• Nie Znaleziono Wyników

Model experiments on barges in still water and in waves

N/A
N/A
Protected

Academic year: 2021

Share "Model experiments on barges in still water and in waves"

Copied!
58
0
0

Pełen tekst

(1)

IN. STILL WATER AND IN WAVES:.

J.M.J. Journée

Report No. 814

December 1988

DoiftUnivorelty of TochnoIoy

Ship Hydromechanics Laboratory

Mekelweg 2 - -

-2628 CD DeIft The Netherlands

(2)

by J.M.J. Journé.e

December 1988

Report No. 814

Delft University of Technology Ship Hydromechanics Laboratory

(3)

Summary

Results are reported here of systematic series of experiments with

two models on a different scale of a rectangular barge with a

length to breadth ratio of 3.00. For each model a range.of draughts and speeds have been used.

Drag forces and moments. in still water, heave and pitch motions and added resistances. in regular head waves and heave and roll motions

and drift forces in regular beam waves have been measured.

The results are presented in a tabular form and in figures. Some

preliminary analyses are given.

Content s

page Introduction

1

Model Definition and Testing Program .

. 2

Experimental Results

4

Analyses of Some Experimental Results

7 5.. Nomenclature 16 References 17 Figures 18

Appendix. I. Summary of Experiments on Drag Forces

30

Appendix II. Summary of Experiments in Regular Head Waves ..

. 39

Appendix III. Summary of Free Rolling Experiments 48

Appendix IV. Summary of Experiments in Regular Beam Waves

(4)

This report describes the results of experiments, carrie,d out with two models on a different scale of a rectangular barge with several

draughts. The length to breadth ratio of the models was 3.00.

Still water experiments have been carried ou,t to measure the drag forces in a horizontal plane and the moment around a vertical axis due to water currents or a transport velocity of the barge'. The forces and the moment have been measured at a range of velocities a.nd drift angles. These experimental results have been translated into simple empirical formulas, valid for rectangular barges with

a

length to breadth ratio of 3.00.

In regular head' waves the heave and pitch motions and the mean

added resistance due to waves have b:een measured at a range of

forward 'speeds.. The measur'edheave and roll motions have been

compared with some results of strip theory calculations. The

measured added resistances h'avebeen, compared with .t'he"result.s of two theories:, a radiated energy method and an .'lnte'gra'ted.pressure method.

In regular beam waves the heaie and.roll-mot'jons and the mean drift force.s due to waves have been measured at zero forward speed. The

measured heave and roll motions have been compared with results of

strip theory calculation's.

To investigate the effect of tankwall interference two models on a

different scale have been used. In particular the pitch motions are very much influenced by tankwall interference.

This report describes the models, the testin.g program and the

experiments. All. experimental data have been tabled in an appendix.

Most of the data have been plotted in figures too, together with

(5)

2. Model Definition and Testing Program

The experiments have been carried out in Towing Tank Number I of

the Deift 'Shiphydromech;anj,c,s Laboratory.

The dimensions of the cross section of the towing tank are:

width: 4.2O meter

water depth:. 2.31 meter

Thes.e tank dimensions dictated the dimensions of the model. Tank

wail interference should be as low as possible and the effects of

blockage had to be within the accurac.y of the measurements.

The following main dimensions of a model of a rectangular barge

with a length to breadth ratio L/B - 3.00 were choosen

Model A: L = 2.250 meter and B = 0.750 meter

To investigate the effect of. tank wail interference on the motions of the model in waves, a geometrical similar model with half the size of model A have been tested too:

Model B: L = 1.125 meter and B - 0.375 meter

A range of breadth to. draught ratios B/T was choose.n for the two

models.

The typ.e.s of experiments,, carried out wi.th model A and model B

at

these differen,t B/T ratios, are tabled below.

When carrying out the drag force and moment measurements a range of speeds have been used, varying from zero speed until even a speed corresponding to Froude number 0.15.

