• Nie Znaleziono Wyników

Wave resonances in a narrow gap between two barges using fully nonlinear numerical simulation

N/A
N/A
Protected

Academic year: 2021

Share "Wave resonances in a narrow gap between two barges using fully nonlinear numerical simulation"

Copied!
11
0
0

Pełen tekst

(1)

Applied Ocean Research 50 (2015) 119-129

E L S E V I E R

Contents lists available at ScienceDirect

Applied Ocean Research

journal homepage: www.elsevier.com/locate/apor

Wave resonances in a narrow gap betv\/een two barges using fully

nonlinear numerical simulation

X. Feng.W. Bai*

Department of Civil and Environtriental Engineering, National University of Singapore, Kent Ridge, Singapore J17576, Singapore

CrossMark

A R T I C L E I N F O Article history:

Received 27 March 2014

Received in revised form 6 January 2015 Accepted 9 January 2015

Available online 31 January 2015

Keywords: Side-by-side barges Gap resonance

Fully nonlinear simulation Stiff/soft spring

Nonlinear effect

A B S T R A C T

The traditional potential flow theory to describe fully nonlinear waves is reformulated by separating the contributions from incident and scattered waves, in order to improve the computational efficiency. The nonlinear incoming wave is specified explicitly and the modified nonlinear free surface boundary conditions for the scattered wave are expressed in the full Lagrangian description. At each time step only the scattered wave is solved using a mixed Eulerian-Lagrangian scheme by a higher-order boundary element method. The accuracy of the newly developed model is illustrated by comparisons with existing experimental and numerical data in the case of wave diffraction around an array of circular cylinders. Wave resonances in the gap between two side-by-side barges in beam seas, as in Molin et al. [1], are simulated with the barges subjected to regular waves. To clearly understand the gap resonant responses, long time simulations are performed to achieve final steady states, and the resonant mode shapes of the gap surface are presented. The gap free surface RAOs (Response Amplitude Operators) in the case of mild waves are found to agree well with linear calculations. The nonlinear effects on the resonant response due to the free surface conditions are then investigated. The first resonant frequency is found to shift but the peal< value is not changed much with increasing incoming wave steepness, which is known as stiff/soft spring behavior of a nonlinear system. Through the investigation of barges with different drafts, the stiff and soft spring behaviors are identified.

© 2015 Elsevier Ltd. All rights reserved,

1. I n t r o d u c t i o n

I n t h e last decade, w i t h t h e d e v e l o p m e n t o f o f f s h o r e t e c h n o l o g y and i n c r e a s i n g c o n s u m p t i o n o f o i l a n d gas, m o r e s i d e b y s i d e o p e r -ations h a v e b e e n a d o p t e d i n t h e nnarine i n d u s t r y . These o p e r a t i o n s c o u l d be, f o r i n s t a n c e , l i q u i d cargo o f f l o a d i n g f r o m a LNG-Carrier t o a FSRU i n close p r o x i m i t y , i n p r a c t i c e , s u c c e s s f u l e x e c u t i o n o f such o p e r a t i o n s r e q u i r e s n u m e r o u s c o n s i d e r a t i o n s i n c l u d i n g , f o r e x a m p l e , e n v i r o n m e n t a l c o n d i t i o n s , vessel a r r a n g e m e n t s , m o o r -i n g systems, o p e r a t -i o n p r o c e d u r e s a n d so o n . A m o n g o t h e r s , t h e r e s o n a n t p h e n o m e n o n associated w i t h t h e w a v e s i n a n a r r o w gap b e t w e e n t w o s i d e b y s i d e h u l l s m a y be a p r o b l e m . W h e n gap r e s -o n a n c e -occurs, h i g h w a v e m -o t i -o n s i n the gap c -o u l d be e x c i t e d a n d h e n c e large d r i f t f o r c e s m a y act o n t h e vessels. U r i l i z i n g t h e l i n e a r w a v e t h e o r y , M o l i n [ 2 ] d e r i v e d t h e f o r m u l a f o r e s t i m a t i n g t h e f r e q u e n c i e s o f r e s o n a n t m o d e s i n a m o o n p o o l v i a s o l v i n g a n e i g e n v a l u e p r o b l e m , w h i c h w a s e x t e n d e d t o gap resonances b y a m o d i f i c a t i o n i n t o an o p e n - e n d e d m o o n p o o l i n M o l i n et a l . [ 3 ] . Later o n t h e r e s o n a n t b e h a v i o r o f f l u i d i n t h e g a p has a t t r a c t e d m u c h

* Corresponding author, Tel,: +65 6516 2288, E-mail address: w,bai@nus,edu,sg (W, Bai),

0141 -1187/$ - see front matter © 2015 Elsevier Ltd, All rights reserved, http://dx.d0i.0rg/l 0,1016/j,apor.2015,01,003 a t t e n t i o n e s p e c i a i i y at t h e first m o d e or p i s t o n m o d e , w h e r e w a v e a m p l i f i c a t i o n s are m o r e s i g n i f i c a n t t h a n at o t h e r s . I n a b r o a d sense, t h e s i d e - b y - s i d e barges c o n f l g u r a t i o n is o n e t y p e o f s o - c a l l e d ' t r a p p i n g s t r u c t u r e ' . The e i g e n v a l u e p r o b l e m associated w i t h t r a p p i n g s t r u c t u r e s is n o t n e w , a n d p i o n e e r i n g w o r k b a s e d o n l i n e a r w a v e t h e o r y has p r o v i d e d a n a l y t i c a l s o l u -tions f o r t h e t r a p p i n g or r e s o n a n t f r e q u e n c i e s . For i n s t a n c e , L i n t o n a n d Evans [ 4 ] p r e s e n t e d t h e n e a r - t r a p p i n g p h e n o m e n o n a r o u n d a n a r r a y o f c i r c u l a r c y l i n d e r s . P o r t e r a n d Evans [ 5 ] s o l v e d w a v e s c a t t e r i n g b y v e r t i c a l b a r r i e r s , a n d M c l v e r [ 6 ] i n v e s t i g a t e d g e n e r a l t o r u s - l i k e s t r u c t u r e s . D i i e t o the c o m p l e x g e o m e t r y o f w a v e resonances i n t h e . g a p b e t w e e n t w o t h r e e d i m e n s i o n a l s i d e b y -side vessels, r e c e n t l y t h e p r o b l e m has b e e n m a i n l y s i m u l a t e d b y n u m e r i c a l m o d e l s based o n l i n e a r w a v e t h e o r y . E a r l i e r , N e w m a n a n d Sclavounos [ 7 ] m o d e l e d t w o close r e c t a n g u l a r barges b y a p a n e l m e t h o d a n d r e p o r t e d u n u s u a l l y h i g h w a v e e l e v a t i o n s i n t h e n a r r o w g a p as w e l l as large h y d r o d y n a m i c f o r c e s . Koo a n d K i m [ 8 ] i n v e s t i g a t e d t h e h y d r o d y n a m i c i n t e r a c t i o n s a n d c o u p l i n g e f f e c t s o f a m o o r e d FPSO-LNG s y s t e m w i t h h y d r o d y n a m i c c o e f f i c i e n t s o b t a i n e d f r o m t h e p a n e l p r o g r a m W A M I T . S u n e t a l . [ 9 ] u t i l i z e d t h e 3 D p r o g r a m DIFFRACT t o s i m u l a t e t w o a d j a c e n t barges a n d s u g g e s t e d t h a t b o t h first- a n d s e c o n d - o r d e r r e s o n a n c e s associated w i t h t h e g a p m a y e x i s t . H o w e v e r , a p p l i c a t i o n s o f l i n e a r p o t e n t i a l flow m o d e l s are r e p o r t e d t o p o t e n t i a l l y o v e r - p r e d i c t t h e w a v e responses, n a m e l y

(2)

