I I , x „ e V . We can now define a linear map P : N -»- N through

P x = x

with x = x + x , x e U , x e V and N= H e 1/

(1.13)

This map is called the p r o j e c t o r which projects onto U and along V. I t is denoted by P (see f i g u r e 2).

(13)

f i g u r e 2

I f P p r o j e c t s onto (J and along V then"I - P, w i t h I the i d e n t i t y map, projects onto 1/ and along Ü. Thus

I - P = P

u,v v,u

(1.14)

For t h e i r images and inverse images we have

V i /

N

=

u

>

p

w™ -

v

'

p u , / u ) = w

(I

~

p

u,v

)N=v

'

( i

-

p

ü y ~

1 ( 0 ) = u

-

( I

- v

r V )

(1.15)

I t is easily v e r i f i e d that the dual P* of a p r o j e c t o r P is again a p r o j e c t o r operating on the dual space. For we have w i t h (1.12) and (1.15):

Thus,

U,V

v°,u°

and ( I - P , , „ ) * = P *

U,V V,U = P uO) ( /o (1.16)

F i n a l l y we m e n t i o n t h a t one can check whether a linear m a p is a p r o j e c t o r , by v e r i f y i n g whether the i t e r a t e d operator coincides w i t h the operator i t s e l f (Idempotence).

Now l e t us r e t u r n t o the point.where we l e f t our BLUE's p r o b l e m . We noted t h a t y * could be found by

K O X

orthogonally p r o j e c t i n g y onto ( U ) . Hence, the projector map needed is the one which o -L **

projects onto ( U ) and along (J°, i.e.,

y

(u°)\u°

y s

(1.17)

F r o m (1.6) and (1.17) f o l l o w s then t h a t the linear f u n c t i o n h(y) is the unique BLUE's e s t i m a t o r of ( y " , y ) ^

(14)

h ( y ) = a + ( y , y )

( ( i -

P

, )y , y , ) +

( P

, y , y ) ,

, , , o , l o s i ,,,o,-L o s (U ) ,U ( U ) , ( j

h ( y ) = ( yc> y J + (p „ , „ V e - y - y i ) '

s x

( u

0

)

1

^

0 s 1

where y-i is an a r b i t r a r y element of M .

A p p l i c a t i o n of the d e f i n i t i o n of the dual map gives

h(y) = ( y j . y , ) + ( y j , p" ^ y - y , ) )

And since P = P ( Ü ° )X, Ü0 u.u1 we get h ( y ) = ( y , y , + P . ( y - y . ) ) , s 1 u > ul 1

in which we recognize the least-squares estimate

y = y + p (ys- y i ) ' yT e M ,

(1.18)

(1.19)

which solves the dual problem

<v

y

> v

y

>

M

± < v

y

- v

y

>

M v y e

'

u

»

(1.20)

(see figure 3).

w = {y

x

} + u

(15)

Thus we have recovered the existing duality between BLUE's e s t i m a t i o n and least-squares e s t i m a t i o n . We m i n i m i z e a sum of squares (1.20) and emerge w i t h an o p t i m u m e s t i m a t o r , namely one which m i n i m i z e s another sum of squares (1.8), the variance. F r o m the g e o m e t r i c a l viewpoint this arises simply f r o m the duality between the so-called observation space M and e s t i m a t o r space M*, established by the d u a l i t y pairing ( y , y ) .

The above given result is of course the well known Gauss-Markov t h e o r e m which probabilistically j u s t i f i e s least-squares e s t i m a t i o n in case of linear models.

Observe t h a t the above discussion shows another advantage of g e o m e t r i c reasoning, namely that the language of geometry embodies an element of invariance. That is, geometric reasoning avoids unnecessary reference to p a r t i c u l a r sets of coordinate axes. Concepts such as linear projections and linear manifolds for instance, may be visualized in a coordinate-free or invariant way. A l l results obtained by an invariant approach therefore necessarily apply t o all possible representations of the linear m a n i f o l d M. That is, one could define N by a linear map A f r o m the parameter space N into the observation space M (in Tienstra's terminology this would be "standard problem II") or i m p l i c i t l y by a set of linear constraints ("standard problem I"). Even a m i x e d representation is possible. Consequently, in general we have t h a t if a coordinate representation is needed one can take the one which seems t o be the most appropriate. That i s , the use of a convenient basis rather than a basis f i x e d at the outset is a good i l l u s t r a t i o n of the f a c t t h a t c o o r d i n a t e - f r e e does not mean freedom f r o m coordinates so much as i t means freedom to choose the appropriate coordinates f o r the task at hand. With respect t o our f i r s t t o p i c , note t h a t a direct consequence of the c o o r d i n a t e - f r e e f o r m u l a t i o n is t h a t the d i f f i c u l t i e s are evaded which might possibly occur when a n o n - i n j e c t i v e linear map A is used to specify the linear m o d e l . This indicates that t h e actual problem of inverse linear mapping should not be considered to c o n s t i t u t e an essential part o f the problem of adjustment. That is, in the context of BLUE's e s t i m a t i o n i t is insignificant which pre-image of y under A is t a k e n . This viewpoint seems, however, s t i l l not generally agreed upon. The usually merely algebraic approach taken o f t e n makes one o m i t to distinguish between the actual adjustment problem and the actual inverse mapping p r o b l e m . As a consequence, published studies in the geodetic l i t e r a t u r e dealing w i t h the theory of inverse linear mapping surpass in our view often the essential concepts involved. We have therefore t r i e d to present an a l t e r n a t i v e approach; one t h a t is based on the idea t h a t once the causes of the general inverse mapping problem are classified, also the problem of inverse linear mapping itself is solved. Our approach s t a r t s f r o m the i d e n t i f i c a t i o n of the basic subspaces involved and next shows t h a t the problem of inverse linear mapping can be reduced to a few essentials.

