• Nie Znaleziono Wyników

Squares of positive ( p , p ) -forms

N/A
N/A
Protected

Academic year: 2021

Share "Squares of positive ( p , p ) -forms"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available at

SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complex Analysis

Squares of positive ( p , p ) -forms

Carrés de ( p , p ) -formes positives

Zbigniew Błocki a , Szymon Pli´s b , 1

aInstytut Matematyki, Uniwersytet Jagiello´nski, Łojasiewicza 6, 30-348 Kraków, Poland bInstytut Matematyki, Politechnika Krakowska, Warszawska 24, 31-155 Kraków, Poland

a r t i c l e i n f o a b s t r a c t

Article history:

Received 30 November 2012

Accepted after revision 21 January 2013 Available online 7 February 2013 Presented by Jean-Pierre Demailly

We show that if

α

is a positive

(

2

,

2

)

-form, then so is

α

2. We also prove that this is no longer true for forms of higher degree.

©

2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous montrons que si

α

est une

(

2

,

2

)

-forme positive alors

α

2l’est aussi. Nous prouvons également que ceci n’est plus vrai pour les formes de degré supérieur.

©

2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Recall that a ( p , p ) -form α in C

n

is called positive (we write α  0) if for ( 1 , 0 ) -forms γ

1

, . . . , γ

np

one has:

α i γ

1

∧ ¯ γ

1

∧ · · · ∧ i γ

np

∧ ¯ γ

np

 0 .

This is a natural geometric condition, positive ( p , p ) -forms are for example characterized by the following property: for every p-dimensional subspace V and a test function ϕ  0, one has:



V

ϕα  0 .

It is well known that positive forms are real (that is α ¯ = α ) and if β is a ( 1 , 1 ) -form then

α  0 , β  0α ∧ β  0 . (1)

It was shown by Harvey and Knapp

[5]

(and independently by Bedford and Taylor

[1]) that (1) does not hold for all

( p , p ) and ( q , q ) -forms α and β , respectively. We refer to Demailly’s book

[2], pp. 129–132, for a nice and simple introduction to

positive forms.

Dinew

[3]

gave an explicit example of ( 2 , 2 ) -forms α , β in C

4

such that α  0, β  0 but α ∧ β < 0. We will recall it in the next section. The aim of this note is to show the following, somewhat surprising result:

Theorem 1. Assume that α is a positive ( 2 , 2 ) -form. Then α

2

is also positive.

E-mail addresses:Zbigniew.Blocki@im.uj.edu.pl,umblocki@cyf-kr.edu.pl(Z. Błocki),splis@pk.edu.pl(S. Pli´s).

1 The second named author was partially supported by the NCN grant No. 2011/01/D/ST1/04192.

1631-073X/$ – see front matter

©

2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2013.01.009

(2)

It turns out that this phenomenon holds only for ( 2 , 2 ) -forms:

Theorem 2. For every p  3, there exists a ( p , p ) -form α in C

2p

such that α  0 but α

2

< 0.

We do not know if similar results hold for higher powers of positive forms.

The paper is organized as follows: in Section

2

we present Dinew’s criterion for positivity of ( 2 , 2 ) -forms in C

4

, which reduces the problem to a certain property of 6 × 6 matrices. Further simplification reduces the problem to 4 × 4 matrices.

We then solve it in Section

3. This is the most technical part of the paper. Higher degree forms are analyzed in Section4,

where a counterpart of Dinew’s criterion is showed and Theorem

2

is proved.

2. Dinew’s criterion

Without loss of generality we may assume that n = 4. Let ω

1

, . . . , ω

4

be a basis of (C

4

)

such that:

dV := i ω

1

∧ ¯ ω

1

∧ · · · ∧ i ω

4

∧ ¯ ω

4

= ω

1

∧ · · · ∧ ω

4

∧ ¯ ω

1

∧ · · · ∧ ¯ ω

4

> 0 .