120 X. Feng, W. Bai/Applied Ocean Researcli SO (2015) 119-129 RAOs (Response A m p l i t u d e O p e r a t o r s ) o f t h e f r e e s u r f a c e e l e v a -t i o n s i n -t h e gap a-t -t h e f r e q u e n c y o f -t h e p i s -t o n m o d e . C o n s e q u e n -t l y t h e m e a n d r i f t forces o n the h u l l s a n d s h i p m o t i o n s c o u l d v a r y m u c h f r o m t h e p r e d i c t i o n s . I n o r d e r to suppress t h e u n r e a l i s t i c w a v e ele-v a t i o n s p r o d u c e d f r o m l i n e a r m o d e l s , seele-veral m e t h o d s haele-ve b e e n d e v e l o p e d . H u i j s m a n s et a l . [ 1 0 ] a p p l i e d a r i g i d l i d o n t h e f r e e s u r -face b e t w e e n s i d e - b y - s i d e m o o r e d vessels. S u b s e q u e n t l y B u c h n e r e t a l . [ 1 1 ] n u m e r i c a l l y a n d e x p e r i m e n t a l l y i n v e s t i g a t e d t h e f l o a t -i n g LNG s y s t e m based o n t h e ' l -i d m e t h o d ' a n d p a r t -i a l l y j u s t -i f -i e d t h e a p p r o a c h o f a d a m p i n g l i d i n a p p l i c a t i o n s . W h i l e t h i s ' l i d m e t h o d ' is able t o suppress u n r e a l i s t i c values, i t does n o t h o w e v e r m a k e p h y s -ical sense. N e w m a n [ 1 2 ] also m o d e l e d a d a m p i n g l i d o n t h e gap s u r f a c e a n d used a g e n e r a l i z e d m o d e t e c h n i q u e t o c o m p u t e t h e l i d m o t i o n s . M e a n w h i l e , Chen [ 1 3 ] i n t r o d u c e d a d a m p i n g f o r c e t e r m i n t o t h e f r e e s u r f a c e b o u n d a r y c o n d i t i o n s , w h i c h w a s e x p l a i n e d as e n e r g y d i s s i p a t i o n . The e f f i c i e n c y o f t h e l i n e a r d i s s i p a t i o n t e r m w a s t h e n p r e s e n t e d b y F o u r n i e r et a l . [ 14] w i t h c o m p a r i s o n s t o t h e l i n e a r p r o g r a m s W A M I T a n d HYDROSTAR, as, w e l l as e x p e r i m e n t a l data. T h e r e a f t e r , P a u w et a l . [ 1 5 ] u t i l i z e d a s i m i l a r t e c h n i q u e t o p r e d i c t t h e w a v e response w i t h i n t h e gap o f s i d e - b y - s i d e m o o r e d vessels, at t h e r e s o n a n t f r e q u e n c i e s o f p i s t o n a n d s l o s h i n g m o d e s o b t a i n e d b y t h e a p p r o x i m a t e d f o r m u l a t i o n s o f M o l i n [ 2 ] . P a u w et a l . [ 1 5 ] , h o w e v e r , d e m o n s t r a t e d t h a t t h e r e is n o a p r i o r i m e t h o d o f d e t e r -m i n i n g t h e c o e f f i c i e n t o f t h e d a -m p i n g t e r -m unless c a l i b r a t e d b y e x p e r i m e n t a l tests. R e c e n t l y t h e p i s t o n m o d e o f w a t e r c o l u m n m o t i o n i n t h e gap w a s i n v e s t i g a t e d b y K r i s t i a n s e n a n d F a l t i n s e n [ 1 6 ] , w h o a d o p t e d a 2 D n u m e r i c a l w a v e t a n k m o d e l a n d c a p t u r e d viscous e f f e c t s b y m e a n s o f a v o r t e x t r a c k i n g m e t h o d . M e a n w h i l e , Lu et a l . [ 1 7 ] e m p l o y e d a viscous fluid m o d e l to s t u d y the 2 0 w a v e i n t e r a c t i o n s w i t h c l o s e l y floaflng b o x e s . I t w a s r e p o r t e d t h a t i n t h e 2 D case gap e l e v a t i o n c a l c u l a t e d b y l i n e a r p o t e n t i a l t h e o r y c o u l d b e c o m e u n r e a s o n a b l y h i g h ( o v e r f o u r times h i g h e r t h a n m o d e l t e s t s ) i f t h e gap is s u f f i c i e n t l y n a r r o w . T w o - d i m e n s i o n a l m o d e l s , h o w e v e r , are s o m e w h a t l i m i t e d i n c a p t u r i n g real 3 D c h a r a c t e r i s t i c s o f t h e fluid i n t h e gap, e s p e c i a l l y i n r e p r e s e n t i n g h i g h e r - r e s o n a n t m o d e s . C o m p a r i s o n s b e t w e e n 3 D l i n e a r s i m u l a t i o n a n d e x p e r i m e n t a l tests i n M o l i n et a l . [ 1 ] s h o w t h a t i n d e e d , l i n e a r m o d e l s t e n d t o o v e r - p r e d i c t t h e r e s o n a n t w a v e r e s p o n s e ( a b o u t 40% l a r g e r at peaks), y e t l i n e a r results o f gap f r e e surface RAOs i n 3 D m o d e l s m a y n o t be as u n r e a l i s t i c as i n 2 D s i m u l a t i o n s .

A s t r a i g h t f o r w a r d e x p l a n a t i o n f o r t h e d i s c r e p a n c y is t h a t t h e gap s u r f a c e e l e v a t i o n s i n l i n e a r t h e o r y are o v e r - p r e d i c t e d d u e t o t h e n e g l e c t o f fluid v i s c o s i t y i n t h e p o t e n t i a l flow m o d e l , i.e. v o r t e x s h e d d i n g a n d flow s e p a r a t i o n at s h a r p edges a n d c o r n e r s . O n t h e o t h e r h a n d , i t is k n o w n t h a t w i t h i n t h e f r a m e w o r k o f p o t e n t i a l flow t h e o r y t h e f r e e s u r f a c e b o u n d a r y c o n d i t i o n s are n o n l i n e a r , w h i c h are s i m p l i f i e d i n t h e l i n e a r a p p r o x i m a t i o n . T h e r e f o r e , b o t h w a v e n o n l i n e a r i t y a n d fluid v i s c o s i t y m a y c o n t r i b u t e t o t h e d i s c r e p a n c y b e t w e e n l i n e a r r e s u l t s a n d m e a s u r e m e n t s . Some research w o r k has b e e n d o n e to t h r o w l i g h t o n t h e i n f l u e n c e o f viscous e f f e c t s a n d n o n l i n e a r e f f e c t s o f t h e f r e e s u r f a c e . The v o r t e x - s h e d d i n g e f f e c t s w e r e e v a l u a t e d i n F a l t i n s e n e t a l . [ 1 8 ] b y a d i s c r e t e - v o r t e x m e t h o d f o r a s i m p l e case, i.e. a 2 D m o o n p o o l f o r m e d b y t w o r e c t a n g u l a r h u l l s u n d e r g o i n g heave m o t i o n s . C o m p a r i s o n s w i t h e x p e r i m e n t s d e m o n s t r a t e d t h a t t h e a g r e e m e n t o f r e s o n a n t f r e -quencies is reasonable f o r s m a l l f o r c i n g a m p l i t u d e s , w h i l e t h e d i s c r e p a n c y increases f o r l a r g e r e x c i t a t i o n s a n d a w i d e r m o o n p o o l . A d d i n g v o r t e x - s h e d d i n g e f f e c t s i n t h o s e cases does n o t suppress the d i s c r e p a n c y . The r e a s o n m i g h t be t h e r e l a t i v e l y s m a l l f o r c i n g a m p l i t u d e s used i n t h e i r e x p e r i m e n t s a n d t h e q u a d r a t i c v e l o c i t y d e p e n d e n c e o f the v o r t e x - i n d u c e d forces, as e x p l a i n e d b y F a l t i n s e n e t a l . [ 1 8 ] . It is o f i n t e r e s t t h a t h i g h e r h a r m o n i c s i n time h i s t o r i e s o f w a v e e l e v a t i o n s w e r e c a p t u r e d i n t h e i r m e a s u r e m e n t s , w h i c h h i g h -l i g h t e d possib-le effects o f f r e e surface n o n -l i n e a r i t i e s . I n K r i s t i a n s e n a n d Faltinsen's [ 1 9 ] v o r t e x t r a c k i n g analysis, i t w a s f o u n d t h a t flow

s e p a r a t i o n m a i n l y accounts f o r the d i s c r e p a n c y o f t h e gap surface a m p l i f i c a t i o n b e t w e e n l i n e a r results a n d m e a s u r e m e n t s , a n d n o n -l i n e a r f r e e s u r f a c e b o u n d a r y c o n d i t i o n s are o f m i n o r i m p o r t a n c e . H o w e v e r , i t s h o u l d be n o t e d t h a t t h e p r o p a g a t i n g w a v e s i n t h e i r m o d e l tests are o f r e l a t i v e l y l o w w a v e steepness, I<A a p p r o x i m a t e l y f r o m 0.3% to 1.0% {k is w a v e n u m b e r a n d A w a v e a m p l i t u d e ) . T h e r e -f o r e , n o n l i n e a r -f r e e s u r -f a c e e -f -f e c t s m a y n o t be s i g n i -f i c a n t i n t h e i r cases.

I n a r e c e n t s t u d y o f K r i s t i a n s e n a n d Faltinsen [ 2 0 ] , t h e y u t i l i z e d a d o m a i n - d e c o m p o s i t i o n a p p r o a c h , w h i c h c o m b i n e s p o t e n t i a l flow t h e o r y a n d CFD, t o analyze t h e 2 D gap resonance p r o b l e m . They a g a i n c o n c l u d e d t h a t flow s e p a r a t i o n at b a r g e / s h i p b i l g e s e x p l a i n s t h e d i s c r e p a n c y o f peak r e s o n a n t response b e t w e e n l i n e a r p o t e n t i a l flow m o d e l a n d e x p e r i m e n t s . I n t h e t h r e e d i m e n s i o n a l , e x p e r i -m e n t a l a n d n u -m e r i c a l i n v e s t i g a t i o n i n M o l i n et a l . [ 1 ] , barges w i t h b o t h r o u n d e d a n d s q u a r e bilges w e r e s i m u l a t e d a n d e x p e r i m e n t a l r e s u l t s suggested t h a t t h e d i s c r e p a n c y is m o s t l y d u e t o t h e flow s e p a r a t i o n at the b a r g e b i l g e s . N o t m u c h w o r k , h o w e v e r , has b e e n p u b l i s h e d c l o s e l y i n v e s t i -g a t i n -g the n o n l i n e a r e f f e c t s o f f r e e surface o n t h e -gap resonance. This is one o f o u r m a j o r i n t e r e s t s h e r e i n m o d e l i n g t h e g a p res-onance, w h e r e t h e gap s u r f a c e behaves as a m a s s - s p r i n g s y s t e m (e.g. i n its p i s t o n m o d e ) . T h e o r e t i c a l analysis o f s i m i l a r n o n l i n e a r m a s s s p r i n g s y s t e m s can be f o u n d i n V i n j e [ 2 1 ] f o r a n a r r o w m o o n -p o o l and M i l e s [ 2 2 ] f o r a c i r c u l a r w e l l , as w e l l as m o r e d e t a i l s i n F a l t i n s e n a n d T i m o k h a [ 2 3 ] f o r s l o s h i n g . I n o r d e r to assess t h e n o n -l i n e a r effects o f t h e f r e e surface i n t h r e e - d i m e n s i o n a -l s i t u a t i o n s , the s a m e t w o barges w i t h square b i l g e s c o n s i d e r e d as i n M o l i n et al. [ 1 ] are m o d e l e d i n t h i s s t u d y , w i t h w a v e steepness v a r y i n g f r o m 0.34% to 6.7%. Calculations w i t h a s m a l l f r e q u e n c y step near the p i s t o n m o d e r e s o n a n t f r e q u e n c y are p e r f o r m e d , w i t h s u f f i c i e n t l y l o n g time s i m u l a t i o n s i n o r d e r t o achieve s t e a d y state. C a r e f u l p l o t s o f gap peak response near t h e resonance s h o w t h a t t h e res-o n a n t f r e q u e n c y s l i g h t l y s h i f t s t res-o h i g h e r values as w a v e steepness increases, w h i l e t h e peak responses are n o t s i g n i f i c a n t i y r e d u c e d . This s t i f f s p r i n g b e h a v i o r is also o b s e r v e d i n t h e d r i f t f o r c e s . W i t h t h e change o f barge d r a f t , t h e s t i f f s p r i n g b e h a v i o r w i l l t u r n t o a s o f t s p r i n g b e h a v i o r w h e n t h e b a r g e d r a f t over l e n g t h r a t i o is s u f f i c i e n t l y large.