As t o our second t o p i c , t h a t of non-linear a d j u s t m e n t , note t h a t the Gauss-Markov theorem f o r m u l a t e s a l o t of " i f s " before i t states why least-squares should be used: i f the mean y lies in a linear m a n i f o l d N , i f the covariance map is known to be Q , i f we are . w i l l i n g t o confine ourselves to e s t i m a t e s t h a t are unbiased in the mean and i f w e are w i l l i n g t o apply the q u a l i t y c r i t e r i u m of m i n i m u m variance, then the best e s t i m a t e is to be had by least-squares. These are a l o t of " i f s " and i t would be interesting t o ask "and i f n o t ? " . For all " i f s " this would become a c o m p l i c a t e d task indeed. But i t w i l l be clear t h a t the f i r s t " i f " which called f o r m a n i f o l d N to be linear, already breaks down in case of non-linear models. F u r t h e r m o r e , in non-linear models a r e s t r i c t i o n to linear estimators does not seem reasonable anymore, because any estimator of 7 must be a mapping f r o m M into

(16)

M, which w i l l be curved in general. Hence, s t r i c t l y speaking the Gauss-Markov t h e o r e m does not apply anymore in the non-linear case. A n d consequently one might question whether the excessive use of the theorem in the geodetic l i t e r a t u r e f o r t h e o r e t i c a l developments is j u s t i f i a b l e in all cases. Since almost all f u n c t i o n a l relations i n our geodetic models are non-linear, one may be surprised to realize how l i t t l e a t t e n t i o n the c o m p l i c a t e d problem area of non-linear geodesic adjustment has received. One has used and is s t i l l predominantly using the ideas, concepts and results f r o m the theory of linear e s t i m a t i o n . Of course, one may argue t h a t probably most non-linear models are only moderately non-linear and thus p e r m i t the use of a linear(ized) model. This is t r u e . However, i t does in no way release us f r o m the o b l i g a t i o n of really proving whether a linear(ized) model is s u f f i c i e n t as approximation. What we need t h e r e f o r e is knowledge of how non-linearity manifests itself at the various stages of adjustment. Here w e agree w i t h ( K u b i k , 1967), who points out t h a t a general t h e o r e t i c a l and p r a c t i c a l i n v e s t i g a t i o n into the various aspects of non-linear adjustment is s t i l l lacking.

In the geodetic l i t e r a t u r e we only know of a f e w publications in which non-linear adjustment problems are discussed. In the papers by (Pope, 1972), (Stark and M i k h a i l , 1973), (Pope, 1974) and (Celmins, 1981; 1982) some p i t f a l l s t o be avoided when applying variable transformations or when updating and re-evaluating f u n c t i o n values in an i t e r a t i o n procedure, are discussed. And in ( K u b i k , 1967) and (Kelley and Thompson, 1978) a brief r e v i e w is given of some iteration methods. A n investigation i n t o the various e f f e c t s of n o n - l i n e a r i t y was started in (Baarda, 1967 a,b), ( A l b e r d a , 1969), (Grafarend, 1970) and more recently in ( K r a r u p , 1982a). (Alberda, 1969) discusses the e f f e c t of n o n - l i n e a r i t y on the misclosures of condition equations when a linear least-squares estimator is used and i l l u s t r a t e s the things mentioned w i t h a q u a d r i l a t e r a l . A s i m i l a r discussion can be found in (Baarda, 1967b), where also an expression is derived f o r the bias in the e s t i m a t o r s . (Grafarend, 1970) discusses a case where the c i r c u l a r normal d i s t r i b u t i o n should replace the ordinary normal d i s t r i b u t i o n . And f i n a l l y (Baarda, 1967a) and ( K r a r u p , 1982a) exemplify t h e e f f e c t of n o n - l i n e a r i t y w i t h the aid of a c i r c u l a r model. Although we accentuate some d i f f e r e n t and new aspects of non-linear adjustment, our c o n t r i b u t i o n t o the problem of non-linear geodesic adjustment should be seen as a c o n t i n u a t i o n of the work done by the above mentioned authors. We must admit though t h a t unfortunately we do not have a c u t and dried answer to all questions. We do hope, however, t h a t our discussion of non-linear adjustment w i l l make one more susceptible to the i n t r i n s i c d i f f i c u l t i e s of non-linear adjustment and t h a t the problem w i l l receive more a t t e n t i o n than i t has received h i t h e r t o .

The plan of this publication is the f o l l o w i n g :

In chapter II we consider the g e o m e t r y of inverse linear mapping. We w i l l show t h a t every inverse B of a linear map A can be uniquely c h a r a c t e r i z e d through the choice of three subspaces S , C and V. F u r t h e r m o r e , each of these t h r e e subspaces has an i n t e r e s t i n g i n t e r p r e t a t i o n of its o w n . In order t o f a c i l i t a t e reference the basic results are summarized in table 1 .

In chapter III we s t a r t by showing t h e consequences of the inverse mapping problem for 2 and 3-dimensional geodetic n e t w o r k s . This p a r t is easy-going since the planar case has to some e x t e n t already been treated elsewhere in the geodetic l i t e r a t u r e . The second p a r t of this chapter presents a discussion on the in geodesy almost omnipresent problem of connecting geodetic n e t w o r k s .