Set

Ω

1

:= ω

1

ω

2

, Ω

2

:= ω

1

ω

3

, Ω

3

:= ω

1

ω

4

, Ω

4

:= ω

2

ω

3

, Ω

5

:= − ω

2

ω

4

, Ω

6

:= ω

3

ω

4

.

Then

Ω

j

∧ Ω

k

=

 ω

1

∧ · · · ∧ ω

4

, if k = 7j ,

0 , otherwise .

With every ( 2 , 2 ) -form α we can associate a 6 × 6-matrix A = ( a

jk

) by

α = 

j,k

a

jk

Ω

j

∧ ¯ Ω

k

.

For

β = 

j,k

b

jk

Ω

j

∧ ¯ Ω

k

we have:

α ∧ β = 

j,k

a

jk

b

7j,7k

dV . (2)

The key will be the following criterion from

[3]:

Theorem 3. α  0 if ¯ z Az

T

 0 for all z ∈ C

6

with z

1

z

6

+ z

2

z

5

+ z

3

z

4

= 0.

Sketch of proof. For γ

1

= b

1

ω

1

+ · · · + b

4

ω

4

, γ

2

= c

1

ω

1

+ · · · + c

4

ω

4

, we have i γ

1

∧ ¯ γ

1

i γ

2

∧ ¯ γ

2

=



4 j,k,l,m=1

b

j

b ¯

k

c

l

c ¯

m

ω

j

ω

l

∧ ¯ ω

k

∧ ¯ ω

m

= 

j<l k<m

( b

j

c

l

b

l

c

j

)( b

k

c

m

b

m

c

k

) ω

j

ω

l

∧ ¯ ω

k

∧ ¯ ω

m

.

It is now enough to show that the image of the mapping:

C

8

 ( b

1

, . . . , b

4

, c

1

, . . . , c

4

)

−→ ( b

1

c

2

b

2

c

1

, b

1

c

3

b

3

c

1

, b

1

c

4

b

4

c

1

, b

2

c

3

b

3

c

2

,b

2

c

4

+ b

4

c

2

, b

3

c

4

b

4

c

3

) ∈ C

6

is precisely { z ∈ C

6

: z

1

z

6

+ z

2

z

5

+ z

3

z

4

= 0 } . Indeed, it is a well-known fact that the image of the Plücker embedding of the 4-dimensional Grassmannian G ( 2 , 4 ) in P

2

C

4

) P

5

is the quadric defined by the above equation. 2

Using Theorem

3

and an idea from

[3], we can show:

(3)

Proposition 4. The form

α

a

=



6 j=1

Ω

j

∧ ¯ Ω

j

+ a Ω

1

∧ ¯ Ω

6

+ ¯ a Ω

6

∧ ¯ Ω

1

is positive if and only if | a |  2.

Proof. We have:

¯

z Az

T

= | z |

2

+ 2 Re ( a ¯ z

1

z

6

)  2 | z

1

z

6

| + 2 | z

2

z

5

+ z

3

z

4

| + 2 Re ( a ¯ z

1

z

6

).

If z

1

z

6

+ z

2

z

5

+ z

3

z

4

= 0 and | a |  2 we clearly get ¯ z Az

T

 0. If we take z

1

, z

6

with ¯ z

1

z

6

= −¯ a, | z

1

| = | z

6

| and z

2

, . . . , z

5

with z

2

z

5

+ z

3

z

4

= − z

1

z

6

then ¯ z Az

T

= 2 | a |( 2 − | a |) . 2

By (2):

α

a

α

b

= 2 

3 + Re ( a b ¯ )  dV .

Therefore, α

2

, α

2

are positive, but α

2

α

2

< 0.

In view of Theorem

3, we see that Theorem1

is equivalent to the following:

Theorem 5. Let A = ( a

jk

) ∈ C

6×6

be hermitian and such that z Az ¯

T

 0 for z ∈ C

6

with z

1

z

6

+ z

2

z

5

+ z

3

z

4

= 0. Then



6 j,k=1

a

jk

a

7j,7k

 0 .

