• Nie Znaleziono Wyników

Robot accuracy characteristics measurement method based on test results

N/A
N/A
Protected

Academic year: 2022

Share "Robot accuracy characteristics measurement method based on test results"

Copied!
5
0
0

Pełen tekst

(1)

Leszek Nawara Jan Rewllak

The Production Engineering Institute

Cracow University of Technology, Cracow, Poland

ROBOT ACCURACY CHARACTERISTICS MEASUREMENT METHOD BASED ON TEST RESULTS

Summary. The paper presents the method of measuring robot accuracy parameters with the usage of combined displacement probe and laser Interferometer measu­

ring system. The method was developed 1n order to determine robot performance characteristics in accordance with relevant ISO Standard, which requires the measurement of pose, path and velocity accuracy of the Inspected robot.

The described method will be further developed so that all accuracy parameters defined by ISO 9283 can be determined within one measurement cycle.

1. Introduction

Industrial robots play an Increasingly Important role 1n the manufacturing environment. Evaluating their functional characteristics 1s a necessity as a complement to this development. The Metrology Laboratory of the Produc­

tion Engineering Institute has developed a method of measuring performance characteristics of Industrial robots according to ISO 9283 : “Manipulating Industrial Robots - Performance Criteria and Related Testing Methods".

The above mentioned Standard defines all the parameters which are to be used to comprehensively describe robot accuracy. It Includes parameters concerning positioning, trajectory and velocity of the robot end effector.

The method of assessing some of these quantities 1s presented 1n this pa­

per.

(2)

2. Measuring method

Taking Into consideration the necessary accuracy of the measurements and the available Instrumentation the method of measuring robot accuracy cha­

racteristics has been developed.

The method allows the following parameters to be determined :

1. unidirectional pose accuracy and pose repeatlblHty for position and orientation ,

2. distance accuracy and repeatibi11ty ,

3. path accuracy and path repeatibi11ty for position and orientation, 4. path velocity characteristics (velocity accuracy .velocity repeat1bH1-

ty and fluctuactlon) .

1 - measuring head 2 - reference steel beam 3 - laser Interferometer 4 - laser beam

5 - tested robot

F1g.1, Measuring system layout

F1g. 1 shows the layout of the measuring system. It consists of three main components : measuring head with a set of Inductive probes (1) , reference

(3)

Steel beam (2) and laser Interferometer (3). The measuring head, mounted on the robot end effector, comprises five linear displacement probes fixed as shown on fig.2 .

1 - laser Interferometer reflector 2 - Inductive displacement probes 3 - robot end effector

F1g. 2. Measuring head

Prior to the measurements the head 1s calibrated - I.e. the positions of the probes with respect to the robot tool coordinate system 1s measured.

They are then used to assess the real position and orientation of the ro­

bot end effector moving along the reference beam. The probes are adjusta­

ble for easy range setting. Data read from the probes are transferred Into the PC to calculate the position and orientation of the end effector. To determine the actual position of the end effector along the beam the mea­

suring head 1s equipped with the Interferometer reflector. It enables also to measure the orientation and linear velocity (or acceleration) of the robot . Robot 1s programmed 1n teach-in mode to execute linear motion be­

tween two ''taught" points defining Ideal trajectory . Measured positions and orientations of the end effector at both "taught" ends of the path are

(4)

recorded and then treated as command points of the robot, referenced when comparing the actual path with the Ideal represented physically by the steel beam. The reference beam has two perpendicular measuring surfaces along which the probes are slid. Both of them have been calibrated by mea­

suring their flateness using the laser interferometer ,the results being used as reference beam correction values . With the measuring probe cali­

brated 1t 1s possible to determine all six coordinates of the end effector 1n external coordinate system (represented by the steel beam) : three orientation angles and two displacements 1n the plane orthogonal to the motion direction (readings from the five probes) and the displacement along the axis of the b e am (l as er Interferometer). According to ISO 9283 the robot accuracy parameters shall be determined for the tool coordinate system in the base coordinate system. This requires transforming probes and Interferometer readings so that the actual "base" position and orien­

tation of the end effector (Its central point 1s the origin of the tool coordinate system) can be derived. That Involves solving a complex nonli­

near system of 5 equations, the 6th coordinate being directly read from the Interferometer. Additionally, simultaneous Interferometer measurement of the end effector velocity (or acceleration) can be performed.

3. Example results

The method outlined above was verified during 1dent1fing the accuracy pa­

rameters of the SMART 3-S COMAU 6-ax1s Industrial robot. The method proved to be very effective both 1n respect of speed and accuracy necessary for end effector position, orientation and velocity measurement. The measuring system 1s easy to set up (once the reference steel beam has been calibra­

ted) and operate due to the computer aided data acquiring and processing.

This enables to easily carry out measurements 1n various points of robot’s working space, changing 1f necessary the end effector velocity or load.

0n-s1te robot accuracy Identification may provide useful data on Its actu­

al performance for a given application .Below are enclosed example results of the measurements of pose and velocity characteristics.

(5)

Velocity = 30 % Vmax Velocity = 60 * Vmax Pose accuracy AP = 0.025 mm AP = 0.010 mm Pose r e p e a t l b m t y RP = 0.053 mm RP = 0.020 mm Orientation accuracy and r e p e a t l b m t y

(axis "z" : along the path) APAz = -8.6 e-5 rad RPAz = 2.1 e-4 rad

Velocity characteristics [

mm/s

]

V [ % Vmax ] 1

V 10.047

Velocity accuracy AV 0.001 Velocity fluctuation FV 0.055

REFERENCES

[1] ISO 9283 : “Manipulating Industrial Robots - Performance Criteria and Related Testing Methods" .

Revised by: Jan Darlewski

APAz = -1.4 e-4 rad RPAz = 1.1 e-3 rad

20 246.333

0.213 5.315

5 10

51.844 125.303 0.003 0.048 0.979 3.946

Cytaty

Powiązane dokumenty

Tego typu rozumowanie odnosi się nie tylko do mnichów, szczególnych żołnierzy Chrys- tusa, ale także do wszystkich chrześcijan, powołanych do ciągłego zmieniania samych siebie

W 1957 roku Te Wei wezwał animatorów do stworzenia specyficznie chińskiego stylu animacji, a więc użycia zachodniego środka (kinematografu) do propagowania chińskiej

budow ie now ego zakładu hutniczego, który zaprojektow a­ n o w innym m iejscu w edług przem yślan ej, odznaczającej się rozm achem koncepcji,.. z uw zględnieniem

Jak się zdaje, nikt nie badał, jaka jest korelacja między stopniem rozwoju służb informacyjnych a poziomem twórczości naukowej; ten drugi można mierzyć

Pozaszkolne zespoły wczasowe, czyli grupy áviadorale tworzone w celu wychowania do wczasów5 , mają szczególne możliwości w inte- growaniu środowiska wychowawczego

... Na ty le mądrości nagromadzonej trzeba było wdania się Państw a.. Rzecz tak dobrze była skartowana, że sekundant S łow ackiego, św iadom y już odstąpienia

Ale, zakładając przy każdej sposobności nam iętn y pro test przeciw ko w szelkim form om ucisku człowieka przez człowieka, burzył się W olter zarazem przeciw ko

Also the legality of the sharing of information can depend on various context variables, including the circumstances, jurisdiction, applicable regulations, original source of the