F i n a l l y , chapter IV makes a s t a r t w i t h the problem of non-linear adjustment. A d i f f e r e n t i a l geometric approach is used throughout. We discuss Gauss' method in some detail and show how the e x t r i n s i c

(17)

curvatures of submanifold N a f f e c t s its local behaviour. A n d amongst other things, we also show how in some cases the geometry of the problem suggests i m p o r t a n t s i m p l i f i c a t i o n s . T y p i c a l examples are our generalizations of the classical H e l m e r t t r a n s f o r m a t i o n .

(18)

0 . G E O M E T R Y OF INVERSE LINEAR MAPPING

1 . The principles

Many problems in physical science involve the estimation or computation of a number of unknown parameters which bear a linear (or linearized) relationship t o a set of e x p e r i m e n t a l d a t a . The data may be contaminated by (systematic or random) errors, i n s u f f i c i e n t to determine the unknowns, redundant, or all of the above and consequently, questions as existence, uniqueness, s t a b i l i t y , approximation and the physical description of the set of solutions are a l l of i n t e r e s t .

In econometrics for instance (see e.g. Neeleman, 1973) the problem of i n s u f f i c i e n t data is discussed under the heading of " m u l t i - c o l l i n e a r i t y " and t h e consequent lack of d e t e r m i n a b i l i t y of the parameters f r o m the observations is known there as the " i d e n t i f i c a t i o n p r o b l e m " . And in geophysics, where the physical i n t e r p r e t a t i o n of an anomalous g r a v i t a t i o n a l f i e l d involves deduction of the mass d i s t r i b u t i o n which produces the anomalous f i e l d , t h e r e is a fundamental non-uniqueness in p o t e n t i a l field inversion, such t h a t , for instance, even c o m p l e t e , p e r f e c t data on the earth's surface cannot distinguish between t w o buried spherical density anomalies having the same anomalous mass but d i f f e r e n t radii (see e.g. Backus and G i l b e r t , 1968).

Also in geodesy s i m i l a r problems can be r e c o g n i z e d . The f a c t t h a t the data are generally only measured at discrete points, leaves one in physical geodesy for instance w i t h the problem of determining a continuous unknown f u n c t i o n f r o m a f i n i t e set of data (see e.g. R u m m e l and Teunissen, 1982). Also the non-uniqueness in coordinate-system definitions makes i t s e l f f e l t when i d e n t i f y i n g , i n t e r p r e t i n g , qualifying and comparing results f r o m geodetic network adjustments (see e.g. Baarda, 1973). The problem of connecting geodetic n e t w o r k s , which w i l l be studied in chapter three, is a prime example in this respect.

A l l the above mentioned problems are very s i m i l a r and even f o r m a l l y equivalent, i f they are described in terms of a possible inconsistent and under-determined linear system

y = Ax , (1.1)

where A is a linear map f r o m the n-dimensional parameter space N into the m-dimensional observation space M .

The f i r s t question t h a t arises is whether a solution t o (1.1) exists at a l l , i.e. whether the given vector y is an element of the range space R(A), y e R(A). I f this is the case we c a l l the system consistent. The system is c e r t a i n l y consistent if the rank of A , which is defined as rank A = d i m . R(A) = r, equals the dimension of M. In this case namely the range space R(A) equals M and t h e r e f o r e y e M= R(A). In a l l other cases, r < d i m . M , consistency is no longer guaranteed, since i t would be a mere coincidence i f the given vector y e M lies in the smaller dimensioned subspace R ( A ) c M . Consistency is thus guaranteed if y eR(A) = N u ( A * ) ° .

(19)

n o t , i.e. whether the vector y contains enough i n f o r m a t i o n to d e t e r m i n e the vector x. I f not, the system is said to be under-determined. The s o l u t i o n is only unique i f the rank of A equals the dimension of its domain space N , i.e. i f r = d i m . N . To see t h i s , assume Xi and x2 ^ xi t 0 D e two solutions t o (1.1). Then Ax-^ = A x2 or A ( x j - x2) = 0 m u s t hold. But this means that r < d i m . W.

F r o m the above considerations follows t h a t i t is the r e l a t i o n of r = d i m . R ( A ) t o m = d i m . M and n = d i m . N , which decides on t h e general c h a r a c t e r of a linear system. In case r = m = n, we know t h a t a unique inverse map B of t h e b i j e c t i v e map A e x i s t s , w i t h the properties

B A = I and A B = I . (1.2)

For n o n - b i j e c t i v e maps A , however, in general no map B can be found f o r which (1.2) holds. For such maps t h e r e f o r e a more relaxed type of inverse p r o p e r t y is used. Guided by the idea t h a t an inverse­ like map B should solve any consistent system , t h a t is, map B should furnish f o r each y e R ( A ) , some solution x = By such that y = ABy, one obtains as defining property o f B

A B A = A . (1.3)

Maps B : M -*■ W , w h i c h satisfy this relaxed t y p e of inverse c o n d i t i o n are now called generalized inverses of A .

In the geodetic l i t e r a t u r e there is an overwhelming list of papers w h i c h deal w i t h the theory of generalized inverses (see e.g. Teunissen, 1984a and the references c i t e d i n i t ) . I t more or less s t a r t e d w i t h the pioneering work of Bjerhammar (Bjerhammar, 1951) ,who defined a generalized inverse for rectangular m a t r i c e s . And a f t e r the publication of Penrose (Penrose, 1955) the l i t e r a t u r e of generalized inverses has p r o l i f e r a t e d rapidly ever since.