We will need the following technical reduction:

Lemma 6. For every ( 2 , 2 ) -form α in C

4

, we can find a basis ω

1

, . . . , ω

4

of (C

4

)

such that:

α ω

1

ω

2

∧ ¯ ω

1

∧ ¯ ω

j

= α ω

1

ω

2

∧ ¯ ω

2

∧ ¯ ω

j

= 0 (3) for j = 3 , 4.

Proof. We may assume that α = 0, then we can find ω

1

, ω

2

∈ (C

4

)

such that

αω

1

ω

2

∧ ¯ ω

1

∧ ¯ ω

2

= αi ω

1

∧ ¯ ω

1

i ω

2

∧ ¯ ω

2

= 0 . (4) By V

1

denote the subspace spanned by ω

1

, ω

2

and by V

2

the subspace of all ω ∈ (C

4

)

satisfying (3) with ω

j

replaced by ω . Then dim V

1

= 2, dim V

2

 2, and by (4) we infer V

1

V

2

= { 0 } , hence ( C

4

)

= V

1

V

2

. 2

3. Proof of Theorem

5

By Lemma

6

we may assume that the matrix from Theorem

5

satisfies a

26

= a

36

= a

46

= a

56

= 0

and

a

62

= a

63

= a

64

= a

65

= 0 .

Then



6 j,k=1

a

jk

a

7j,7k

=



5 j,k=2

a

jk

a

7j,7k

+ 2 

a

11

a

66

+ | a

16

|

2

 .

Therefore Theorem

5

is in fact equivalent to the following result:

Theorem 7. Let A = ( a

jk

) ∈ C

4×4

be hermitian and such that z Az ¯

T

 0 for z ∈ C

4

with z

1

z

4

+ z

2

z

3

= 0. Then



4 j,k=1

a

jk

a

5j,5k

 0 . (5)

(4)

Proof. Write

A =

⎜ ⎝

λ

1

a b α

¯

a λ

2

βc b ¯ ¯β λ

3

d

¯

α −¯ c −¯ d λ

4

⎠ .

It satisfies the assumption of the theorem if and only if for every z ∈ C

4

of the form z = ( 1 , ζ, w , −ζ w ) one has ¯ z Az

T

 0.

We can then compute

¯

z Az

T

= λ

1

+ 2 Re ( a ζ ) + λ

2

|ζ |

2

+ 2 Re 

bα ζ + β ¯ζ + c |ζ |

2

 w  + 

λ

3

+ 2 Re ( d ζ ) + λ

4

|ζ |

2



| w |

2

.

Therefore A satisfies the assumption if λ

j

 0,

| a |  

λ

1

λ

2

, | b |  

λ

1

λ

3

, | c |  

λ

2

λ

4

, | d |  

λ

3

λ

4

, (6)

and for every ζ ∈ C

 bα ζ + β ¯ζ + c |ζ |

2



2

 

λ

1

+ 2 Re ( a ζ ) + λ

2

|ζ |

2



λ

3

+ 2 Re ( d ζ ) + λ

4

|ζ |

2



. (7)

In our case (5) is equivalent to

4 Re ( a d ¯ + b c ¯ )  2

1

λ

4

+ λ

2

λ

3

) + 2 

| α |

2

+ |β|

2

 .

We will in fact prove something more:

4 Re ( a d ¯ + b c ¯ )  ( 

λ

1

λ

4

+ 

λ

2

λ

3

)

2

+ 

| α | + |β| 

2

. (8)

Without loss of generality, we may assume that:

Re ( a d ¯ ) > 0 , Re ( b c ¯ ) > 0 ,

for if for example Re ( a d ¯ )  0 then by (6) 4 Re ( a d ¯ + b c ¯ )  4 Re ( b c ¯ )  4 

λ

1

λ

2

λ

3

λ

4

 ( 

λ

1

λ

4

+  λ

2

λ

3

)

2

.