T h e a i m o f t h i s p a p e r is t o s t u d y t h e e f f e c t s o f f r e e s u r f a c e n o n -l i n e a r i t y o n t h e w a v e resonance i n a gap b e t w e e n t w o barges. To achieve this, a f u l l y n o n l i n e a r p o t e n t i a l flow m o d e l capable o f r u n -n i -n g l o -n g time s i m u l a t i o -n s e f f i c i e -n t l y is d e v e l o p e d b y s e p a r a t i -n g t h e t o t a l w a v e i n t o a p r e s c r i b e d i n c o m i n g w a v e a n d a n u n k n o w n s c a t t e r e d w a v e . The p r e s e n t n u m e r i c a l m o d e l is a f u r t h e r e x t e n s i o n o f t h e n u m e r i c a l w a v e t a n k ( N W T ) d e v e l o p e d b y Bai a n d Eatock T a y l o r [ 2 4 , 2 5 ] . I n t h e p r e s e n t m o d e l , the c o m p u t a t i o n a l d o m a i n is c i r c u l a r a n d a d a m p i n g z o n e is p l a c e d o n t h e f r e e s u r f a c e near t h e t a n k w a l l t o a b s o r b t h e o u t g o i n g s c a t t e r e d w a v e s u c h t h a t the t a n k w a l l e f f e c t can be e l i m i n a t e d . T h e flow field i n t h e n o n l i n e a r i n c i d e n t w a v e is s p e c i f i e d e x p l i c i t l y , t h u s o n l y t h e s c a t t e r e d w a v e needs t o be s o l v e d . F e r r a n t e t a l . [ 2 6 ] a p p l i e d a s i m i l a r a p p r o a c h i n t h e i r n o n l i n e a r timedomain m o d e l t o s i m u l a t e t h e w a v e d i f f r a c -t i o n a r o u n d a v e r -t i c a l c y l i n d e r , w h i c h d e m o n s -t r a -t e d a n u m b e r of p r a c t i c a l advantages i n t e r m s o f accuracy a n d c o m p u t a t i o n a l e f f i -c i e n -c y . I n t h e i r m o d e l , t h e s e p a r a t i o n o f t h e i n -c i d e n t w a v e a n d the s c a t t e r e d w a v e is i m p l e m e n t e d i n a s e m i - L a g r a n g i a n f o r m u l a t i o n of t h e n o n l i n e a r f r e e surface b o u n d a r y c o n d i t i o n s , w h e r e t h e h o r i z o n -t a l m o -t i o n s o f -t h e f r e e s u r f a c e p o i n -t s are i n h i b i -t e d a n d -t h e v e r -t i c a l c o o r d i n a t e s b e c o m e s i n g l e - v a l u e d as z = f ; ( x , y, f ) . This a p p r o a c h c o u l d lead t o d i f f i c u l t i e s i n s i m u l a t i n g m o v i n g s t r u c t u r e s w h e r e i n t e r s e c t i o n lines b e t w e e n t h e fluid a n d t h e s t r u c t u r e s are n o t h o r -i z o n t a l l y f-ixed. I n t h -i s s t u d y w e p r e s e n t f o r m u l a t -i o n s -i n a f u l l y L a g r a n g i a n d e s c r i p t i o n o f t h e f r e e surface b o u n d a r y c o n d i t i o n s , w h i c h w e suggest is m o r e r o b u s t f o r w a t e r w a v e - b o d y i n t e r a c t i o n p r o b l e m s .

(3)

X. Feng, W. Bai/Applied Ocean Researdi 50 (2015) 119-129 121

2. M a t h e m a t i c a l f o r m u l a t i o n

2.1. Separation of incident and scattered waves

A c i r c u l a r n u m e r i c a l w a v e t a n k ( N W T ) is d e f i n e d t o i n v e s t i g a t e the w a v e - b o d y i n t e r a c t i o n p r o b l e m . Fig. 1(a) presents a p l a n v i e w o f t h e N W T m o d e l , i n c l u d i n g a c i r c u l a r tank, t w o r e c t a n g u l a r barges, a f r e e w a t e r surface a n d a d a m p i n g z o n e o n t h e f r e e surface near t h e t a n k side w a l l . The o r i g i n o f a c o o r d i n a t e s y s t e m Oxyz is p l a c e d at t h e c e n t e r o f t h e gap o n t h e c a l m w a t e r surface, w i t h zaxis p o i n t -ing u p w a r d s . The d i r e c t i o n o f t h e i n c i d e n t w a v e is d e n o t e d b y p m e a s u r e d f r o m t h e p o s i t i v e x d i r e c t i o n , a n d t h e d a m p i n g z o n e has a w i d t h o f o n e w a v e l e n g t h . Before w e p e r f o r m t h e s e p a r a t i o n o f an i n c o m i n g flow a n d a s c a t t e r e d flow, w e p r e s e n t b r i e f l y t h e g o v -e r n i n g -e q u a t i o n s f o r f u l l y n o n l i n -e a r p o t -e n t i a l flow. F o l l o w i n g t h -e a s s u m p t i o n s o f p o t e n t i a l flow t h e o r y , i.e. t h e fluid is i n c o m p r e s s -ible, i n v i s c i d a n d flow i r r o t a t i o n a l w i t h i n t h e f l u i d d o m a i n , t h e flow v e l o c i t y p o t e n t i a l ({){x, y, z, t) satisfies t h e Laplace e q u a t i o n : V^(j) = 0 ( 1 ) On t h e f r e e w a t e r surface Sp, t h e k i n e m a t i c a n d d y n a m i c w a v e c o n d i t i o n s i n t h e Lagrangian d e s c r i p t i o n are: ^ = _ g z + i v 0 . V 0 , ( 3 ) w h e r e D / D f is the m a t e r i a l d e r i v a t i v e , X d e n o t e s t h e p o s i t i o n o f w a t e r p a r t i c l e s o n t h e f r e e w a t e r surface, t is t h e time a n d g is t h e g r a v i t a t i o n a l a c c e l e r a t i o n . N o - f l u x c o n d i t i o n s o n t h e fixed s o l i d b o u n d a r i e s Sr are a p p l i e d ón (4) w h e r e n = (nx, Uy, nz) is t h e n o r m a l u n i t v e c t o r p o i n t i n g o u t o f t h e fluid d o m a i n . The i n i t i a l c o n d i t i o n is t a k e n as:

(p = 0 o n z = 0 a t t = 0 ( 5 )

I t is b o t h p r a c t i c a l a h d c o m p u t a t i o n a l l y e c o n o m i c a l to sepa-r a t e t h e t o t a l flow i n t o an i n c i d e n t a n d s c a t t e sepa-r e d flow. This has b e e n w i d e l y a p p l i e d i n t h e l i n e a r d i f f r a c t i o n / r a d i a t i o n w a v e t h e o r y . W h e n w e r e w r i t e t h e t o t a l v e l o c i t y p o t e n t i a l as ( 6s a n d t h e p o s i t i o n o f w a t e r particles o n t h e f r e e w a t e r surface as X = X i + X s , t h e g o v e r n i n g Laplace e q u a t i o n r e m a i n s l i n e a r a n d t h e s c a t t e r e d p o t e n t i a l 0 s s a t i s f i e s : :0. (6) S u b s t i t u t i n g the t o t a l p o t e n t i a l a n d p o s i t i o n i n t o t h e c o r r e -s p o n d i n g b o u n d a r y c o n d i t i o n -s i n Eq-s. ( 2 ) - ( 4 ) lead-s t o t h e f o l l o w i n g b o u n d a r y c o n d i t i o n s : D X i DXs (7) V(/) onSp, (8) (9) w h e r e t h e s u b s c r i p t s '1' a n d 'S' d e n o t e t h e q u a n t i t i e s f o r i n c o m i n g a n d s c a t t e r e d flows r e s p e c t i v e l y . I f t h e p r e s c r i b e d i n c o m i n g flow satisfies t h e f r e e surface b o u n d a r y c o n d i t i o n s , D X | / D t = V 0 / a n d D 0 i / D t = g z i + ( l / 2 ) V i ^ i i • V<^i o n t h e f r e e w a t e r surface, t h e c o r -r e s p o n d i n g n e w b o u n d a -r y c o n d i t i o n s f o -r t h e s c a t t e -r e d p o t e n t i a l can be e x p r e s s e d as: D f = Vcj)-y<j)\ onSp, ^ = -g2s + i v < ^ . V < / . - i v < ^ , . V < / . , 9ii dn onSp, (11) (12) w h e r e b o t h t h e t o t a l flow v e l o c i t y V 0 f r o m t h e t o t a l p o t e n t i a l 0 a n d t h e v e l o c i t y c o m p o n e n t V*^; d u e t o the i n c i d e n t w a v e p o t e n t i a l (pi are c a l c u l a t e d o n t h e real t i m e t o t a l f r e e w a t e r surface Sp. The s a m e c o n c e p t has also b e e n used i n Ferrant et a l . [ 2 6 ] , e x c e p t f o r t h e i r use o f t h e s e m i - L a g r a n g i a n d e s c r i p t i o n . The n o r m a l v e l o c i t y o f t h e i n c o m i n g w a v e o n t h e s o l i d s u r f a c e SR can be o b t a i n e d e x p l i c i t i y .