Many of the published studies, however, follow a r a t h e r algebraic approach making use of anonymous inverses w h i c h merely produce a solution to the l i n e a r system under consideration. As a consequence of this anonymity the essential concepts involved i n the problem of inverse linear mapping often stay concealed. Sometimes i t even seems t h a t algebraic manipulations and the stacking of theorems, lemma's, c o r o l l a r i e s , and what have you, are p r e f e r r e d to a clear g e o m e t r i c i n t e r p r e t a t i o n of what r e a l l y is involved in the problem of inverse linear m a p p i n g .

In this chapter we t h e r e f o r e approach the problem of inverse mapping f r o m a d i f f e r e n t viewpoint. Our approach is based on the idea that once the causes of the inverse mapping problem are classified, also the problem of inverse mapping i t s e l f is solved. The f o l l o w i n g r e m i n d e r may be h e l p f u l . We know t h a t a map is uniquely determined once its basis values are given. B u t as the theorem of the next section shows, condition (1.3) does not f u l l y specify all the basis values o f the map B. Hence its non-uniqueness. This means, however, that analogously to the case where a basis of a subspace can be extended in many ways t o a basis which generates the whole space, various maps satisfying (1.3) can be found by specifying t h e i r f a i l i n g basis values.

To give a p i c t o r i a l explanation of our procedure, observe t h a t in the general case of rank A = r < min.(m,n), the nullspace Ma (A) c N and range space R(A) c M both are proper subspaces. That is,

(20)

they do not coincide w i t h respectively N and M (see figure 4 ) .

N : parameter space M : observation space

d im. Wu(A) = n-rank A

d i m . R ( A ) = rank A

f i g u r e 4

Now, just like there are many ways in which a basis of a subspace can be extended to a basis which generates the whole space, there are many ways to extend the subspaces Nu.(A) c M and

R ( A ) c M to f i l l W and M respectively .(see f i g u r e 5).

s

* \

'is

\

I s

\ I '

\

/ /

/

ci/ M / \ / / o

\

\

/

/ /

\ Is

Nu(A) \l/ f i g u r e 5

/

R(A)

Let us choose t w o a r b i t r a r y subspaces, say S c W a n d C c M > such t h a t the d i r e c t sums 5 e Ma(A) and R ( A ) s C coincide w i t h Mand M (see f i g u r e 6).

W : parameter space M : observation space

dim. S = rank A dim. Wu(A) = n-rank A1 d i m . R(A) = rank A d i m . C = m-rank A M = 5 e Nu(A) M = R (A) e C

(21)

The c o m p l e m e n t a r i t y of S and N u ( A ) then i m p l i e s that the subspace S has a dimension which equals t h a t of R ( A ) , i.e. d i m . 5 = d i m . R ( A ) . But this means t h a t map A , when r e s t r i c t e d t o S ,

\

is b i j e c t i v e . There exist therefore linear m a p s B : M •* W w h i c h , when r e s t r i c t e d to R(A),

become the inverse of A . (see figure 7):

B, A , ' R ( A ) 'S and A , B,

's

' R ( A ) (1.4) d i m . S = rank A

S c ( l

dim.R(A) = rank A R(A) c M

The inverse-like properties (1.4) are thus the ones which replace (1.2) in the general case of rank A = r < min.(m,n). The second equation of (1.4) can be rephrased as A B A = A , and t h e r e f o r e constitutes the classical d e f i n i t i o n of a generalized inverse o f A . The f i r s t equation of (1.4) states t h a t

B A x V x e S (1.5)

In the next section we w i l l prove what is already i n t u i t i v e l y c l e a r , namely t h a t equation (1.5) is equivalent to the classical d e f i n i t i o n (1.3), and therefore (1.5) can just as w e l l be used as a d e f i n i t i o n of a generalized inverse. I n f a c t , (1.5) has t h e advantage over (1.3) t h a t i t clearly shows why generalized inverses are not unique. The image of 5 under A is namely only a proper subspace of M. To f i n d a p a r t i c u l a r map B w h i c h satisfies (1.5), we t h e r e f o r e need t o specify its f a i l i n g basis values.

2. Arbitrary inverses uniquely characterized

In this section we w i l l f o l l o w our lead t h a t a map is only uniquely d e t e r m i n e d once its basis values are c o m p l e t e l y s p e c i f i e d .

As said, the usual way to define generalized inverses B of A is by r e q u i r i n g

A B A = A . (2.1)

This expression, however, is not a very i l l u m i n a t i n g one, since i t does not t e l l us what generalized inverses of A look like or how they can be computed. We w i l l t h e r e f o r e r e w r i t e expression (2.1) in such 'a f o r m t h a t i t becomes r e l a t i v e l y easy t o understand the mapping c h a r a c t e r i s t i c s of B. This is done by the f o l l o w i n g t h e o r e m :

(22)

Theorem

l O A B A = A «=> For some unique S c M ,

c o m p l e m e n t a r y to Mu.(A),

B A x = x , V x e S , holds.

A B A = A *-* A B y = y , V y e R ( A ) .

Proof o f 1 °

(-►) From p r e m u l t i p l y i n g A B A = A w i t h B f o l l o w s B A B A = BA. The map B A is thus idempotent and t h e r e f o r e a p r o j e c t o r f r o m N into W.

F r o m A B A = A also follows t h a t Nu(BA) = Mu(A).