Set u := Re ( a d ¯ ) and ζ := − r d ¯ / | d | , where r > 0 will be determined later. Then we can write the right-hand side of (7) as follows:



λ

1

2ur

| d | + λ

2

r

2



λ

3

2r | d | + λ

4

r

2



= 

λ

1

+ λ

2

r

2



λ

3

+ λ

4

r

2



+ 4ur

2

2r



λ

1

| d | + λ

3

u

| d | + r

2



λ

2

| d | + λ

4

u

| d |



 

λ

1

+ λ

2

r

2



λ

3

+ λ

4

r

2



+ 4ur

2

4r

2

( 

λ

1

λ

4

+  λ

2

λ

3

)

u

= ( 

λ

1

λ

4

+ 

λ

2

λ

3

2

u )

2

r

2

+ 

λ

1

λ

3

− 

λ

2

λ

4

r

2



2

.

For r = (

λλ12λλ34

)

1/4

from (7) we thus obtain:

  b r + d ¯

| d | α d

| d | β + cr 

  

λ

1

λ

4

+ 

λ

2

λ

3

2u .

We also have:

  b r + d ¯

| d | ( α − ¯β) + cr 

  

 b r + cr 

 − | α | − |β|  2 

Re ( b c ¯ ) − | α | − |β|

and therefore:

2



Re ( a d ¯ ) + 2 

Re ( b ¯ c )  

λ

1

λ

4

+ 

λ

2

λ

3

+ | α | + |β|.

To get (8), we can now use the following fact: if 0  a

1

 x, 0  a

2

 x and a

1

+ a

2

 x + y then a

21

+ a

22

 x

2

+ y

2

. This can be easily verified: if a

1

+ a

2

 x then a

21

+ a

22

 x

2

and if a

1

+ a

2

 x then

x

2

+ y

2

 x

2

+ ( a

1

+ a

2

x )

2

= a

21

+ a

22

+ 2x ( xa

1

)( xa

2

). 2

(5)

4. (

p

,

p

) -Forms in C C C

2p

In C

2p

we choose the positive volume form:

dV := i dz

1

d ¯ z

1

∧ · · · ∧ i dz

2p

d ¯ z

2p

= dz

1

∧ · · · ∧ dz

2p

d z ¯

1

∧ · · · ∧ d ¯ z

2p

.

By I we will denote the set of subscripts J = ( j

1

, . . . , j

p

) such that 1  j

1

< · · · < j

p

 2p. For every JI there exists unique J



I such that JJ



= { 1 , . . . , 2p } . We also denote dz

J

= dz

j1

∧ · · · ∧ dz

jp

and ε

J

= ± 1 is defined in such a way that:

dz

J

dz

J

= ε

J

dz

1

∧ · · · ∧ dz

2p

.

Note that:

ε

J

ε

J

= (− 1 )

p

. (9)

With every ( p , p ) -form α in C

2p

we can associate an N × N-matrix ( a

J K

) , where N = I = ( 2p ) !

( p !)

2

,

by

α = 

J,K

a

J K

i dz

j1

d ¯ z

k1

∧ · · · ∧ i dz

jp

d ¯ z

kp

= i

p2



J,K

a

J K

dz

J

d ¯ z

K

(10)

(note that (1 )

p(p1)/2

i

p

= i

p2

). Then α

2

= 

J,K

ε

J

ε

K

a

J K

a

JK

dV (11)

and for γ

1

, . . . , γ

p

∈ (C

2p

)

αi γ

1

∧ ¯ γ

1

∧ · · · ∧ i γ

p

∧ ¯ γ

p

= 

J,K

a

J K

γ

1

∧ · · · ∧ γ

p

dz

J

∧ ( γ

1

∧ · · · ∧ γ

p

dz

K

).

Therefore ( a

J K

) has to be positive semi-definite on the image of the Plücker embedding

 C

2p





p

 ( γ

1

, . . . , γ

p

) −→

 γ

1

∧ · · · ∧ γ

p

dz

J

dz

1

∧ · · · ∧ dz

2p



J∈I

∈ C

N

(12)

which is well known to be a variety in C

N

(see, e.g.,

[4], p. 64).