During the measurements o.f the heave and pitch motions and the

added resistances in head waves four fixed speeds have been used:

Fn = '0.00, 0.05, 0.1:0 and 0.15 respectively.

T:he measurements of the 'heave.and roll motions and the drift forces

in regular beam waves could be carried out at zero speed only.

B/T Trim . 2.50' ' 0.00 . 5.00 0,00 7.50 0.00 10.00 'H 0.00 13.33 0.00

Drag Forces a.nd Moments

in

Still Water

A A+B A+B A+B A

Heave and Pitch Motions and Added, Resistances

in. Regular H'e,a,d Waves

A+B

A-i-B A+B A

H'eave and Roll Motions

an,d Drfft Forces

in Regular Beam Wave,s

(6)

These Fou'de numbers are defined by:

V Fn

(g.L)½

in which g is the acceleration of gravity.

The experimental conditions of the two models are presented i.n the

following table. B/T 2.50 5.00 7.5:0 10.0:0 13.33 Model A T (m) 0.300 0.150 0.100 0.075 0.056 Trim (ni) 0.000 0.000 0.000 0.00:0 0.000 KG (m) 0.151 0.099 0.074 0.056 GM (m) 0.237 0.420 0.588 0.798 T (s) 1.461 1.139 1.021 KG/T (-) 1.003 0.990 0.993 1.005

k/L (-)

0.252 0.252 0.251 0.256

k,/B

(-) 0.473 0.491 0.520 Model B T (m) 0.075 0.050 0.038 Trim (m) 0.000 0.000 0.000 KG (m) 0.075 0.050 0.046 GM (m) 0.119 0.209 0.285 Tq, (s) 0.999 0.826 0.710 KG/T (-) 1.000 1.0:00 1.2:27

k/L (-)

0.250 0.250 0.250

k/B

(-) 0.458 0.502 0.504

(7)

3. Experimental Results

During the experiments the average temperature of the fresh water

in the towing tank was about 15 °C.

This means for the density and the kinematic viscosity:

p = 999.1 kg/rn3

= 1.139 .10-6 rn2s

Drag Forces and Moments in Still Water

The definitions and the axis system, used during these still water

measurements are shown in the following figure.

V

Figure 3.1. Definitions and Axes System, as used during Still Water Measurements

The drift forces are considered to be current forces. The drift

angle is defined here as the angle between the vector of the

relative water speed and the positive x-axis.

A range of drift angles has been used: 8 = 180, 150, 120 and 90

degrees. In some cases a few intermediate angles have been included

too.

The relative water velocity, so the opposite speed of the towing

carriage, varied from Fn = 0.05 until Fn = 0.15.

The drag forces X and Y in the x- and y-direction and the moment N

about the z-axis were measured by dynamometers, based on

strain-gauge measurement of bending resulting from shear forces. The

electronic output has been integrated over a certain time, to get

an average value.

The still water resistance can be obtained from the drag forces at

the experiments with a drift angle of 180 degrees.

(8)

Vertical Motions and Added Resistance

The definitions and the axis system, used during the heave, pitch

and added resistance measurements are shown in the following figure.

Figure 3.2. Definitions and Axes system, as used during Heave, Pitch and Added Resistance Measurements These experiments in regular head waves were carried out at four

forward speeds, including zero speed.

A flap-type wave maker was used. To avoid refections of the waves

at the end of the tank a conventional beach is used. The waves were

measured by a two-wire conductance wave probe. The wave meter was

mounted at a distance of about 2.50 meter in front of the model at

the half width of the tank.

The models were free to carry out heave and pitch motions only.

The motions were measured by two low-friction potentiometers above

and at the center of gravity of the model. At the larger model B a

vertically sliding rod forward was guided by the towing carriage,

to keep the model on the right course.

The waves and motions were recorded on an U.V. recorder as a

function of time and the records were analysed for motion

amplitudes and phase lags.