To see t h i s , consider x e Nu(BA). Then B A x = 0 or A B A x = A x = 0, which means t h a t x e Mu(A). Thus Nu(BA) c Nu(A). Conversely, i f x e Nu(A), then A x = 0 or B A x = 0, w h i c h means x e Mu(BA). Thus we also have N u ( A ) c N u ( B A ) . Hence Nu.(BA) = N u ( A ) . Now l e t us denote t h e subspace R ( B A ) by S, i.e. R(BA) = S . The p r o j e c t o r property of B A then implies t h a t B A x = x , V x e S . And i t also implies t h a t

M = R ( B A ) e N u ( B A ) . W i t h R ( B A ) = S and Nu(BA) = Mu(A) we t h e r e f o r e have t h a t N = S e Ma ( A ) . Hence the c o m p l e m e n t a r i t y of S and Nu(A).

( * ) F r o m N = S m Nu(A) follows the c o m p l e m e n t a r i t y of 5 and Nu(A). We can t h e r e f o r e c o n s t r u c t the p r o j e c t o r P<j uutn) = I - P M U . ( A ) S • w't n t h i s Pr oJe c t o r w e c a n n o w replace

B A x = x , Vx e S ,

by

B A PS , N u ( A )x = PS , M a ( A )x' V x e N *

And since A P5 j N a ( A ) = A ( I - PN u ( A ) > s> = A , we get

B A PS, N a ( A )x = B A x = Ps > W u ( A )x , Vx e N ,

or f i n a l l y , a f t e r p r e m u l t i p l i c a t i o n w i t h A ,

A B A x = A x , V x e N .

Proof o f 2 °

(23)

The above theorem thus makes precise what already was made i n t u i t i v e l y clear in section one. There are now two i m p o r t a n t points which are put f o r w a r d by the t h e o r e m . F i r s t of a l l , i t states t h a t every linear map B : M "•" M which satisfies

B A x = x , V x e S , (2.2)

w i t h N = S a Nu(A), is a generalized inverse of A . And since

R ( A ) = A M = { y e M I y = A x f o r some x e M }

= l y £ M I y = A x f o r some x = x + x , x £ S , x e N u . ( A ) l

1 2 1 2

= { y e M I y = A x f o r some x e S } = A S ,

this implies t h a t a generalized inverse B of A maps the subspace R ( A ) c M onto a subspace S c N c o m p l e m e n t a r y t o Wu(A). Map B therefore determines a one-to-one r e l a t i o n between R(A) and S , and is i n j e c t i v e when r e s t r i c t e d to the subspace R(A).

A second point t h a t should be noted about the theorem is t h a t i t gives a way of constructing a r b i t r a r y generalized inverses of A . To see t h i s , consider expression (2.2). Since R(A) = A N = A S , expression (2.2) only specifies how B maps a subspace, namely R(A), of M . Condition (2.2) is t h e r e f o r e not s u f f i c i e n t f o r d e t e r m i n i n g map B uniquely. Thus in order to be able t o compute a p a r t i c u l a r generalized inverse of A one also needs to specify how B maps a basis of a subspace complementary to R(A). L e t us denote such a subspace by C c M , i.e. M = R ( A ) e C Then if e:, i = l , . . . , m ,

-Li * ) and e n , a= l , . . . , n , are bases of M and W, and C e . , p = l , . . . , ( m - r ) , ' forms a basis of

C , a p a r t i c u l a r generalized inverse B of A is uniquely c h a r a c t e r i z e d by specifying in addition to (2.2) how i t maps C°, say:

l i «

B C e . = D e , i = l , . . . , m ; a = l , . . . , n ; p = l , . . . , ( m - r ) (2.3)

p i p a

(Einstein's s u m m a t i o n convention). a

Thus if V denotes the subspace spanned by D e , we have,

P a

B C ° = V c N , w i t h M = R ( A ) e C° . (2.4)

A l t h o u g h the choice f o r V c M is completely f r e e , we w i l l show t h a t one can impose an e x t r a c o n d i t i o n , namely p c N u ( A ) , without a f f e c t i n g g e n e r a l i t y . N o t e t h a t point 2 ° of the theorem says t h a t A B is a p r o j e c t o r , projecting onto the rangespace R(A) and along a space, say C , c o m p l e m e n t a r y to R ( A ) . With (2.4) we t h e r e f o r e get t h a t

-L i x) The kernel l e t t e r " C " expresses the f a c t t h a t C <5. . CJ = 0 , i,j = l , . . . , m ; p = l , . . . , ( m - r ) ;

X t P ' J Q q = l,...,r, or in m a t r i x notation t h a t ( C ) C = O

(24)

R ( A ) , C = o C = A P .

But this means t h a t if B is characterized by mapping C° onto V, there exists another subspace of M complementary to R(A) which is mapped by B to a subspace of Mu(A). We can t h e r e f o r e just as w e l l s t a r t c h a r a c t e r i z i n g a particular generalized inverse B of A by (2.2) and (2.4), but now w i t h the additional condition t h a t V c Mu(A)

Summarizing, we have for the images of t h e two complementary subspaces R ( A ) = A S and C under B: w i t h

!

and B A S = S a n d N = S 9 Nix(A) , M = V c N u ( A ) B C° = V , R ( A ) ffl C °

(2.5)

A f e w things are depicted in figure 8.

