• Nie Znaleziono Wyników

Probabilistic design with focus on blades

N/A
N/A
Protected

Academic year: 2021

Share "Probabilistic design with focus on blades"

Copied!
26
0
0

Pełen tekst

(1)

Blades

Blades

probabilistic design

probabilistic design

Sandia Blades Workshop 12-14 May 2008 Dick Veldkamp

(2)

Contents

ƒ Introduction: why probabilistic design?

(3)
(4)
(5)

Blade root failure probability: statistics

ƒ DNV: design for p = 10-5 per year (component)

ƒ Dutch Handbook for Risk Assessment of Wind Turbines

ƒ p = 6.3×10-4 (expected value, wind turbine)

(6)

Are new blades safer?

ƒ Suppose we have N years without n = 0 failures, while pfail = p:

ƒ P0 is “amount of luck”

(7)

Are new blades safer?

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 WT operating time [year]

(8)

Conclusion on failure statistics

ƒ Annual failure probability (lower than) p = 10-5 is demanded.

ƒ It will be a long time before it can be proved with data from actual

(9)

Objectives

1. Given target failure rate, find a set of optimal partial safety factors, giving

minimum weight safe design. Factors may be for:

1. loads

2. modelling

3. material properties

2. Better insight in uncertainties in calculation methods

1. most important uncertainty?

2. improved risk assessment (absolute and relative assessment)

3. Because of time constraints, work is limited to fatigue of the structure,

(10)

Economic reasons

Cost [Euro ct/kWh] Wind Conventional

(11)

Minimum weight design

ƒ How large γf and γm must be is determined by probabilistic considerations: which failure probability is allowed?

(12)
(13)
(14)

Which failure probability is allowed?

ƒ Failure is not an option.

ƒ Gene Kranz, during the (movie of the) rescue of the Apollo 13, 1969.

ƒ Failure is an option, we just don’t want it to happen very often. ƒ Dick Veldkamp, 2006.

ƒ How often may be set by:

ƒ public safety considerations: ca p = 10-5 per year

(15)

Experiment: 100.000 times

1. Build a turbine

2. Measure wind load and blade strength

3. Result (failure yes/no)

2. Simulate wind load and blade strength by

Monte Carlo analysis

(16)

Example: base case

ƒ IEC II design for and IEC class II site

ƒ Wind speed: Udesign = Usite = 8.5 m/s at hub height

ƒ Turbulence intensity: Idesign = 18%, Isite = 16% + 2% for windfarm wakes

ƒ Wind spectrum shape: Mann’s

Γ

design= 3.9 (Kaimal),

Γ

site = 3

(17)

Coefficients of variation (influence on loads)

Parameter Edge moment Flap moment

Wind (speed and turbulence)

0.04 0.04

Aerodynamic model 0.03 0.10

FEM 0.06 0.06

Stress factor (load sequence)

0.10 0.10

(18)
(19)
(20)
(21)

Aerodynamic model

ƒ Edge moments: COV = 0.03

ƒ Flap moments: COV = 0.10

ƒ Cause: BEM is not good enough

(22)

Fatigue

ƒ Stress factor: influence of load sequence and how cumujlative fatigue damage is calculated: COV = 10% (spread on life L10%/L90% = 10)

(23)

Required safety factor: target p

1

= 10

-4

per year

Parameter known

exactly

Edge moment Flap moment

None 1.33 1.45

Aerodynamic model 1.33 1.34

FEM 1.27 1.40

Stress factor 1.18 1.33

(24)
(25)
(26)

To do

ƒ Common failure database?

ƒ Blind FEM testing

ƒ Aerodynamic model

Cytaty

Powiązane dokumenty

Deze ontwikkelingen zijn voor Tebodin aanleiding geweest om in samenwerking met de Technische Universiteit Delft een gestructureerde methode te ontwikkelen voor het ontwerpen

Udział procentowy poszczególnych składników w wartości sumy dla wszyst­ kich pięciu miar rozwoju jest taki sam jak udział procentowy poszczególnych kwot nagród w

In light of the considerable anisotropy evidenced by the experi- mental results, the statistical interpretation and calibration of structural design values of yielding

Wreszcie - już w dziedzinie mu- zyki - przejął Buczkowski od Cage'a kilka jego pomysłów: świeżo nabyty fortepian spreparował sobie „na gitarowo" (s. 89), a utwór Kro-

In this thesis, the author provides a tool for tracing distributed actor systems – Akka Tracing Tool – a library that allows users to generate a traces graph during actor

To insure the robust design of the bevel gear transmission sys- tem, a reliability-based optimal design model is established here by introducing the reliability sensitivity

Minimum discrete weight of the composite floor, under constraints imposed on displacement and accelerations is found. The considered structure was sub- jected to dynamic

The paper is concerned with a minimum weight design of composite floors subjected to dynamic loading, deriving from the rhythmic activity of a group of people. The floor