The resistance in waves was measured in the center of gravity by a dynamometer, based on strain-gauge measurement of bending resulting

from shear forces. The electronic output has been integrated over a

full number of periods of encounter of the waves.

The experiments have been carried out for a range of wavelength -shiplength ratios: A/L = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and some additional values. At a few wavelengths the wave amplitude has been

varied too, to investigate non-linearities in motions and forces.

The experimental results are summarised in Appendix II.

The amplitude characteristics of the heave and pitch motions have

been plotted in the figures 7.l.a-b-c-d and the transferfunctions

(9)

Free Rolling Tests

The meta.centric height GM was measured by means of an inclination

test. As far as possible, it was tried to locate the center of gravity of the models at the waterline.

During the "free" rolling tests in still water the model could

carry out heave and roll motions only.

The roll signal was registrated by an TJ.V. recorder as a function

of the time.

The average roll period T and the metacentric height GM give

information about the total moment of inertia for roll, defined by:

in which: g½ -

2ir

with: GM½ . T V = volume of displacement

From the logarithmic decrement of the recorded roll angle

amplitudes pa(t) follow the non-dimensional roll damping

coefficient K as a function of the mean roll angle amplitude by:

1

2,r

loge[

q(t)

] IC Pa(t+T(p)

The results, derived from these experiments, are summarised in

Appendix III.

The non-dimensional roll damping coefficients have been plotted

(10)

Heave and Roll Motions and Drift Forces

The definitions and the axis system, used during the heave and roll

motion and drift force experiments are shown in the following

figure.

Figure 3.3. Definitions and Axes System, as used during

Heave, Roll and Drift Force Measurements

The experiments in regular beam waves were carried out at zero speed.

The models were free to carry out heave and roll motions only.

The waves, the motions and the forces were measured in an analog

way as done during the heave and pitch motions. The model, under

the measuring equipment, was simply turned in a horizontal plane over 90 degrees.

The experiments have been carried out for a range of wavelength

-shiplength ratios: A/L = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and some

additional values. At a few wavelengths the wave amplitude has been

varied too, to investigate non-linearities in motions and forces.

The experimental results are summarised in Appendix IV and in

(11)

4. Analyses of Some Experimental Results

Blockage

According to Ractliffe, Fisher and Mitchell [1], blockage can be

taken into account by using the following relation between the corre.cted model speed Va and the speed V of the towing carriage:

VaaV

with: 1 a 1

kmm

km = 1 +exp(-lO.m)

model cross section area

m

tank cross section area

This results in speed correction factors a for the different

loading conditions of the two. models as tabled below...

The table shows low correction fact'ors. These co;r,r.ectjons are in

a

similar order as, the accuracy of the measurements.

This is a reason why the effect of blockage, which is still

uncertain, is not taken into account here when analysing the

experme.nts.

Speed Correction Factor a

B/T , 2;50 5.00

i50

10.00 13.33 Model A Model B 1.043

L022

1.006 1.015 1.004 1.011 1.00.3 1.009

(12)

Drag Forces and Moments in Still Water

The flow of a current around a fixed model has been simulated by

towing the model forward in still water with different drift angles at a range of speeds, even until a Froude number of 0.15.

The longitudinal and lateral drag forces and the moments in a

horizontal plane on the barge are approximated in a usual way by

the following expressions:

X C

½p.V2.V2/3

Y Cy

½pV2.V2/3

N = CN

½p.V2.V

The coeffcients C, Cy and

CN have been derived for bothmodels

from a large number of measured data at four angles of attack of the current : 180, 150, 120 and 90 degrees. The smaller amount of data for is 135 and 105 degrees has been analysed too.

In a first analysis it appears that the :s.p;eed .dependency..of these

coefficients is low, at least whencomparing this with the influence of the breadth to draught ratio.