D u r i n g a c e r t a i n p e r i o d at t h e b e g i n n i n g o f t h e s i m u l a t i o n , a r a m p f u n c r i o n is i m p o s e d o n t h e s p e c i f i e d i n c i d e n t w a v e fleld to ensure t h a t t h e i n c i d e n t flow s m o o t h l y d e v e l o p s f r o m the c a l m w a t e r s u r f a c e t o a f u l l y p e r i o d i c w a v e . The s a m e cosine r a m p i n g f u n c t i o n as i n Bai a n d Eatock T a y l o r [ 2 4 ] is u t i l i z e d a n d t h e r a m p d u r a t i o n is c h o s e n as t w o t i m e s t h e i n c i d e n t w a v e p e r i o d . A t t h e d a m p i n g zone near t h e t a n k w a l l o n l y t h e s c a t t e r e d w a v e w i l l be d a m p e d o u t . T h e r e f o r e , t h e f r e e surface b o u n d a r y c o n d i t i o n s i n Eqs. (10) a n d ( 1 1 ) are m o d i f i e d t o i n c l u d e t h e a r t i f i c i a l d a m p i n g i n t h e d a m p i n g area, a n d b e c o m e DXs Dt = V 0 - V 0 1 - v ( r ) X s onSp, ^ = - g z s + l v 0 . V 0 - l v < ^ , . V 0 , - v ( r ) 0 s onSp, (13) (14) (10) w h e r e v ( r ) is a d a m p i n g c o e f f i c i e n t c a l c u l a t e d b y Eq. ( 3 0 ) i n Bai a n d Eatock T a y l o r [ 2 4 ] . The e f f i c i e n c y has b e e n d e m o n s t r a t e d i n [ 2 4 , 2 6 ] . A t a g i v e n t i m e step, t h e c o m p u t a t i o n a l m e s h is g e n e r a t e d o n t h e t o t a l f r e e w a t e r surface, o n w h i c h t h e s c a t t e r e d p o t e n t i a l is k n o w n f r o m t h e p r e v i o u s time step. By s o l v i n g t h e b o u n d a r y v a l u e p r o b l e m f o r t h e s c a t t e r e d w a v e , t h e n o r m a l d e r i v a t i v e o f t h e scat-t e r e d p o scat-t e n scat-t i a l can be o b scat-t a i n e d . Based o n scat-t h i s o b scat-t a i n e d d e r i v a scat-t i v e , t h e t o t a l flow v e l o c i t y is c a l c u l a t e d o n t h e t o t a l f r e e s u r f a c e . I n t h e c a l c u l a t i o n o f t o t a l flow v e l o c i t y t h e i n c i d e n t w a v e v e l o c i t y a n d p o t e n t i a l are r e q u i r e d , b o t h o f w h i c h are e v a l u a t e d o n t h e t o t a l f r e e w a t e r surface. By t h e t i m e i n t e g r a t i o n o f Eqs. ( 1 0 ) a n d ( 1 1 ) , t h e p o s i t i o n a n d p o t e n t i a l o f t h e scattered w a v e c a n be u p d a t e d . C o n -s e q u e n t l y t h e n e w t o t a l f r e e w a t e r -s u r f a c e can be d e t e r m i n e d b y s u p e r i m p o s i n g t h e i n c i d e n t w a v e e l e v a t i o n , a n d t h e c o m p u t a t i o n can p r o c e e d t o t h e n e x t time step.

To solve t h e b o u n d a r y i n t e g r a l e q u a t i o n f o r t h e s c a t t e r e d w a v e , t h e h i g h e r - o r d e r b o u n d a r y e l e m e n t m e t h o d is e m p l o y e d , w h e r e t h e s u r f a c e o v e r w h i c h t h e i n t e g r a l is p e r f o r m e d is d i s c r e t i z e d b y q u a d r a t i c i s o p a r a m e t r i c e l e m e n t s . I n p a r t i c u l a r , s t r u c t u r e d 8 - n o d e q u a d r i l a t e r a l e l e m e n t s are d i s t r i b u t e d o n t h e v e r t i c a l w a l l s such as t h e t a n k w a l l a n d b o d y v e r t i c a l surfaces. O n t h e f r e e s u r f a c e Sp as w e l l as o n t h e b a r g e b o t t o m s , u n s t r u c t u r e d 6 n o d e t r i a n g u l a r e l e -m e n t s are g e n e r a t e d b y u s i n g t h e D e l a u n a y t r i a n g u l a t i o n -m e t h o d . U n s t r u c t u r e d t r i a n g u l a r m e s h e s have p r o v e n t o be m o r e r o b u s t t o t h e c h a n g e o f b o u n d a r y shapes t h a n q u a d r i l a t e r a l meshes. M e s h d e n s i t y is c o n t r o l l e d b y t h e m e s h size at t h e b o u n d a r i e s . The w h o l e b o u n d a r y o f t h e d o m a i n is d i v i d e d i n t o several p a t c h e s o n w h i c h t h e m e s h e s c a n be a d j u s t e d a c c o r d i n g l y s u c h t h a t w e are able t o m a n u a l l y c o n t r o l the m e s h e s o n each p a t c h . Near t h e s t r u c t u r e s w h e r e h i g h m e s h r e s o l u t i o n is r e q u i r e d , f o r i n s t a n c e o n t h e g a p surface, m o r e e l e m e n t s can be d i s t r i b u t e d ; w h i l e o n t h e f r e e s u r -face n e a r t h e t a n k w a l l w h e r e t h e s c a t t e r e d w a v e w i l l be d a m p e d out, m e s h size can be large to m a x i m i z e c o m p u t a t i o n a l e f f i c i e n c y . A n e x a m p l e o f a 3 D m e s h f o r a w a v e p a s s i n g s i d e - b y - s i d e barges is s h o w n i n Fig. 1(b), w h e r e i t is seen t h a t a h i g h d e n s i t y o f e l e m e n t s is d i s t r i b u t e d n e a r t h e t w o barges. Once t h e s c a t t e r e d w a v e p o t e n -t i a l a n d v e l o c i -t y are o b -t a i n e d b y s o l v i n g a se-t o f algebraic l i n e a r e q u a t i o n s , t h e h y d r o d y n a m i c forces a c t i n g o n t h e s t r u c t u r e s c a n be c o m p u t e d b y i n t e g r a t i n g t h e pressure o v e r t h e b o d y surfaces.

(4)

122 X. Feng, W. Bai/Applied Ocean Researdi 50 (2015) 119-129 T h e Standard 4 t h - o r d e r R u n g e - K u t t a s c h e m e is e m p l o y e d i n t h e p r e s e n t m o d e l to u p d a t e t h e p o t e n t i a l a n d p o s i t i o n o f t h e s c a t t e r e d w a v e . I n o r d e r t o achieve a l o n g - t i m e s i m u l a t i o n , m e s h r e g e n e r a t i o n o n t h e f r e e surface is r e q u i r e d t o m i t i g a t e t h e s a w -t o o -t h n u m e r i c a l i n s -t a b i l i -t y , a n d -t h i s is i m p l e m e n -t e d b y a d o p -t i n g t h e L a p l a c i a n s m o o t h i n g t e c h n i q u e t o o b t a i n t h e n e w n o d e s o n t h e f r e e s u r f a c e . The v a r i a b l e s at the n e w nodes are o b t a i n e d f r o m i n t e r p o l a t i o n w i t h those o f t h e o l d ones. D e t a i l e d n u m e r i c a l i m p l e -m e n t a t i o n s are p r e s e n t e d i n Bai and E a t o c k T a y l o r [ 2 4 , 2 5 ] , w h e r e s e v e r a l v a l i d a t i o n studies w e r e c o n d u c t e d f o r s i m p l e g e o m e t r i e s .

2.2. Prescribed incident wave models

T h e a b o v e r e f o r m u l a t e d b o u n d a r y v a l u e p r o b l e m f o r s o l v i n g t h e s c a t t e r e d w a v e is e q u i v a l e n t t o t h a t f o r t h e o r i g i n a l t o t a l f l o w i f t h e i n c i d e n t f l o w satisfies t h e Laplace e q u a t i o n a n d a l l t h e f u l l y n o n l i n -ear b o u n d a r y c o n d i t i o n s . The c o n v e n i e n c e o f r e p r e s e n t i n g d i f f e r e n t sea states b y p r e s c r i b i n g s p e c i f i c i n c i d e n t w a v e s is o n e o f t h e i m p o r -t a n -t f e a -t u r e s o f -t h e p r e s e n -t m o d e l . P r a c -t i c a l l y , -t h e i n c i d e n -t w a v e s can be d e s c r i b e d b y a n y w a v e m o d e l . For w e a k l y n o n l i n e a r w a v e s , a Stokes m o d e l ( 5 t h o r d e r f o r i n s t a n c e ) m i g h t be u t i l i z e d . The t r a d e -o f f is t h a t t h e t -o t a l f l -o w is t h e n a p p r -o x i m a t e d t -o t h e e x t e n t t h a t t h e i n c i d e n t flow is a p p r o x i m a t e d .

