• Nie Znaleziono Wyników

A Univalence Criterion and the Structure of Some Subclasses of Univalent Functions

N/A
N/A
Protected

Academic year: 2021

Share "A Univalence Criterion and the Structure of Some Subclasses of Univalent Functions"

Copied!
10
0
0

Pełen tekst

(1)

ANNALES

U N I V E R S I T AT I S MARIAE C U R I E-S K Ł O D O W S K A LUBLIN — POLONIA

VOL. XL. 16 SECTIO A 1986

Instytut Matematyki Uniwersytet Marii Curie-Sklodowsluej

J. MIAZGA, A. WESOŁOWSKI

A Univalence Criterion and the Structure of Some Subclasses of Univalent Functions

Pewne kryteriumjednolietnoóci i związane znrm podklasy funkcjijedmolistaych

Ojkh npn3HaK oahojihcthocthh ero CBasb c HekOTopbiMw xjiaccaMM OflHOJlHCTHblX

Let H denote the class of holomorphic functions in 3 , where ¿r = £z : Izl^r J , 3^ = E , m - tne closure of m and SQC H be the subclass of univalent functions in m . xicuote uy XlgCH the class of functions GJ such tnat |gJ(,z)| ^1 for

t £2 and by iun0 the class of functions satisfying one assumptions of Schwarz's lemma.

Next, for arbitrary fixed numbers A and fl, Ia| ^1 ,

|B|^1 we denote by PQA.B) the family of functions

(.1.1) p(,z) = bQ + b^z + • • • holomorphic in E and such that

(.1.2) P(>Z' " 1 _ tícj1 +A co

wtï2. 0 . z6 -

If aduitionaly we suppose that

(•1.3)

1 - IA + 3 1 + Re ^¿ ’ ¿J 0

(2)

then the class P(,A,B) of functions p is a subclass oi tue class ? of functions with positive real part, i.e. of functions p(z) for which He p(z)^O in E . The class of tnose functions we denote by Pi,A,B) CP ,

¿’or b0 = 1 , P(A,B) is a subclass of Caratheodory's func­

tions. In tue case -1^A^1 and -A^B^1 tne class P(.A,B) was Introduced by A’. Janowski w.

If A and B are complex numbers and the.fi. , then this class P(A,B) was studied, among otners, oy h.J. Jakuoowski £+]- -[?]> J. Btankiewicz and J. Janiurski and niacGregor Do].

Hollowing Ch. Pominerenke M and J. Becker [2] we introduce a normalized chain f(.z,t) = e^z + ... of subordinate functions over tne interval 1 = <0,«o) , analytic in S and such that for almost every tel the Lowner-Kufariew equation K

U.4) = zp(z,t)^.^ , zeE

is satisfied, where

U.5) p(z,t) = j l ’ teI

It is well-Known that the function f(.z,t) satisfying the condition (.1.4) determine a family of univalent functions in E for each t6I . The class of these functions we denote by

~Q(A,B) .

L.V. Ahlfors D3 and J. Becker gave tne following suffi­

cient uhivalence condition:

Theorem A-B. Let f«H and f\z) / 0 . If there exists a constant c € E \ {1J such tnat

(3)

A Univalence Criterion and the Structure .. . 155

U.fe) 111-Is I2) - c|z(2l ¿1

I f U) . I

nolds lor z « B , then £ 6 oQ .

In the case c = 0 this tneorem was given earlier oy huren, Bharpio and Bhilds [jJ. A generalization of the tneorea a-B was obtained by Z. Lewandowski [9].

Theorem L. Let f € H , f\z) / 0 . If tnere exists a junc­

tion Co fc -fi such that

U.7) |oXz)|z|2 - 1

holds for z 6 3 , then f €■ 3^ .

The purpose of this note is to cnaracterize the structure of functions which satisfy the furtner given sufficient univalence condition and that have a K - quasiconformal (. 3-q.c.) extension for some subclass of the class ¿o(.A,3) .

2. Je now state the following

Theorem 1. Let f«ri, f'(.z) / 0 , z«3 . If tnere exists a function cotflo, co / ~ , |B| 1 sucn that

zf nsil _ (J-B/tA+ąJ z ¿1^1—

\z) J h-|A-B|« J X

4 _ |

a

_B,2

3)W(t))

z€3 ,

wnere

(4)

<2.n) 1- U+u| + He {A'3j 0 , |Al4l , |B|41 »

tnen f is a univalent function in L , imoedded in the class Q I. , B) oj. univalent cnains f<z, o) over tne interval I , i(.z,O) - £<z) .

xrooi. Let '['(.z,t) be an analytic function in L for each til . moreover, let X(.O,t) - 1 , -f<z,t) / 0 , Ke ^X(.z,t)J^

>,0 , z

t

ii , tei.Let

(.¿.p) £(.z,t) = iXae-*') + <eti-e-'')zi\ze“t)'C<ze“t) , t<I .