As a first approximation, these coefficients are given here as a

second degree polynomial of B/T:

CX CXO + CX1.(B/T) + C2.(B/T)2

Cy Cy0 + Cy1'(B/T) + Cy2.(B/T)2 = CNO + CNl.(B/T) .+

(13)

The coefficients Cj,

Cyj

and CNj have been derived for each from

the measured data by using a least squares method.

The number of measurements and the resulting coefficients for each 8 are tabled below.

P 180 p iso P 135 p 120 p = 105 p 090

Nra 52 49 12 47 12

-Cxo 4.058*10 _4.683*101 _3.586101 _2417*101 +9.1171O2 0.00D*1O

C +3.3451O2 +3713*102 +3.532*102 +2.482fl102 _4557102 0.000*10+0

-1.364*10 -1.278*103 -i.gii*103 +3.O27*1O 0.000*10+0

Nra - 49 12 47 12 51

Cy 0.000*10+0 +1.020*10+0 +1.550*10+0 +1.841*10+0 +2.417*10+0 +2.055*10+0

C, 0.000*10+0 _1.485*101 _2.392*101 _2.509*101 ,_3.620*10'l -2.913*10

Cy2 0.000*10 +6.752*jO +1.297*102 +1128*1O2 +1.943*102 +1.389*1O2

Nra - 49 12 47 12

-0.000*10+0 +3.657*101 4073*101 +2.856*101 +2.851*101 0.000*10+0

0.000*10 -4.222*10 _4.840*102 _8.544*103 _2.623*102 oo*io°

(14)

Heave and Pitch Motions in Regular Head Waves

The measured amplitude characteristics of the heave and pitch

motions are presented in figures 7.l.a-b-c-d in a non-dimensional

form. These figures show the very large influence of tan'kwall interference on the pitch motions, in particular for model A. On the other hand, model B is a very small model wich requires small wave lengths what can result into a lot of spreading in the

measurements.

In the figures a comparison is given with the ordinary strip theory

calculation.s of heave and pitch mo:tions, carried out as described

in detail in [2].

In general these coupled heave and pitch equations of motions are

given by:

(p.V+a33).z +b33vz +c33z + a35

9 +b35O+c35.9

Z

a53 .

+b53z +c53z +(Iyy+a55).9 +b55O +c556

=

Because of the symmetry of the barge with.respect to the midship

section these equations reduce to:

(p/+a33).z-f-b33.z+c33.zZ

(Iyy+a55).9 +b55O +c55.O

-So there is no coupling present between the heave and the pitch

motions.

A conformal mapping method, using a Lewis transformation of the

cross section forms to the unit circle, has been used to calculate

the hydrodynamic mass and damping coefficients au and by the

Urs.eli-Tasaj method.

The calculated heave motions show a fair agreement with the

experiments for the full range of. breadth, to draught ratios..and forward speeds.

The measured pitch motions of model A are very .much -;influenced by

the tankwall interference, Extreme high response amplitudes

were

measured. This interference effect is no.t included in the

calculations, reason. why for model A the agreement between t.heory

and experiments is very poor.

Model B, with a much smaller inflüence of tankwall interference,

shows a better agreement.

The. figures can show a fair agreement when extrapolating the

measured pitch data on base of the model breadth to tank width

(15)

Added Resistances in Regular Head Waves

The measured frequency characteristics of the added resist.anc.e due to waves are presented in figures 7.2.a-b-c-d in a non-dimensional

form.

In the figure.s a comparison is given with two prediction methods,

based on the strip theory, of which the algorithms are described in

detail in [2].

The first method is the radiated energy method of Cerritsma and

Beukelmari [3] and the second method is the integrated pressure method of Boese [4].

The figures show a fair agreement between theory and experiments

at

very low speeds (Fn - 0.00-0.05). At higher speeds non-linearities

play an important role and the agreement with strip theory predictions is very poor.

(16)

Heave and Roil Motions in Regular Beam Waves

The measured amplitude characteristics of the heave and roll

motions at zero- forward speed are presented in figure 7.4 in a non-dimensional form.