I n all t h e cases s t u d i e d i n this paper, t h e i n c i d e n t w a v e s are p r o p a g a t i n g i n r e l a t i v e l y d e e p w a t e r a n d w a v e steepness is n o t v e r y h i g h . To s o m e w h a t s i m p l i f y t h e m o d e l , a 5 t h - o r d e r Stokes w a v e is i m p o s e d i n t h e fluid d o m a i n as the n o n l i n e a r i n c i d e n t flow,

3 . V a l i d a t i o n a n d m e s h c o n v e r g e n c e W e first i n v e s t i g a t e t h e w e a k l y n o n l i n e a r case o f s e c o n d - o r d e r n e a r - t r a p p i n g associated w i t h an a r r a y o f f o u r c y l i n d e r s . T h i s is t o v a l i d a t e t h e n e w l y d e v e l o p e d n u m e r i c a l m o d e l , w h e r e h i g h e r h a r -m o n i c s are o f i n t e r e s t a n d p l e n t y o f a n a l y t i c a l a n d e x p e r i -m e n t a l r e s u l t s are a v a i l a b l e f o r c o m p a r i s o n . S u c h n e a r t r a p p i n g is a r e s -o n a n t p h e n -o m e n -o n s i m i l a r t -o t h e gap res-onance. I n t h i s case, t h e f o u r b o t t o m - m o u n t e d c i r c u l a r c y l i n d e r s are o f r a d i u s a = 0.203 m , s t a n d i n g at t h e corners o f a square 4a x 4a, i n a w a t e r d e p t h d=3a. The s e c o n d o r d e r a n a l y t i c a l s o l u t i o n i n M a l e n i c a et al. [ 2 7 ] d e m o n -s t r a t e d a -s e c o n d - o r d e r n e a r - t r a p p e d m o d e at t h e i n c i d e n t w a v e f r e q u e n c y to = 0.468 i n a 4 5 ° h e a d i n g w a v e . This is t h e case t e s t e d i n t h e e x p e r i m e n t s i n O h l et al. [ 2 8 ] w i t h a n i n c i d e n t w a v e o f steepness /</l = 0.126, a n d h e r e is s i m u l a t e d f o r c o m p a r i s o n . M o r e i n f o r m a -t i o n o n -t h e n e a r - -t r a p p i n g a n d -t h e c o n f i g u r a -t i o n s o f -t h i s case can be f o u n d i n Bai e t al. [ 2 9 ] . I n t h e i r analysis, w h e r e a r e c t a n g u l a r n u m e r i c a l w a v e t a n k w a s a d o p t e d a n d t h e p r o p a g a t i n g m o n o c h r o -m a t i c w a v e w a s g e n e r a t e d b y a p i s t o n - l i k e w a v e -maker, a l o n g ^ 0 — Baie/al. (2014) Present — Baie/al. (2014) Present

'•| ft'

n<

ft"

u\

A''

A"

h\

ft''

A 1' ' • ( ' 1 ' ' ' ' ' ' ' 1 • / " ' . ; ; ' . A ;

"

A'l

i\' lv li' 111' Vl

IV'

111' M l 1'

A'

| i ', ! 'i

/' '

i'l,

I'l'i

in' i' 1 ' ' ' ' ,' >' '/ \ ' V w, V V, V ' f Ml

t'

1 , 1 , 1 , 1 , 1 , 1 , 1 , ' ' ' 1 ' 1 1 \ ' 1 ' ' ' ' ' »' w , 1 , 1 , 1 , 1

"

A'l

i\' lv li' 111' Vl

IV'

111' M l 1'

A'

| i ', ! 'i

/' '

i'l,

I'l'i

in' i' 1 ' ' ' ' ,' >' '/ \ ' V w, V V, V ' f Ml

t'

1 , 1 , 1 , 1 , 1 , 1 , 1 ,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t/T

Fig. 2. Time liistory of wave elevation at the center of cylinder array with ka = 0,468 in 45° heading wave, s i m u l a t i o n time w a s r e q u i r e d b e f o r e t h e s t e a d y - s t a t e r e g i m e w a s a c h i e v e d . As e x p e c t e d , i t is f o u n d t h a t the n e w m o d e l d e v e l o p e d i n t h e p r e s e n t p a p e r c a n have a s m a l l e r c o m p u t a t i o n a l d o m a i n , a n d p r o v i d e s t e a d y state results m o r e q u i c k l y . Fig. 2 p l o t s t h e n o n - d i m e n s i o n a l t i m e h i s t o r y o f w a v e eleva-t i o n aeleva-t eleva-t h e c e n eleva-t e r o f eleva-t h e array. I eleva-t can be seen eleva-t h a eleva-t eleva-t h e p r e s e n eleva-t r e s u l t s are v e r y close t o those i n Bai et a l . [ 2 9 ] ( n o t e t h a t t h e y h a v e a phase s h i f t as e x p e c t e d ) a f t e r t h e s t e a d y states have b e e n reached, y e t a s m a l l e r n u m b e r o f w a v e p e r i o d s is r e q u i r e d f o r t h e p r e s e n t m o d e l t o a c h i e v e the flnal steady state. A s i m i l a r c o m p a r -i s o n -is m a d e -i n F-ig. 3 f o r t h e d -i m e n s -i o n l e s s h o r -i z o n t a l w a v e force o n the u p s t r e a m c y l i n d e r . A l i k e l y e x p l a n a t i o n f o r t h e s m a l l d i f -f e r e n c e o b s e r v e d i n Figs. 2 a n d 3 m a y be t h e side w a l l e -f -f e c t s i n t h e n u m e r i c a l m o d e l o f Bai et a l . [ 2 9 ] , w h i l e t h e c u r r e n t s i m u l a -t i o n is m o r e s u i -t a b l e f o r o p e n sea c o n d i -t i o n s . As i n [ 2 9 ] , w e have u s e d FFT t e c h n i q u e s t o e x t r a c t f r o m t h e time h i s t o r y o f w a v e ele-v a t i o n seele-veral h i g h e r h a r m o n i c s , as i n d i c a t e d i n Fig. 4 . This s h o w s ( s u i t a b l y n o n - d i m e n s i o n a l i s e d ) d i f f e r e n t h a r m o n i c c o m p o n e n t s o f w a v e e l e v a t i o n a l o n g t h e d i a g o n a l w i t h i n t h e c y l i n d e r a r r a y at the s e c o n d - o r d e r n e a r - t r a p p i n g f r e q u e n c y c o r r e s p o n d i n g t o ka = 0.468. T h e first, second a n d t h i r d h a r m o n i c s are t h e c o m p o n e n t s o f f u l l y n o n l i n e a r r e s u l t s at s i n g l e - , d o u b l e - , a n d t r i p l e t h e f r e q u e n c y o f , 5 : 8 Bai elar (2014) 8 Present 4

" A '

A' (i; fl; ffi A'' /'Ï tï tï' /'ï

0 " 1 'i ' ' A ' / v /' ' M ' 11 ', 1,'I'l i ' T ' i ' f ' \',\\ ,'1', f' 'i (i 1' 0

1 1 ', 'i 1 1 V / I li 11

I'l

l'

1' 1'

1'

1'

1',

ll

I'l

j l

I'l

(' 1' ) '

1'

I'l

I'l

j l

1'

„4

''''

'' '' ïf li' y' u'

ll'

y '

li' li'

v

-8 I • I . I I I i I , I I I I .1 1 ,1 , 1

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3. Time history of horizontal wave force on the upstream cylinder with

(5)

X. Feng. W. Bai/Applied Ocean Research SO (2015) 319-129 123

( a )

( b )

- -o- Bai eM/. (2014) Malenica X Experiment Present -0.4 -0.3 -0.2 -0.1 0.0 X 0.1 0.2 0.3 0 4 - • o - - B a i e M / . (2014) - Malenica X Experiment - • Present

/

• - V ' X X - 9 c ' ^ " " o T ^ ' ^ ^ ^ 1 • - V ' X X - 9 c ' ( c ) -0.4 -0.3 -0.2 -0.1 0.0 X 0.1 0.2 0.3 0.4 1.5 1.0 ^ 0.5 J 0.0 -0.5 - o- Bai era/. (2014) Malenica X Experiment Present -0.4 -0.3 -0.2 -0.1

(d)

0.0 X 0.1 0.2 0,3 0.4 40 - V , 30 - o - B a i e / a / . ( 2 0 1 4 ) • Present

^

-0.4 -0.3 -0.2 -0.1 0.0 X 0,1 0.2 0,3 0,4

Fig. 4. Comparison of different harmonics of wave elevation along the diagonal at second-order near-trapping with ta = 0.468 in 45° heading wave: (a) first harmonic; (b) second harmonic; (c) mean elevation and (d) third harmonic.