We are now ready to prove Theorem

2:

Proof of Theorem

2. First note that it is enough to show it for p

= 3. For if α is a ( 3 , 3 ) -form in C

6

such that α  0 and α

2

< 0 then for p > 3 we set:

β := i dz

7

d z ¯

7

+ · · · + idz

2p

d z ¯

2p

.

We now have α ∧ β

p3

 0 but ( α ∧ β

p3

)

2

= α

2

∧ β

2p6

< 0.

Set p = 3, so that N = 20, and order I = { J

1

, . . . , J

20

} lexicographically. Then the image of the Plücker embedding (12) is in particular contained in the quadric:

z

1

z

20

z

10

z

11

+ z

5

z

16

z

2

z

19

= 0 . (13)

For positive a , λ, μ to be determined later define:

α := i



λ( dz

J1

d z ¯

J1

+ dz

J20

d ¯ z

J20

) + μ 

k∈{2,5,10 11,16,19}

dz

Jk

d ¯ z

Jk

+ a ( dz

J1

d ¯ z

J20

+ dz

J20

d ¯ z

J1

)

 .

Then, similarly as in the proof of Proposition

4,

¯

z Az

T

= λ 

| z

1

|

2

+ | z

20

|

2



+ μ  | z

2

|

2

+ | z

5

|

2

+ | z

10

|

2

+ | z

11

|

2

+ | z

16

|

2

+ | z

19

|

2



+ 2a Re z

1

z

20

)

 2 a ) | z

1

z

20

| + 2 μ | − z

10

z

11

+ z

5

z

16

z

2

z

19

|

= 2 + μ a ) | z

1

z

20

|

if z satisfies (13). Therefore α  0 if a  λ + μ .

(6)

On the other hand, by (11) and (9):

α

2

= 2 

λ

2

+ 3 μ

2

a

2

 dV .

We see that if we take a = λ + μ and λ > μ > 0, then α  0 but α

2

< 0. 2 References

[1] E. Bedford, B.A. Taylor, Simple and positive vectors in the exterior algebra ofCn, preprint, 1974.

[2] J.-P. Demailly, Complex Analytic and Differential Geometry, monograph, 1997, available athttp://www-fourier.ujf-grenoble.fr/~demailly.

[3] S. Dinew, On positiveC(2,2)(C4)forms, preprint, 2006.

[4] J. Harris, Algebraic Geometry. A First Course, Grad. Texts in Math., vol. 133, Springer, 1995.

[5] R. Harvey, A.W. Knapp, Positive(p,p)forms, Wirtinger’s inequality, and currents, in: R.O. Kujala, A.L. Vitter III (Eds.), Value Distribution Theory, Part A, Dekker, 1974, pp. 43–62.

Cytaty

Powiązane dokumenty

Krzysztof Jajuga (Statistical Editor) – Wroclaw University of Economics and Business Prof.. Simona Beretta – Università Cattolica del Sacro Cuore

Wydawać się może, że wprowadzając czasem termin nummus w celu wyra­ żenia ogólnego pojęcia monety, Plaut usiłował zaznaczyć ten stan przez dołącze­ nie

C’est que les anciennes m éthodes sont m al adaptées aux phénom ènes complexes en général et à la stru ctu re particulière des données dans les sciences de

(1) the shipment flow re-planning for a capacitated network denoting the transportation of shipments, at the arc level; (2) The service rescheduling at the arc level, mainly

diameter van 10 cm gekozen. Tenslotte zal nu een korrektie op het volume van de reaktor aangebracht worden. Ret volume van de vloelstof in de pijpen

W reform ie edukacyjnej przew idziano szeroko rozw iniętą w spółpracę szkoły z

Niejedno­ krotnie przeszkodą w zagospodarowaniu się osadnika były opóźnione pomiary gruntu, a także brak materiału budowlanego, co często było wynikiem niechęci

Aujourd’hui, en Italie comme dans les autres pays modernes, on n’a pas re- mis en cause la permission données aux adultes de pratiquer les jeux de hasard et les paris, sur la base