In the figures a comparison is given with the ordinary strip theory

calculations of heave and rolimotions, carried out as described in

detail in [2].

The uncoupled heave and roil equations of motions are given by:

(pV+a33).z+b33.z+c33.z.Z

(Txx+a44) .rp +b44.q +c44'q

The radius -of, inertia forroll..kxx....of.;...the solid mass of the model

can -be derived by subtracting the--cal.culat-ed---h-ydrodynam-ic-m-ass

moment of inertia from the measured-total moment of inertia.

The -non-p.o:tenti.al part of -the- roil.damping .coeff..i.cient.s-:has been

derived from the- measured -va-lu-es.--.in. figure 7.3 at a roll angle

amplitude o.f 3 degrees..

The-se data are tabled below.

Figure 7.4 shows a fair a-g'reement-between..the predicted and-the

measured heave and roll motions. i-Howeve-r--, .there.4-s-- some-- doubt about.

the natural frequency- for roil -of-mo-del .B for the B/T-= 5.00 case.

I.n figure 7. 5 a -compariso-n- i-s given of :the results of-;two-:-d-iffe-r-ent

strip theory -calculations of r-ollrno-tion-s at-. -zero sp!eed for the

-barge with a -breadth to draught r-at-io of 7.5.

T-he Calculations- have be-en c-arrie-d.out.with.the..stri.p.theory

algorithms as described in [2] and the SC.ORES-D:E.L-FT program [3],

which is derived from work of Kaplan -and .Raff [6].

B/T. 5.00 7.50 10.00 Model A B A B - A B

k/B

0.405 0.049 -0.390 0.061 03t87 0.1.01 - 0.400 0.113 -0.3.85 0.14-0 -

0367

0.163

(17)

In the strip theory algorithms in [2] the sway wave forces and the roil wave moments are defined by:

and: and: D(Vw2*) = Dt M22 + M24' M22', N22' N44' M24', N24' M42', N42' D(Vw2*) Dt D(Vw4*) Dt D(Vw,4*) Dt + [ N2' 24 D(Vw2*) Dt +

[N42

In the SCORES-DELFT program [3,6] these forces and moments

are defined by:

Y' -

Mfl'. D(vw2*) + I dM 44 - V. dXb 22 + [ N

dM2'

Vw2 + + OG.Y dxb dM

-V.

2,2 * dXb dM4.,' - V. '7

*

w4 w2* + FK4' + O.G.Y'

The different terms in these expressions are explained by:

- two-dimensional potential hydrodynamic mass and damping coefficient of sway

= two-dimensional potential hydrodynamic inerti,a and damping coefficient of roll

- two-dimensional potential .hydrodynamic mass and damping coupling coefficient of roll into sway

- two-dimensional potential hydrodynamic inertia and

damping coupling coefficien.t of sway into roll

V. V. dM22' * Vw2 Vw4* + FK2' dXb dM dXb

+ M24. k

D(vw2*) I -dXb ' k

V2

+ FK2

(18)

the sway component of an equivalent orbital velocity of

the waterparticles in the undisturb'e.d wave,

relative to the cross section

V4' - the roll

component of an equivalent orbital velocity of

the waterpa'rt.icles in th.e undisturbed wave,

relative to the cross section

FK2' the two-dimensional Froud'e-Krjlov lateral force;

this is. the lateral force on a ship's cross section, caused by the undisturbed wave

FK4' the two-dimensional Fr'oud'e-Krjlov roll moment;

this is the roil moment on a ship's cross section, caused by the undisturbed wave

OC = distance. of the center o.f-gravt.y.ab'ove the still water level

k = deep water wave number

V = forward speed of the model

T'h,e better results in figure 7.5 of the first.:method .are.mai.nly

caused by a difference in the hy:drodynamic corrections of.th'e Froude-Krii.ov wave moments .n [2] and a difference in the algorithms to calculate the directional components of the

equivalent orbital velocties of the wat.erparticles relative to the cross section.