N : parameter space M : observation space

d i m . S = rank A d i m . Nu(A) = n-rank A1 d i m . R(A) = rank A d i m . C = m-rank A N = S e Nu (A) V e Wu(A) f i g u r e 8 M = R(A) € C

Our objective of finding a unique r e p r e s e n t a t i o n of an a r b i t r a r y generalized inverse B o f A can now be reached in a very simple way indeed. The only t h i n g we have t o do is t o combine (2.2) and (2.3). I f we take the coordinate expressions of B and A t o be

a i B e = B e and A e = A e ,

i i a a a i

where e , i = l , . . . , m , and e , a = l , . . . , n are bases of M and N, and i f we t a k e as bases of i a

S, Cu and V,

a

±i a

S e , C e and D e , p = l ( m - r ) ; q = l , . . . , r , q a p i P a

(25)

then (2.2) and (2.3) can be expressed as a a i a i g 3 B A S e = S B A e = S A B eD = S eD q a q a j q a i 3 q Ë and

ü x i 3 e

B C e = C B e Q = D e , p i p i P p P or as 3 i a . x i P . P B ( A S . C ) ea = (S . D ) eQ, i a q . p p q . p P which gives in m a t r i x n o t a t i o n B ( A S I C ) = ( S . D ) . nxm mxn n x r m x ( m - r ) n x r n x ( m - r ) (2.6) . ,J->

Now, since the subspaces R(A) = A S and C° are c o m p l e m e n t a r y , the m x m m a t r i x (AS '. C " ) has f u l l rank and is thus i n v e r t i b l e . The unique representation of a p a r t i c u l a r generalized inverse B of A t h e r e f o r e becomes B = ( S . D ) ( A S n x m n x r n x ( m - r ) m x r

c

1

) -

: mx ( m - r ) (2.7)

A more s y m m e t r i c representation is obtained if we substitute the easily v e r i f i e d m a t r i x i d e n t i t y

(AS I C )

f

(C^ASrV

( ( u V c V W ) '

w i t h U° = R ( A ) ° = Nu(A*), into (2.7) ( r e c a l l that C and U are m a t r i x representations of respectively the subspaces C° and U°):

B = S ( C A S ) " c + D ( ( U X ) C 1 ) " (U1)

n x m n x m nxm

(2.8)

W i t h (2.7) or (2.8) we thus have found one expression which covers all t h e generalized inverses of A . F u r t h e r m o r e we have the i m p o r t a n t result t h a t each p a r t i c u l a r generalized inverse of A ,defined through (2.2) and (2.3), is uniquely c h a r a c t e r i z e d by the choices made f o r the subspaces S , c o m p l e m e n t a r y to Mu(A), C ° c o m p l e m e n t a r y to R(A) and V, a subspace of Nu(A).

(26)

In the next two sections we w i l l give the i n t e r p r e t a t i o n associated w i t h the three subspaces 5 , C and V. Also the r e l a t i o n w i t h the p r o b l e m of solving an a r b i t r a r y system of linear equations w i l l become clear then.

3. Injective and surjective maps

From t h e theorem of the previous section we learnt that the inverse-like properties

B A = I and A B R ( A ) S S R ( A )

= I (3.1)

hold f o r any a r b i t r a r y generalized inverse B of A . That is, the maps B A and A B behave like i d e n t i t y maps on respectively the subspaces S c M and R(A) c M . Thus in the special case t h a t rank A = r = n, t h e generalized inverses of A become l e f t - i n v e r s e s , since then B A = I. And s i m i l a r l y they become right-inverses if rank A = r = m , because then A B = I holds.

In order to give an i n t e r p r e t a t i o n of t h e subspace S c N , l e t us now f i r s t c o n c e n t r a t e on the special case t h a t rank A = r = m.

If rank A = r = m then R(A) = M , w h i c h implies t h a t the subspaces c o m p l e m e n t a r y to R(A) reduce to C° = { o } . With (2.5) we then also have t h a t V - {o} (see figure 9). The general expression of right-inverses therefore readily f o l l o w s f r o m (2.8) as

B = n x m S nxrr ( A S ) l mxm 1 , w i t h W = Ü ffl Nu(A) (3.2)

N: parameter space M : observation space A dim. S = r dim.Nu(A) = n-r N = S e Nu. (A) figure 9 dim.R(A) = r = m M = R(A)

(27)

Thus the only subspaces which play a role in the inverses of surjective maps are the subspaces S c o m p l e m e n t a r y to Mu(A).

In order t o f i n d out how (3.2) is r e l a t e d to the problem o f solving a system of linear equations

y = A x ,

mx 1 mx n n x 1 (3.3)

f o r which m a t r i x A has f u l l row rank m, f i r s t observe t h a t the system is consistent f o r all m m x n

y e R . W i t h a p a r t i c u l a r generalized inverse (right-inverse), say B , of A , and

mi i n xm mx n

1/ = M u ( A ) , the solution set of (3.3), which a c t u a l l y represents a linear m a n i f o l d in N, can t h e r e f o r e be w r i t t e n as

{ x } = { x l x = B y + , V . , a . , } . n x l n x l n x l n x l n x ( n - r ) ( n - r ) x l

By choosing a , say a : = a , , we get thus as a p a r t i c u l a r solution x , e { x } :

x = By + V a ,

1 1 n x l n x l n x l

(3.4)

where a-i so to say contributes the extra i n f o r m a t i o n , which is lacking in y, to determine x ^ . Since R(B) = S , i t follows f r o m (3.4) t h a t

I t 1 t J_, c a l l

(S ) x = ( ( S ) V ] a = c! '

( n - r ) x n n x l ( n - r ) x ( n - r ) ( n - r ) x l ( n - r ) x l

(3.5)

But this means t h a t , since a , or c , contributes the extra i n f o r m a t i o n which is lacking in y to determine x-i, equation (3.5) and (3.3) together s u f f i c e t o determine x , uniquely. Or in other words, the solution of the uniquely solvable system

1 J A 1 t (S ) ( m + n - r ) x l ( m + n - r ) x n n x l (3.6) is precisely x-^: A 1 t (S ) . n x l n x ( m + n - r ) ( m + n - r ) with 1/ = Mu(A) - 1 . 1 I t 1 , - 1 , ( S ( A S ) . V ( ( S ) V ) ) n x m c v 1 ' n x ( n - r ) ( m + n - r ) x l (3.7)

(28)

need t o extend the system of linear equations f r o m (3.3) to (3.6) by introducing the additional equations c = (S ) x , so t h a t the extended m a t r i x

A

(sV

( m + n - r ) x n

becomes square and regular. F u t h e r m o r e the corresponding r i g h t - i n v e r s e of A is obtainable f r o m the inverse of this extended m a t r i x .