¿or eacu tel i'(.z,t) is an analytic function for |zl ^e^ , 1" < z, 0 ) r o .

lC is euou^n oo ¿rove tnat x<Z, t) Ua|<e* , t 61) satis- ii.es the Lowner equation (.1.4) for almost every tel if cnain

<2.5) satisfies inequality <2.1). nence f(.z,t) is a cnain of suuoruiuate functions over interval X .

jj'roui relations (1.5) and <1.4) we nave

(2.4) CJ(z,t) = 1 ~ Z"—

Azi' + df wasre f = a f

- z o t •

nence by (2.5) we ootain

(2.5) - A+aniiwoiz.t) >

v/r.ere (2.6)

TlXb

- 1)e“2t + ( z, t) — (-

♦ u.e-2t)Vze- r;,^e~ ) + T(ze“c)

ze f <ze ) t (ze u)

(5)

A Univalence Criterion and the Structure .. 157

Brom (.2,5) and since U« Ï2.q , putting ze“b = J for |z| = 1, we have

(2.7) hvtji -1)|î| 2 ♦t1-' ii^VQi0 * -

CA-ri)(A+B)I / 2|A+B|

4 -U-3|a I 4 - |À-B|2

how we put in (.2.7) - 1 = - w 6 o ' Bence there exists a function we.fl0 such that the Chain (.2.5) satisfies the inequality (,2.1).

In virtue of theorem 4 M. f(.z,t) is a LHwner chain i.e.

the cnain of subordinate functions over interval I .

moreover, for each t6I f(.z,t) is a univalent function JS . In particular f(.z,û) = f(,z) is a univalent function in B Imbedded in the class S0(.A,3) .

The family of the functions f satisfying <2.1) we denote by Sq(A,B) C *S0(,A,B) . Let us note that by suitable choice of a

aua B (.2.1) gives a continuous transition from tne Becker's univalence condition 2 to the Lewandowski's condition

3. Let f€H satisfy in B the equation

(3.1) _______IA+B)zo'(.z) zf.7(zj. = (¿+3). <f(.z) , (1-BWU))U+(a-B)w(.z)) + £-u) ¿-(.a-d) <f(z) ’

, |B| ^1 and 1-,A+B| + 3e £T*bJ 0 for any fixed

^unction co 6 itQ and for a function tp satisfying the assum­

ptions of Schwarz's lemma. The class of these functions f we denote by SqU,B) .

It is easy to see that the function f given by (.5.1) satis es tne inequality (.2.1), nence S0(.a,3) C Sq^a,B).

(6)

from (5.1) we ootoin at once

(5.2) f'(z) 1-Bw(z) . 2+(A-B)tJ(0) . 2+(a-3)cj(z7 'i-jw(u) z

rz (5.5) g(z) =zexp

ny (5-5) we have

(5.4) f tiU) 1 lĄł-31 -1 A-h|

4 zfe K ,

ana so g oelongs to the class S*(A,B)£ ¿5 *" - the class of functions starlixe witn respect to the origin.

rhe relation (5.2) can be rewritten in the form

(5-5) - _J.-BtJ.lLj____ . 4LA+B)CJ(O) g(z) 2+(a-B)to(z) 1-Jw(0)

in particular, the class SQ(A,B) contains knov/n subclasses of the class of univalent functions.

1°. Let (p(z) = -cJ(z) and f(0) = 0 , then £ = g , where g is given by formula (5.5).

2°. If we put co(O) = 0 into (5.5)> then we obtain some suoclass of the class of close-to-convex functions contained in Sq(A,3) C 3q(A,B) .

5°. Putting into (5.5) tb(z) s c € S\{l} , where c is a constant, we obtain zf” = g , hence f is a convex function.

4°. If we put tf(z) = 0 , G>(0) = 0 into (5.5). then f is a univalent function of bounded rotation (i.e. Ee f'(z)^O , z € £) .

moreover, we remarx that by a suitable cnoice of A and 3 satisfying the condition (2.2) we can obtain different subclasses

(7)

A Univalence Criterion and the Structure 159

of univalent functions contained in S0(a,B) , characterized by the functions p P(A,B) C P (.see .V. Jankowski £&J).

4. Let C denote the complex plane C = C u and let 3 C So denote the class of functions f sucn that f(u) = Ü , f (0) = 1 . By S* we denote the class of mappings P : C—>C -

“Q.c. such that P J B = f€S . (.The symbol denotes the res­

triction of the function P to tne set E).

It is well-known (.see [l2] p.149) tnat the class is a compact family with respect to the topology of uniform convergence on compact sets.

Let SK(A,B) C So(.A,B) , (A,B - satisfy the relation (2.2)) denote the class of functions satisfying the condition

»zl *

' + ¿0^2] _ ,IÂ-3X,A+.3I<2| / 2IA+BIS , zsB , f*(z) J h-lA-B^J2 | h-lA-Bf^j2

"here toe , | CO (&)| 4 < 1 .