Besides this,, both the Lewis f:orm transformation and the Frank

Close Fit method have been used to determine the two-dimensional

hyd.rodyn'ami,c properties.. Fi.gir'e 7.5 shows somewhat better results

for the Frank Close Fit method.

Drift Forces, in Regular Beam Waves

These forces have not been analysed yet.

(19)

5. Nomenclature

B breadth of the model

CX longitudinal hydromechani.c force coefficient longitudinal hydromechanic force coefficient

Cy lateral hydromechanic force coefficient Cyj lateral hydromechani,c force coefficient CN horizontal hydromechanic moment coefficient

CNj horizontal hydromechanic moment coefficient

Fn Froude number based on length

Fnv Froude number based on displacement

C center of gravity of the model g acceleration of gravity

K keel point of the model

k wave number

km constant

including the hydrodynamic contribution

L length of the model

M metacentric point of the model

m ratio of hull cross sectionto..tankcross section.

N! . hydromechanjc moment in a horizontal plane or a limit value

RAW added resistance due to waves

longitudinal drif force due to waves

Ry transverse drift force d:ue to waves 1 constant

tj Constant

T draught of the model T period of roll

V forward model spoed

Va forward model speed, corrected for blockage

X longitudinal hydromechanic force Y lateral hydromechanic force

Za heave amplitude

a forward speed correction factor

drift angle, 1800 is a head current

czç heave phase lag

pitich phase lag roll phase lag

c°a roll amplitude

non-dimensional roll damping coefficient

A wave length

V volume of displacement

kinematic viscisity of water

p density of water

circular wave frequency

circular frequency of encounter

wave amplitude

9a pitch amplitude

(20)

6. References

Ractliffe A.T., P.J. Fisher and CH.C. Mitchell.

An Experimental Study of the Parameters Affecting the Drag of

Barge,s in Current and Waves.

13th Annual. Offshore Technology Conference, Houston, Texas, U.S.A., May 4-7, 1981.

Journée J.M.J.

Strip Theory Algorithms.

Delft Shiphydromechanics Laboratory, Deift University of Technology,

Report No. 815,, December 1988.

Gerritema J., and V. BeukeIman.

Analysis of the Resistance Increase in Waves of a Fast Cargo Ship

International Shipbuilding Progress, Volume 18, No 217, 1972. Boêse P.

:Eine Einfa'che Methode zur Berechnung der Widerstan'dser.hhung eines Schiffes in Seegang.

institii.t für Schiffbau der'Universitt Hamburg.,

Berich.t Nr 258, 1970.

Journée J.M.J. and A. Versluis.

Scores-Deift on a Personal Computer. User Manual of Release 2.0.

Delft Shiphydromechanics Laboratory, Delft University of Technology,

Internal Report No. 805-M, October 1988. [6] Kaplan P. and A.I. Raff.

Evaluation and Verification of Computer Calculations of Wave-Induced Ship Structural Response.

Ship Structural Committee Report.SSC-22:9,. 'July 1972.

[5],

Acknowledgement.

- - indebted- to Mr. A . J. van S:trien fo7r btfl

(21)

7. Figures

The following figures are included here.

Figure 7.l.a. Measured and Calculated Heave and Pitch Motions at Fn = 0.00

Figure 7.l.b. Measured and Calculated Heave and Pitch Motions

at Fn= 0.05

Figure 7.1.c. Measured and Calculated Heave and Pitch Motions at Fn - 0.10

Figure 7.i.d. Measured and Calculated Heave and Pitch Motions at Fn 0.15

Figure 7.2.a. Measured and Calculated Added Resistances at Fn 0.00

Figure 7.2.b. Measured and Calculated Added Resistances at Fn = 0.05

Figure 7.2.c. Measured and Calculated Added Resistances at Fn 0.10

Figure 7.2.d. Measured and Calculated Added Resistances at Fn = 0.15

Figure 7.3. Measured Non'-dimensional Roll Damping.Coefficients

atFn = 0.00

Figure 7.4. Measured and Calculated Heave and Roll Motions at Fn = 0.00

Figure 7.5. A Comparison of Some Calculation Methods for Roll Motions at Fn = 0.00 and B/T = 7.5