3 2 0 -1 -2

I'' V1/1/ / 1 / y \i 1/1/1/

\!\,

[I

J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 t/T

Fig. 5. Time history of wave elevation at x = 0,366 m with ka = 0,468 for three differ-ent meshes. w h i c h are n o n - d i m e n s i o n a l i s e d s i m i l a r l y ) , t h e o v e r a l l a g r e e m e n t is f a i r l y g o o d . I n o r d e r t o d e m o n s t r a t e t h e c o n v e r g e n c e o f t h e p r e s e n t f u l l y n o n l i n e a r m o d e l w i t h c o m p u t a t i o n a l meshes, e s p e c i a l l y f o r h i g h e r h a r m o n i c c o m p o n e n t s , a n o t h e r t w o m e s h c o n f i g u r a t i o n s , coarse ' M e s h a' a n d fine ' M e s h c', are a d o p t e d f o r t h e a b o v e case, w h i l e ' M e s h b ' c o r r e s p o n d s t o t h e r e f e r e n c e m e s h d e n s i t y used f o r r e s u l t s i n Fig. 4. The e l e m e n t sizes o n t h e f r e e s u r f a c e n e a r t h e c y l i n d e r a r r a y i n cases o f ' M e s h a', ' M e s h b ' a n d ' M e s h c' are a p p r o x i m a t e l y o n e t h i r t i e t h , o n e fiftieth a n d o n e s e v e n t i e t h o f t h e l i n e a r w a v e l e n g t h , r e s p e c t i v e l y . Fig. 5 displays t h e t i m e h i s t o r y o f w a v e eleva-t i o n aeleva-t X = 0.366 m , eleva-t h e u p w a v e face o f eleva-t h e d o w n s eleva-t r e a m c y l i n d e r f o r these t h r e e m e s h c o n d i t i o n s . T h e y are a l m o s t i d e n t i c a l e x c e p t at t h e m a x i m a w h e r e discrepancies appear w i t h i n a v e r y s m a l l range (less t h a n 3%). Because h i g h e r - o r d e r e f f e c t s are o f i n t e r e s t i n t h e p r e s e n t s t u d y , second a n d t h i r d h a r m o n i c s e x t r a c t e d f r o m f u l l y n o n l i n e a r r e s u l t s , o f f r e e surface e l e v a t i o n a l o n g t h e d i a g o n a l ( e q u i v a l e n t t o those i n Fig. 4 ) are i l l u s t r a t e d i n Fig. 6 f o r the t h r e e m e s h c o n f i g u -r a t i o n s . One c a n n o t i c e t h a t s e c o n d - o -r d e -r c o m p o n e n t s i n Fig. 6(a) are v e r y close a m o n g d i f f e r e n t m e s h densities, a n d o n l y m i n o r v a r i -ances are o b s e r v e d f o r t h e t h i r d h a r m o n i c s i n Fig. 6 ( b ) . The above c o m p a r i s o n s suggest t h a t t h e c u r r e n t n u m e r i c a l m o d e l converges v e r y f a s t w i t h c o m p u t a t i o n a l meshes, a n d i n t e r m s o f accuracy, i t is n o t v e r y s e n s i t i v e t o m e s h d e n s i t y or m e s h size as l o n g as t h e c o m -p u t a t i o n a l m e s h is n o t t o o coarse. I n a l l t h e f o l l o w i n g s i m u l a t i o n s , s i m i l a r m e s h densities t o t h a t i n ' M e s h b ' are a d o p t e d , i n o r d e r t o a c h i e v e a balance b e t w e e n accuracy a n d c o m p u t a t i o n a l e f f o r t , I n s u m m a r y , t h e p r e s e n t f u l l y n o n l i n e a r p o t e n t i a l m o d e l is capable o f c a p t u r i n g t h e h i g h e r o r d e r e f f e c t s associated w i t h n o n -l i n e a r f r e e surface b o u n d a r y c o n d i t i o n s a n d i m p r o v e s t h e e f f i c i e n c y t h e i n c i d e n t w a v e , r e s p e c t i v e l y . A n a l y t i c a l s o l u t i o n s b y the s e c o n d -o r d e r p -o t e n t i a l t h e -o r y i n M a l e n i c a et a l . [ 2 7 ] , n u m e r i c a l r e s u l t s i n Bai e t a l . [ 2 9 ] a n d e x p e r i m e n t a l d a t a f r o m O h l et al. [ 2 8 ] are i n c l u d e d i n t h e c o m p a r i s o n s . The first-order results i n Fig. 4 ( a ) are g e n e r a l l y v e r y close. M o r e s t r i k i n g is t h e n o n - d i m e n s i o n a l i s e d s e c o n d - o r d e r w a v e e l e v a t i o n i n Fig. 4 ( b ) , w h e r e r e s u l t s o f b o t h Bai et al. [ 2 9 ] a n d t h e p r e s e n t m o d e l agree w e l l w i t h t h e e x p e r i m e n t s . The a n a l y t i -cal s o l u t i o n o f M a l e n i c a et a l . [ 2 7 ] , h o w e v e r , t e n d s t o o v e r - p r e d i c t t h e s e c o n d o r d e r e l e v a t i o n n e a r x = 0,366 m u p w a v e o f t h e d o w n -s t r e a m c y l i n d e r . A po-s-sible r e a -s o n i-s t h a t a l l r e -s u l t -s o t h e r t h a n t h e a n a l y t i c a l s o l u t i o n are t h e s e c o n d h a r m o n i c c o m p o n e n t s e x t r a c t e d f r o m n o n l i n e a r t i m e series a n d e f f e c t s f r o m h i g h e r orders, p o t e n -t i a l l y h i g h e r r e s o n a n -t m o d e s , c a n be presen-t, w h i l e -t h e a n a l y -t i c a l s o l u t i o n o f M a l e n i c a e t a l . [ 2 7 ] is l i m i t e d t o first a n d second o r d e r o n l y . One e x a m p l e o f t h i s m a y be f o u n d i n Fig. 4 ( d ) , w h i c h i l l u s -t r a -t e s -t h e -t h i r d h a r m o n i c s o f w a v e e l e v a -t i o n f r o m Bai e-t a l . [ 2 9 ] a n d t h e p r e s e n t m o d e l . B o t h r e s u l t s s h o w a v e r y s i m i l a r o v e r a l l t r e n d , w i t h v e r y h i g h v a l u e s at s o m e p o s i t i o n s . These h i g h t h i r d -h a r m o n i c e l e v a t i o n s m i g -h t be e x p l a i n e d b y a t -h i r d - o r d e r r e s o n a n t m o d e e x c i t e d i n t h e c u r r e n t c o n f l g u r a t i o n . C o m p a r i s o n s o f t h e s e c o n d - o r d e r m e a n e l e v a t i o n are p l o t t e d i n Fig. 4 ( c ) . C o n s i d e r i n g t h e s m a l l range (e.g. c o m p a r e d w i t h the second h a r m o n i c results

( a ) 20 15 10

^5

A Mesh a - - -•- - Mesh b 0 Mesh c A -0.4 -0,3 -0.2 -0,1 ( b ) 0.0 X 0,1 0,2 40 30 20 a 10 A Mesh a - -m-- Mesh b o Mesh c A y / 1

'7

A -0,4 -0,3 -0.2 -0.1 0,0 X 0.1 0.2 0.3 0 4 0.3 0.4 Fig. 6. a t t a =

Mesh convergence of higher harmonics of wave elevation along the diagonal 0.468: (a) second harmonic and (b) third harmonic.

(6)

124 X. Feng, W. Bai/Applied Ocean Research 50 (2015) 119-129 against t l i e p r e v i o u s m o d e l i n Bai et a l . [ 2 9 ] i n t e r m s o f c o m p u t a -t i o n a l e f f o r -t . M o r e o v e r , -t h e n a -t u r e o f -t h e p r e s e n -t m o d e l enables a l o n g - t i m e s i m u l a t i o n t o be p e r f o r m e d w i t h o u t t h e c o n c e r n a b o u t w a v e r e f l e c t i o n f r o m t h e t a n k w a l l ; t h i s is v e r y i m p o r t a n t i f a large m a r i n e s y s t e m is c o n s i d e r e d a n d a l o n g t i m e is r e q u i r e d f o r t h e s t e a d y state t o be a c h i e v e d . I n the i n v e s t i g a t i o n o f gap r e s o n a n c e s b e t w e e n s i d e - b y - s i d e barges w h e r e t h e t r a n s i e n t r e g i m e m i g h t b e l o n g , these a d v a n t a g e s b e c o m e e x t r e m e l y u s e f u l .

4. Gap r e s o n a n c e s

In t h i s s e c t i o n , w e i n v e s t i g a t e the r e s o n a n t m o d e s i n a n a r r o w gap b e t w e e n s i d e - b y - s i d e barges. The same t w o f i x e d r e c t a n g u l a r barges w i t h square bilges as i n M o l i n et al. [ 1 ] are s i m u l a t e d . The c o n f i g u r a t i o n o f the s i d e - b y - s i d e barges at m o d e l scale is as f o l l o w s : b a r g e l e n g t h is 2.47 m , w i d t h 0.6 m , d r a f t 0.18 m a n d gap w i d t h 0.12 m . T h e w a t e r d e p t h is set as 3 m ( t h e s a m e as i n t h e tests), a n d t h e t a n k r a d i u s f o r the p r e s e n t s i m u l a t i o n s is e i t h e r 5 m or f o u r rimes the i n c i d e n t w a v e l e n g t h , w h i c h e v e r is larger. The i n c i d e n t w a v e h e a d i n g c o n s i d e r e d h e r e is 90 degrees, i.e. b e a m sea, i n w h i c h t h e resonances are m o r e c r i t i c a l . The c o o r d i n a t e s y s t e m is s h o w n i n Fig. 1(a). A n e x a m p l e o f a m e s h used f o r c a l c u l a t i o n s is d i s p l a y e d i n Fig. 1(b), w i t h 4 8 8 4 p o i n t s a n d 1606 e l e m e n t s o n t h e barges, a n d 11,137 p o i n t s a n d 5 3 8 3 e l e m e n t s o n t h e f r e e w a t e r surface.