Ahlfors (see Pl2j p. 169) gave for the subclass of the class

£

s (A,B) generated by inequality (.4.1) with the function CO(z)=

— c 6 E\flJ , c=const., A=1 , B=1 , the K-q.c. extension i€3^(A,B) , such that P(«o ) = oo .

ft'e now prove

i'neorea 2, Let f € o\a,B) . 1'hen the function i‘ given by tne formula

f(z) for |z|^1 ,

^•2) F(z)

1i

|„|2 .

2+(a-B)W

(2)

1(2) + --- _2_ . f '(1 ) xor | z|>1 z 2(1-BU>(2))

(8)

belongs to S (A,B) , £(oo ) = oo and i is a q.c. extension olJZ

K = I- I UA+akfesB °* the iutlcti0“ f •

±*or the proo£ it is enough to see that there exists a funcfc- tion 6 -ft-, I <f 14 s 4 1 , z € £ , sued that the function G(z) = ^f(rz) , z€£ , 0^r<1 , satisfies the condition (.4.1)»

P.or the function l‘(z) given by formula (.4.2) the modulus of the complex dilatation K = ?_ /?_ is not greater than

z

5 I +h|/(.2- |A-B|) . nence following Ahifors 0]. we obtain tne assertion of our theorem.

it£pjc4t£hO£S

C-i] Ahifors, L.V., Sufficient conditions for quasiconf o.rmal exten­

sion, Princeton Annals of math. Studies 79(1974), 25-29.

kJ Beemer, J., Ldwnersche hifferentialgleichung und quasikonforme iortsetzoare schlichte Punktioneh, Seine Angew. math. 255 (1972), 25-45.

[5 J Suren, P.L., Shapiro, H.S., Shields,A.L., Singular measures and domains not of Smirnov type, Duke math. J. 55(1956)»

247-254.

R Jakubowski, Z.J., On the coefficients of Garatiieodory functions null. Acad. Polon. Sci. Ser. Sci. math. Astronom. Phys. 19 (.1971), S05-S09.

¡5J Jakubowski, Z.J., On some applications of the Clunie method, Ann. Polon. math. 26(1972), 211-217.

fo} Jakuoowski, Z.J., On the coefficients of starlike functions of some classes, Ann. Polon. math. 26(1972), 505-515.

C?} Jakubowski, Z.J., On some properties of extremal functions

(9)

A Univalence Criterion and the Structure . 161

[9]

Do]

Cn]

of Caratueooory, Prace -at. 170^73), 71-cG.

Janowsiti, some extremal problems for certain families of analytic functions I, Ann. Polon. matn. 2b(.1^73), a^7-32c. Lewandowski, Z., On a univalence criterion, Lull. ncaa. sci.

Ser. Math. XXIX Lo 3-4(1961), 123-126.

MacGregor, T.H., Junctions whose derivative nas a positive real part, Trans. Amer. math. Soc.,194(1962), 532-537.

Pommerenke, Ch., Doer die ¡Subordination analytiscner ¿unntio nen, J. Eeine Angew. math. 218(19&5), 159-173.

schooer, G., Univalent 1'uactions - selected ropics, springer -Verlag iJerlin-aeidelberg-Kew forK 1975.

stankiewicz, J., wamurski,J., some classes of functions sue ordinate to linear transformation and tneir applications, Annales Univ. iiariae Curie-smloaowska, Luuiin, rolonia, Vcl.

XXVIII, 9 sectio A (197*).

STRESZCZENIE

Jeśli i jest funkcją lokalnie jednollstną w kole jednostkowym E, taką, że f(o) - i'(o) - 1 - O 1 u) jest funkcją holomorficzną w E G^ką, |cu(z)| 4 j z | w E, to warunek (2.l) ze stałymi A, B

«pełnlającyml warunki (2.2) zapewnia Jednolistność Ł

PE3D1E

IlyCTbf JtOKaJTbHO OflHO-IMCTHa B eflHHHHHOM Kpyre E $yHKUHH 'PSKas, MTO f(o) = f*(o) — 1 » O MW rOJIOMOpcfHa B E HCnOJIHSeT

ta (zj | 4 |z | b E. Tona McnozHHBmaa ycJOBKH (.2.1) ,(2.2)

bBZHeTCS OAHOJIMCTHOfi B E.

(10)

Cytaty

Powiązane dokumenty

, John’s criterion of univalence and a problem of Robertson , Complex Venables

Moreover, a sufficient univalence criterion for meromorphic and locally univalent functions in the upper half plane is given (Theorem 3).. CL Pommerenke has recently given a

[1] Ahlfors, L.V., Sufficient conditions for quasi-conformal extension, Discontinous groups and Riemann

This slightly improves the estimate 1.210 obtained from the exponential function [1]. The problem whether 1 is best possible

We now examine problems about the growth of |#'(z) | where g is analytic and bounded in A (and not necessarily univalent) and for simplicity take the bound to be 1.!. The

From Theorem 2 one could deduce a condition which guarantees that an m -fold symmetric close-to-convex function of order p uas a quasiconforuial extension, a more precise

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

Some authors gave similar univalence conditions by using bounded functions f (z) ∈ A in their papers, see the works (for example Breaz et al.. We note that the functions f ∈ A do