(22)

- 5.00

r

VfflIIIIIIHIIII1IIUDIWI ILll1 t1flB JHt

IIIUWIIIIHI

fl 1UlfflUIIIlt ONMTI k

- 1 Wi mmU Wil IIll1lllDhIIF fl jffljflJfJfl!J-fl

WIll

IIWiI

IJAl IIIIIIIWIIII WIIIIWIIDflWWIJDWBUUI

llIWDWWiWi1IiL WIl WI WIH1WIWIUiHuIllllflhIDIfflllHlll

IIJW BlUf HI WIH JWWiI WI WI IUWI ii: ilt fffflHfflHHW IWIDIIIWIWI WI WI WIDUJWIffI IWWIIDWWIWI WI 'iWIWI WIWIWI

1

V ..

Vi

DIL iL. DIVE! WIWWIIWWJJW

:.lV[JEflWIflJJ

.

NlNJlIk

I! V WI WIdVtlVWIWI V V

r

::I:.:

.L

:u !Pi

:.

j

I ..__----I H

T

B/T - 00.00 Fe - 0.00 Model A a Model B

Ii

B/T - 7.50 - 0.00 Model A a Model B

I. .:.

NN UPNVN U'I1ilVV

- IJN NVNVV UHH'VLNIWIHJV HH!MP - . NV - ' NV NVUVVHIUU

::..

:_...-WJUN..]_U NUN.HIDUV'..;i!:.UPIj IDV VUU

IIHh,

IUVVVIIV.. IUIlMIHIllh1V

.'.: .'.':V

. URN

IL6L

-. VNUNNNU ..

au..

fl

4.. .r NlD. V WIU1VHdIWIVNW U VII UUVVVfflruiflNV.

I

in- HVVVPV

V Ii9thIIIHID; . .; V N

:1-i :1-i:1-i:1-i:1-i:1-i:1-iE:1-i

:::::uuin u

VJIUUUUNVUI VUUUUN

UNVNNUVUN..N

. .

.:VUNUUUNUNVUUU. U

URNUN

I:IilhIa1I

L . V RN UUU VUUUNUUUUr NVUNVUVUUUUVEUUL V V UUUUN U WIUVNVVVNVNVRUNU U

:

i.

- I

IHflhIIKIIL

'

L

Nil

Nil ii

.

NIl

IH1IIIIlIUHIIIIlt1If1!

INUhlWlliUit

I -

II

UI - 13.33 Fe - 0.00 O Md.l A

Figure 7.1.a.

Measured and Calculated Heave and Pitch

Motions

(23)

Hi! 1.11 moJRoi B/T - 5.00 - 0.05 Medol A £ Md.i I Plè

I

PP

i1iiiA

l/T - 10.00 - 0.05 Md.1 A £ Mod.L B ct ::

I

qi-T] .i I B/T - 1.50 - 0.05 Ii. I1KIi1iT

I:'!

lINK °

PIUPU

r uuuu HPPPP&PPP

iair

-

pp

L I.

!PL'.

H

.rni

1p S

iiims.ss.suwss ssss

suuu

iSilVSSS.SLuUPP

kUWWUUUUUUII SI

=

U

U

!P'

Iiiiuu.ii

'

U[NNUSSSUNUSPPtUPNUSU V 1 PUSS 5555555 I 5555 I1KK1KIUUKK:mK55UUW KSSPUUUU555555 :L.

:uiruaa::a

tPPiSkP5P$ULUI IUUkIUPUPU

rnis ussuuu1suuuuum..