Let us now consider the case rank A = r = n. Then all generalized inverses of A become l e f t - i n v e r s e s . Because of the i n j e c t i v i t y of A we have t h a t its nuUspace reduces to N u ( A ) = { o } . But this implies t h a t S =N and V = { o } , since P c Ma ( A ) . (see figure 10).

N: parameter space M : observation space

d im. S = n

im. R(A) = rank A = r = n

dim,

,<?

M = S

figure 10

M= R(A) e C

For the dual map A : M ■*■ N we t h e r e f o r e have a s i t u a t i o n which is comparable t o the one sketched in figure 9 (see f i g u r e 11). N o w , t a k i n g advantage of our result (3.2), we f i n d the general matrix-representation of an a r b i t r a r y generalized inverse B* of A * t o be

t , t - 1 B = C ( A C ) . mxn m x n n x n

M : e s t i m a t o r space N : co-parameter space

dim. Nu(A ) = m-r

M * = C e Nu(A*)

figure 1 1

(29)

The general expression of left-inverses therefore readily f o l l o w s as B = n x m t ( C A ) n x n - 1 t C nxm W l t h M = K ( A ) 9 0 C (3.8)

Thus dual to our result (3.2), we f i n d t h a t the only subspaces which play a role in the inverses of i n j e c t i v e maps, are the subspaces C° complementary to R(A).

W i t h the established duality relations i t now also becomes easy to see how (3.8) is related t o the p r o b l e m of solving a generally inconsistent but otherwise uniquely determined system of linear equations

y = A x , w i t h r a n k A = r = n .

m x l m x n n x l (3.9)

The dual of (3.6) m o d i f i e d to our present situation gives namely

y = ( A . c r )

m x l m x n m x ( m - r )

( m + n - r ) x l

(3.10)

A n d dual to (3.7), the unique solution of (3.10) is given by:

( n + m - r ) x l ( A :CX)'1y = ( n + m - r ) xm m x l w i t h U = Nu.(A ) , t - 1 t ( C A) C

((uVcVW

( n + m - r ) x m y m x l (3.11)

We t h e r e f o r e have recovered the dual rule t h a t in order t o find a p a r t i c u l a r solution to (3.9), we need to e x t e n d the system of linear equations f r o m (3.9) to (3.10) by i n t r o d u c i n g additional unknowns such t h a t the extended m a t r i x

( A . CA )

mxn m x ( m - r ) (3.12)

becomes square and regular. F u r t h e r m o r e the corresponding l e f t - i n v e r s e of A is obtainable f r o m the inverse of this extended m a t r i x .

(30)

4 . A r b i t r a r y systems of l i n e a r equations and a r b i t r a r y inverses

In t h e previous section we showed t h a t a p a r t i c u l a r solution of an underdetermined but otherwise consistent system of linear equations could be obtained by extending the m a t r i x A r o w w i s e . A n d

mxn

especially the principal röle played by the subspace S c M c o m p l e m e n t a r y to Nu(A) in removing the underdeterminability was demonstrated. S i m i l a r l y we saw how consistency of an inconsistent, but otherwise uniquely determined system of linear equations was restored by extending the m a t r i x

A columnwise. And here the subspace C c M c o m p l e m e n t a r y to R ( A ) played the decisive röle. We also observed a complete duality between these results; f o r the dual of an i n j e c t i v e map is surjective and vice versa.

These results a r e , however, s t i l l not general enough. In p a r t i c u l a r we note t h a t the subspace

V c Na(A) was annihilated as a consequence of the assumed i n j e c t i v i t y and s u r j e c t i v i t y . The

reason f o r this w i l l become clear i f we consider the i n t e r p r e t a t i o n associated w i t h the subspace V . Since S n V = { o } i t f o l l o w s f r o m expression (2.8) t h a t R ( B ) = S e V . With d i m . S = dim R(A) = rank A we t h e r e f o r e have t h a t rank B >_ rank A , w i t h equality i f and only if V - { o } . But this shows why the subspace V gets annihilated in case o f i n j e c t i v e and surjective maps. The l e f t ( r i g h t ) inverses have namely the same rank as the i n j e c t i v e (surjective) maps. From the above i t also becomes clear t h a t the rank of B is c o m p l e t e l y d e t e r m i n e d by the choice made for V. In p a r t i c u l a r B w i l l have m i n i m u m rank if V is chosen t o be V - { o } , and m a x i m u m r a n k , rank B = min.(m,n), if one can choose V such t h a t d i m . V = min.(m,n)-r. N o w to see how the subspace V c Nu(A) gets incorporated in the general case, we consider a system of linear equations

m x l mx n n x 1 A x , w i t h rank A = r < min.(m,n), (4.1) i.e. a system which is possibly inconsistent and underdetermined at the same t i m e . F r o m the r a n k -deficiency of A in (4.1) follows t h a t the unknowns x cannot be determined uniquely, even i f

y £ R ( A ) . Thus the i n f o r m a t i o n contained in y is not s u f f i c i e n t to determine x uniquely. F o l l o w i n g the same approach as before, we can a t once remove this u n d e r d e t e r m i n a b i l i t y by extending (4.1) t o