To closely i n v e s t i g a t e the r e s o n a n t f r e q u e n c i e s , response peaks a n d m o d e shapes, w e s i m u l a t e t h e barge s y s t e m i n r e g u l a r b e a m seas. As s t a t e d i n S e c t i o n 2.2, a r e g u l a r 5 t h - o r d e r Stokes w a v e is s p e c i f i e d as t h e i n c o m i n g w a v e . F i r s t l y w e u t i l i z e a r e l a t i v e l y s m a l l w a v e steepness /o4 = 0.0034 f o r a l l w a v e f r e q u e n c i e s . The n o n l i n -e a r i t y o f t h -e p o t -e n r i a l f l o w m o d -e l w i l l b-e c o n s i d -e r -e d i n S -e c t i o n 5. W i t h s u c h l o w steepness, w e e x p e c t t h a t t h e results s h o u l d b e c o n v e r g e n t t o the l i n e a r s o l u t i o n s . C o m p a r i s o n s o f f r e e s u r f a c e e l e -v a t i o n against l i n e a r t h e o r y a n d e x p e r i m e n t a l data i n M o l i n et al. [ 1 j are p l o t t e d o v e r t h e f r e q u e n c i e s 5 . 0 - 9 . 0 rad/s i n Fig. 7. Fig. 7 ( a ) - ( d )

s h o w s f r e e surface Response A m p l i t u d e O p e r a t o r s (RAOs) i n the gap at f o u r p o s i t i o n s : x = 0.0 m , x = 0 . 3 m , x = 0.6 m , x = 0 . 9 m , respec-t i v e l y , w h i c h are f r o m m i d s h i p respec-t o w a r d respec-t h e barge e n d . The o v e r a l l a g r e e m e n t is g o o d a n d t h e RAOs are c h a r a c t e r i z e d b y t h r e e peaks o v e r t h i s r a n g e o f f r e q u e n c i e s . C a r e f u l i n s p e c t i o n finds t h a t the p r e s e n t results w i t h l o w w a v e steepness a l m o s t c o i n c i d e w i t h the l i n e a r c a l c u l a t i o n s as e x p e c t e d , e v e n n e a r t h e peaks. H o w e v e r , dis-crepancies are o b s e r v e d b e t w e e n t h e s i m u l a t i o n s a n d e x p e r i m e n t a l data. It is f o u n d t h a t t h e p o t e n t i a l flow m o d e l s , b o t h the l i n e a r cal-c u l a t i o n s a n d f u l l y n o n l i n e a r s i m u l a t i o n s w i t h l o w w a v e steepness, o v e r - p r e d i c t the w a v e e l e v a t i o n s near t h e r e s o n a n t m o d e s .

The peaks a p p e a r i n g i n t h e f r e e s u r f a c e RAOs c o r r e s p o n d to the resonances i n t h e w a v e m o t i o n s . I n t h i s case, these t h r e e resonan-ces o c c u r near t h e f r e q u e n c i e s 5.75 rad/s, 6.85 rad/s a n d 8.0 rad/s, r e s p e c t i v e l y . They c o r r e s p o n d t o m o d e 1, m o d e 3 a n d m o d e 5, as o n l y s y m m e t r i c s l o s h i n g m o d e s a p p e a r i n t h e case o f a b e a m sea, w h i l e t h e r e are i n t e r m e d i a t e a n t i - s y m m e t r i c s l o s h i n g modes at i n c i d e n c e s o t h e r t h a n 9 0 degrees. T h e first r e s o n a n t m o d e or p i s t o n m o d e , w i t h large w a v e responses, is g e n e r a l l y m o r e c r i t i c a l t h a n the o t h e r , l o n g i t u d i n a l s l o s h i n g m o d e s i n t h e gap. To have a d i r e c t i l l u s t r a t i o n o f t h e r e s o n a n t m o d e s , w e p l o t t h e c o n t o u r s of m a x i m u m f r e e surface e l e v a t i o n s n o r m a l i z e d b y t h e i n c i d e n t w a v e a m p l i t u d e i n Fig. 8 w h e r e t h e i n c i d e n t w a v e p r o p a g a t e s v e r t i c a l l y d o w n w a r d s . Fig. 8(a) c o r r e s p o n d s to t h e p i s t o n m o d e at 5.75 rad/s, w h e r e a n e a r - s t a n d i n g w a v e p a t t e r n i n f r o n t o f t h e u p w a v e barge f o r m s . The n e a r - s t a n d i n g w a v e p a t t e r n i n f r o n t o f t h e u p w a v e barge b e c o m e s m o r e c o m p l i c a t e d at h i g h e r r e s o n a n t m o d e s i n Fig. 8(b) a n d (c). R e f l e c t i o n s i n f r o n t o f t h e u p w a v e barge s e e m m o r e e v i d e n t at m o d e 5 i n Fig. 8(c) t h a n t h o s e i n m o d e s 1 a n d 3. Three f o c u s i n g r e g i o n s are f o r m e d i n f r o n t o f t h e u p w a v e b a r g e a n d m o r e are f o u n d f u r t h e r u p s t r e a m . U n l i k e t h e decrease o f m a x i m u m w a v e e l e v a t i o n f r o m m i d s h i p t o the gap e n d at the first m o d e , t h r e e a n d five l o w -a m p l i t u d e pe-aks -are p r e s e n t -a n d u n i f o r m l y d i s t r i b u t e d -at m o d e 3 a n d m o d e 5 r e s p e c t i v e l y .

(7)

X. Feng, W. Bai/Applied Ocean Research 50 (2015) 119-129 125

Fig. 8. Contours of maximum free surface elevation near the barges at near-resonant modes in beam sea: (a) (i) = 5.75 rad/s; ( b ) « = 6.85 rad/s and (c) CÜ = 8.0 rad/s.

F o c u s i n g o n t l i e gap surface, Fig. 9 p r e s e n t s t l i e m a x i m u m w a v e e l e v a t i o n s a l o n g t h e gap i n these t h r e e m o d e s . T h e y are all s y m m e t -ric w i t h respect to t h e m i d s h i p due to t h e s y m m e t r y i n a 9 0 ° h e a d i n g w a v e . S p e c i f i c a l l y , t h e m a x i m u m e l e v a t i o n near m i d s h i p i n t h e gap at t h e f i r s t m o d e is o v e r 6 t i m e s t h e i n c i d e n t w a v e a m p l i t u d e a n d i t decays t o n e a r i y t h e i n c i d e n t w a v e a m p l i t u d e at t h e e n d o f t h e gap. It is v i s i b l e f r o m t h e m o v e m e n t o f t h e f l u i d t h a t the f r e e s u r f a c e i n t h e gap oscillates as a f l e x i b l e p l a t e . A t m o d e 3, t h r e e peaks, o n e at m i d s h i p a n d t w o near t h e g a p ends, are o b s e r v e d i n t h e gap. T h e peak e l e v a t i o n at m o d e 3 b e c o m e s a b o u t h a l f o f t h a t at t h e f i r s t m o d e a n d e v e n l o w e r at m o d e 5. To d e m o n s t r a t e t h e m o v e m e n t o f f l u i d i n t h e gap, w e p l o t i n Fig. 10 t h e i n s t a n t a n e o u s f r e e surface i n o n e cycle ( 5 0 t i m e steps i n one w a v e p e r i o d ) at m o d e 3 w i t h t h e w a v e f r e q u e n c y 6.85 rad/s. I n t h e steady state, t h e w a v e s o s c i l l a t e

I 3 1 •g 2 mode 1 mode 3 '''^ T^s^^ mode 5

\ /

-1.2 -0.8 -0.4 0.0 X 0.4 0.8 1.2 w i t h i n t h e e n v e l o p e . I t is p r e d i c t a b l e t h a t at e v e n h i g h e r m o d e s ( r e s o n a n t e l e v a t i o n s are v e r y l o w a n d o f less i n t e r e s t ) analogous m o d e shapes w o u l d also occur.

The h y d r o d y n a m i c forces o n t h e barges d e m o n s t r a t e a n o t h e r aspect o f t h e resonances. I n t h i s c o n f i g u r a t i o n w i t h t h e barges i n b e a m seas, s w a y forces are o f m o r e p r a c t i c a l i n t e r e s t t h a n f o r c e s i n o t h e r d i r e c t i o n s . Fig. 11 s h o w s t h e m a x i m u m s w a y f o r c e s o n t h e u p w a v e a n d leeside barges, as w e l l as o n t h e e n t i r e t w o - b a r g e s y s t e m . Forces are n o n - d i m e n s i o n a l i s e d b y pgALD, w h e r e L is t h e l e n g t h a n d D t h e d r a f t o f t h e barge. I t is f o u n d t h a t s w a y forces o n b o t h t h e u p w a v e a n d leeside barges are s i g n i f i c a n t l y a m p l i f i e d near t h e p i s t o n m o d e f r e q u e n c y 5.75 rad/s. N e v e r t h e l e s s , o n l y a m i l d h u m p appears near m o d e 3 f r e q u e n c y 6.85 rad/s a n d n o a m p l i f i c a -t i o n is o b s e r v e d near m o d e 5 f r e q u e n c y 8.0 rad/s. M o r e o v e r , w h e n t h e i n c i d e n t w a v e f r e q u e n c y is b e y o n d t h e p i s t o n m o d e r e g i o n ( o v e r a b o u t 6.0 rad/s), t h e s w a y f o r c e o n t h e u p w a v e barge d o m i n a t e s a n d s w a y f o r c e o n t h e leeside barge b e c o m e s v e r y s m a l l a n d e v e n t u a l l y close t o z e r o . This is p h y s i c a l l y r e a s o n a b l e because t h e s h i e l d i n g

Fig. 9. Maximum free surface elevation along the gap between two barges in beam sea at modes 1,3 and 5.

Fig. 10. Envelope of wave elevation along the gap at resonant mode a> = 6.85 rad/s in beam sea.

(8)

126 X. Feng. W. Bai/AppHed Ocean Researdi 50 (2015) ï 19-129

e f f e c t b e c o m e s m o r e p r o n o u n c e d at h i g h e r w a v e f r e q u e n c i e s a n d r e f l e c t i o n b y t h e u p w a v e barge b e c o m e s m o r e s i g n i f l c a n t . This has b e e n d e m o n s t r a t e d i n t h e c o n t o u r s o f w a v e e l e v a t i o n i n Fig. 8. I n t e r e s t i n g l y , t h e t o t a l s w a y f o r c e s h o w n i n Fig. 11 r e m a i n s a l m o s t c o n s t a n t ( s l i g h t l y d r o p p i n g ) o v e r t h e b r o a d r a n g e o f f r e q u e n c y , e v e n near t h e p i s t o n m o d e at w h i c h s w a y forces o n u p w a v e a n d l e e -side barges are m u c h h i g h e r . This suggests t h a t t h e gap resonances h a v e g r e a t i n f l u e n c e o n e a c h o f t h e barges, y e t n o r e s o n a n c e occurs o n t h e w h o l e s i d e - b y - s i d e barge s y s t e m . I n a d d i t i o n , t h e m e a n d r i f t forces i n s w a y o n each o f t h e barges at d i f f e r e n t f r e q u e n c i e s are p l o t t e d i n Fig. 12, w h i c h again i l l u s t r a t e s the g a p resonances. D r i f t forces i n Fig. 12 are n o r m a l i z e d b y pgA^L The d i r e c t i o n s o f t h e d r i f t forces i n d i c a t e t h a t t h e s t a n d i n g w a v e s i n t h e g a p are s e p a r a t i n g t h e s i d e - b y - s i d e barges n e a r t h e resonances.