( m + n - r ) x l

x , w i t h W= S e N u ( A ) ( m + n - r ) x n n x l

(4.2)

' But although the extended m a t r i x of (4.2) has f u l l c o l u m n rank, the system can s t i l l be inconsistent. To remove possible inconsistency we t h e r e f o r e have t o extend the m a t r i x of (4.2) columnwise so t h a t

I the resulting m a t r i x becomes square and regular. Now since M = R ( A ) e C , the f o l l o w i n g

extension is a feasible one:

A

(sV

c

0 w i t h M = R ( A )

(31)

But the most general extension would be A ( S1) ' X (4.3) ( m + n - r ) x l ( m + n - r ) x ( m + n - r ) ( n r w - n - r ) x l w i t h M = S s> Nu(A) , M = R ( A ) a> C solution of (4.3) is then given by:

and X being a r b i t r a r y . The unique ( n - r ) x ( m - r ) A C

1 t

(S

±

)

X

- 1

t - 1 t 1

( ,

I t

J-1-1

(,

I t

± l " l ,

±

N

t .

±f.

I t

± i - l

C -V l ( S ) V J

X I ( U

) C J (U ) .V l ( S ) V J

S ( C A S )

((uVc^rV)

1

, (4.4) D or X = - ( S )lD , our w i t h M = S s Mu(A) , M = R ( A ) e C ° , |/° = Mu(A) a n d U° = N u ( A * ) .

In this expression we recognize, if we put -V I (S ) V J X

general m a t r i x representation (2.8) of an a r b i t r a r y generalized inverse B of A . Thus as a generalization of (3.7) and (3.11) we have:

(sV -(st)

l

D

1 y c t -It f ± t ± i - l ± t . ±f ± t ± i - l S ( C A S ) C +DL ( U ) C J ( U ) . V I ( S ) V J

((uVc

1 . 1 ± 1 - 1 ± t ■ - ( u ) w i t h l / ° = Nu(A) a n d U° = N u ( A * ) (4.5)

This result then completes the c i r c l e . In section one namely, we s t a r t e d by describing the geometric principles behind inverse linear mapping. In section two these principles were made precise by the stated t h e o r e m . This t h e o r e m enabled us t o find a unique r e p r e s e n t a t i o n concerning all generalized inverses B of a linear map A . In section three we then specialized to i n j e c t i v e and surjective maps, showing the r e l a t i o n between the corresponding inverses and the solutions of the corresponding systems of linear equations. A n d f i n a l l y this section generalized these results to a r b i t r a r y systems of linear equations whereby our general expression of generalized inverses was again obtained.

(32)

5. Some common type of inverses and their relation to the subspaces S, C and V

With our i n t e r p r e t a t i o n of the three subspaces S , C and V , and an expression like (2.8) i t now becomes very simple indeed t o derive most of the standard results which one can f i n d in the many textbooks available. See e.g. (Rao and M i t r a , 1971). As a means of e x e m p l i f i c a t i o n we show what role is played by the three subspaces S , C and V in the more common type of inverses used:

— least-squares inverses —

L e t M be Euclidean w i t h m e t r i c tensor / . , .\ and l e t Q : M -»■ M be the covariance map

- i w y

defined by Q y = ( y , . Y , . We know f r o m chapter one t h a t f o r

x = B y

t o be a least-squares solution of m i n . ( y - A x , y - A x / ,

A B = P , w i t h Ü = R ( A ) , (5.1)

must h o l d . From (2.8) f o l l o w s , however, t h a t in general

A B = P , w i t h U = R ( A ) . (5.2) o

U, C

Namely, expression (2.8) shows t h a t

And since A B = A S ( ClA S ) "1^ . (5.3) mxm mxm A S ( ClA S ) "1^ . C1 0 mxm mx ( m - r ) mx ( m - r ) and A S(ClA S ) "1Ct. A S = A S , mxm mx r mx r

i t follows that (5.3) is the m a t r i x representation of the p r o j e c t o r P . F r o m comparing (5.1) and (5.2) we thus conclude t h a t least-squares inverses are obtained by choosing

o ± 1

Cytaty

Powiązane dokumenty

Th~ marginal p.d.f.. and by integrating term~s e.. By definition resp. normali.ation, the zeroth - and first moments are equal to one. It may be proved by using

W kwestii Biblioteki Wileńskiej wypowiedział się Józef Wybicki (1747−1822) 49 , który wizytował litewską książnicę w 1777 roku z ra- mienia Komisji Edukacji Narodowej..

Badania doświadczalne zużycia główki endoprotezy stawu biodrowego ze stopu kobalt-chrom oraz z tlenku l;lluminium

devant des regards importuns des passants, est comme la plupart de demeures noires difficilement accessible : elle se trouve près d’une usine et entre deux murs de

Tą drogą uczestnictwo w sprawowaniu władzy coraz szerszych grup feudalnego społeczeństwa stopniowo z ewentualnego sporadycznie wystę­ pującego stanu

To ostatnie jest też zasadniczym niebezpieczeństwem grożącym Rze­ czypospolitej „od wewnątrz” , a mianowicie od króla dążącego do monar­ chii. Drugim

Но это только в том случае, если бы н а п лан ете Зем ля не сущ ествовало полтора м иллиарда человек, то есть прим ерно двадцать два

W Instytucie Filologii Klasycznej prof. Chodkowski stworzył Katedrę Dramatu  i  Teatru  Antycznego,  którą  kieruje  od  1996  r.;  w  latach  1998-2001