5. N o n l i n e a r e f f e c t s o n g a p r e s o n a n c e s

5.1. Nonlinear behaviors

It has b e e n r e p o r t e d i n S e c t i o n 4 t h a t l i n e a r p o t e n t i a l flow m o d -els t e n d t o o v e r - p r e d i c t w a v e response i n t h e gap i n t h e p i s t o n m o d e . S e m i - e m p i r i c a l t r e a t m e n t s b y i n t r o d u c i n g e i t h e r l i n e a r o r n o n l i n e a r t e r m s i n t o the l i n e a r i z e d f r e e surface b o u n d a r y c o n d i -tions as a n a r t i f i c i a l ' d a m p i n g t e r m ' have b e e n d e v e l o p e d i n several r e s e a r c h g r o u p s ( N e w m a n [12], Chen [ 1 3 ] a n d M o l i n et al. [ 1 ]). It has b e e n r e c e n t i y d e m o n s t r a t e d i n K r i s t i a n s e n a n d F a l t i n s e n [ 2 0 ] t h a t flow s e p a r a t i o n at t h e barge bilges m a i n l y accounts f o r t h e d i s c r e p -a n c y b e t w e e n l i n e -a r p r e d i c t i o n s -a n d m e -a s u r e m e n t s -at t h e p i s t o n m o d e f r e q u e n c y , a n d n o n l i n e a r i t y d u e t o t h e f r e e surface is o f m i n o r i m p o r t a n c e i n m o d i f y i n g t h e h i g h r e s o n a n t response. H o w e v e r t h e n o n l i n e a r e f f e c t s o n t h e gap resonances have n o t p r e v i o u s l y b e e n m u c h discussed. F r o m t h e p o i n t v i e w o f a n o n l i n e a r m a s s - s p r i n g

2.5

1 5 1— . — I — . — , — . — , — . — I —.— , —.— , —.—I

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8,5

Frequency rad/s

Fig. 12. Mean drift force in sway on eacli barge in beam sea.

s y s t e m a t the p i s t o n m o d e , t h e n o n l i n e a r i t y m a y s l i g h t l y s h i f t t h e r e s o n a n t f r e q u e n c y , w h i c h s h o w s a ' s t i f f / s o f t s p r i n g ' or D u f f i n g - l i k e b e h a v i o r ( F a l t i n s e n et a l . [ 1 8 ] ) . By p e r f o r m i n g s i m u l a t i o n s w i t h a s m a l l f r e q u e n c y step a r o u n d t h e peak a n d i n c r e a s i n g w a v e s t e e p -ness, w e discuss i n t h i s s e c t i o n t h e n o n l i n e a r i n f l u e n c e o f t h e f r e e s u r f a c e o n t h e gap resonances. I t s h o u l d be m e n t i o n e d t h a t i t is h a r d t o f u r t h e r increase t h e w a v e steepness i n t h i s case, as t h e c a l -c u l a t i o n s t e n d t o b r e a k d o w n b e f o r e t h e final steady state -c a n be a c h i e v e d . C a r e f u l i n s p e c t i o n s h o w s t h a t local u n s m o o t h s u r f a c e e l e -v a t i o n s n e a r t h e gap o p e n i n g s cause t h e crash o f s i m u l a t i o n s , w h i c h m i g h t be d u e t o t h e s a w - t o o t h n u m e r i c a l i n s t a b i l i t y .

The results o f s i m u l a t i o n s w i t h l o w w a v e steepness /oA = 0 . 0 0 3 4 are v e r y close t o l i n e a r c a l c u l a t i o n s as discussed i n S e c t i o n 4 . S i m -u l a t i o n s w i t h i n c r e a s i n g w a v e steepness w e r e n e x t p e r f o r m e d , k e e p i n g a l l t h e c o n f l g u r a t i o n s t h e same e x c e p t t h e i n c i d e n t w a v e a m p l i t u d e . A g a i n , o n l y t h e b e a m sea case w a s c o n s i d e r e d . O f t h e i n t e r e s t h e r e is t h e p i s t o n m o d e , w h e r e t h e r e s o n a n t f r e q u e n c y a c c o r d i n g t o t h e l i n e a r c a l c u l a t i o n is n e a r 5.75 rad/s. Gap s u r f a c e RAOs at m i d s h i p close t o t h e p i s t o n m o d e f r e q u e n c y w i t h v a r i o u s i n c i d e n t w a v e steepnesses (;<A = 0.0034, 0.034, 0.055, a n d 0.067), w i t h a fine f r e q u e n c y r e s o l u t i o n a r o u n d t h e peak, are p r e s e n t e d i n Fig. 13. I t can be seen t h a t t h e r e s p o n s e c u r v e s h i f t s s l i g h t l y t o a h i g h e r f r e q u e n c y r e g i o n as t h e w a v e steepness increases, l e a d i n g to t h e s h i f t o f r e s o n a n t f r e q u e n c y b y a b o u t 1% w h e n !<A increases f r o m 0.0034 t o 0.067. A t t h e s a m e t i m e , t h e RAO p e a k d r o p s b y a b o u t 5% w i t h t h e increase o f w a v e steepness o v e r t h e r a n g e c o n -s i d e r e d here. F r o m t h e figure w e can -see t h a t -steeper w a v e -s lead to s l i g h t l y s m a l l e r peak r e s o n a n t responses, h o w e v e r , t h e p r e s e n t f u l l y n o n l i n e a r p o t e n t i a l flow m o d e l s t i l l o v e r - p r e d i c t s t h e peak r e s o n a n t response. This i n d i c a t e s t h a t t h e f r e e surface n o n l i n e a r i t y plays a m i n o r r o l e i n d a m p i n g t h e h i g h r e s o n a n t response, c o n -flrming t h e w e l l a c k n o w l e d g e d u n d e r s t a n d i n g t h a t flow s e p a r a t i o n is t h e m a i n r e a s o n f o r t h e d i s c r e p a n c y b e t w e e n l i n e a r s o l u t i o n s a n d m e a s u r e m e n t s .

Fig. 14 s u m m a r i z e s t h i s s h i f t o f r e s o n a n t f r e q u e n c y as w e l l as t h e c h a n g e o f peak response w i t h i n c r e a s i n g w a v e steepness l<A. The h o r i z o n t a l axis r e p r e s e n t s t h e d i f f e r e n t w a v e steepnesses fc4, w h i l e t h e l e f t v e r t i c a l axis is t h e r e s o n a n t f r e q u e n c y at the d i f f e r e n t w a v e steepnesses, n o r m a l i z e d b y cog = 5.75 rad/s, t h e l i n e a r r e s u l t f o r the r e s o n a n t f r e q u e n c y . The right v e r t i c a l axis is t h e c o r r e s p o n d i n g peak R A O , n o r m a l i z e d b y t h e l i n e a r p e a k R A OQ. The s h i f t o f r e s o n a n t f r e q u e n c y t o h i g h e r values as f r e e s u r f a c e n o n l i n e a r i t y increases at t h e p i s t o n m o d e i l l u s t r a t e s a ' s t i f f s p r i n g ' b e h a v i o r o f s u c h a n o n -l i n e a r m a s s - s p r i n g s y s t e m , w h e r e a w a t e r c o -l u m n is p u m p e d i n a n a r r o w g a p f o r m e d b y s i d e b y s i d e barges. Some t h e o r e t i c a l a n a l -ysis o n t h e ' s t i f f / s o f t s p r i n g ' b e h a v i o r o f a n o n l i n e a r m e c h a n i c a l s y s t e m can be f o u n d i n F a l t i n s e n a n d T i m o k h a [ 2 3 ] f o r t h e s l o s h i n g p r o b l e m . E x p e r i m e n t a l s t u d i e s i n Fults [ 3 0 ] f o r the s t a n d i n g w a v e p r o b l e m also r e v e a l e d t h i s n o n l i n e a r b e h a v i o r associated w i t h a

Cytaty

Powiązane dokumenty

Rosyjskość, zdaniem autora, przejawia się szczególnie wyraziście w sposo­ bie przeprowadzania zmian historycznych, polegających na całkowitej destrukcji istniejącego

Inna recenzja dzieła Koriuna dodaje, że Mesrop zachęcał mnichów, aby „żyłi na wzór jego pobożnego trudu, który wyrażał się nie tyłko przez mowę i nauczanie, łecz

The diffraction pattern of synthesized CuBTC was similar to patterns simulated from the crystal structure and as reported from the literature 20 (Fig. Known MOF structures built

Assessment of the vulnerability of the various resources of the world's coastal zones to an acceleration of sea-level rise (ASLR) and related climate change

Tw ierdzi się o statn io , że połączenie we właściwy sposób dziedzictw a wieków przeszłych ze zdobyczami doby współczesnej zapew­ n ia środow isku ludzkiego

S.N.KOVALEV Designer General, Central Design Bureau for Marine Engineering &#34;Rubin&#34;, St.Petersburg,

Zmienna ilość zwrotek w tych samych pieśniach o świętych wielokrotnie była wynikiem „odpolityczniania” polskich pieśni. Wszystkie teksty mówiące o Polsce i

W 1988 roku odpowiedziano dla Komisji Rewizyjnej, że akt promulgacji nie może być inny, jak tylko akt najwyższej władzy Kościoła, czyli Biskupa Rzymu, ponieważ