:aai#r!i

UPPUUINSPUUUUU5UUUUUUU_i

:ianinamuui

r

-LSl..U....

5

0 SUN

UI

LI U.. 0 III I

Figure 7.l.b.

Measured and Calculated Heave and Pitch

Motions

at Fn = 0.05

B/T - 13.33

En - 0.05 Nod.1 A

(24)

0I0 =

PU

8A3H P

Pt1

q°ia

SUOEON

peinsaw

°1L a1n2T

.LO.U.5 '

1IU

uwm'mmmu ummum m. uuu uuuu ummu umum iu'u mumu mmmii

IINiIj!I

uflhh.

.IU

I

UU

UUI Mum

.l

U

mu. mULuuumuup.u.ummi.m. '

..umul

.

...umri' '

u.u.rIuU::

i

Uu mm.

uumuuu m

up...

...

.um uuuumi

U

umu.up.uui

mum...-. mu.

-uumuuuummuuu.a.mui

uumj -. ... V

...um.auu u..uuI1iwIhr

mmm uauum

uuuup.um

- - umu. h u

muu

umummuflhiuuumu.r. mum

um...

uu.p....p..p.p.

.urummp.m.uuumuuu.a.u.u. umu

'a.m.uuuumuu.up.z.umum.

.uuumuu

-:.

mu...

uuummu up.

uuuumu. . 'uuuuuuuuup.mci.:

..uuumm

u

u.uu.ummumu

uuuu... ...uuuuuuuumuuim

mu...

u

- m

..

mu umumumuuumurmc

1PON

.uuRmmmu!uumm :.p. mum.

uau'.uuu p..

...

. mu... iumPmiima

- £Ct

-. p.p.. p. x

1101

L

-. -..

umuuu

-!

1.

.. nup.nffi mrr p. I .

IIII

umu mau mum. mmmii

uu uuumuuuu.mmmuvum..0 .mu.

uumumumuun.uu.cu.0 U...

umlmm.uu.mum..um.. mm..

mm...uuu..uuuumuuum.umm

numummuuuuumumumm

.0

rnu.uummm.uuu.u.mmm mm. iumuuumumu..um.mmc. umu

".umuumummuummm.. mm.

uumumuumu.mwimi mu

up.muuummuuuu.mmm wmm

p.uuuuuuuuum.m umu

--...:

.umm.mu.m.mmm. -

mm..

uu i

.j.ummmmp.mwm. i.

H. Jflj:

IMIE1t!!i

-... . :{. J V V V I OtO oo.ot -...

I';

mmm p.mmummmmp.m

Emmp.mmumm

-

I

fl''T'

IHIII

mmp. miui

maui mmiuimm imum mm

p.::

r.uinuum mmiiu UumIuN4 mmmi mm

'aiim

p.mp.mp.mmmnmnruimmma

i.flflj

N6iIIm

fflI

aip.uop.mp.m I: p. . :pauniHuaiuoIauno 'IIlHp.p.p.Qaip.p. p. WI 1 lW liiaiflaiMiutffl mm. fl fflflffl: :p. fl iumoummim

n mm umummimmuim iium 'ip.p. mluInmlIllaulflaIu ivaaii

smllulnImlum.nhlumuu tk1flm im mumuamaun mum:. p.p.p.p. imuwlaulimummUm. p.p.p.n p. ' DII . -mumaflumaumumumAlIlaulIl W :: !!:umilI a IOIIiJ : -wumum p.p..1 ... . iummum U - I: H V SPV V V tPW ot.o -OO. - JJV III II: :j j;.

(25)

.1

_I

1b'

HthII1B'

IIIQIII

r

t1 III -:.

i:

I-i

IIrnI

I

-

-WH VthHffl

WHQ

I

i!

rU UIt

"I

I

u

9

I

.nia

r

E g . . q j

I

:

I

IUIt

NI QtH:ffl

'IJPflIH

II ftllI".UIfl'.i. IffPiIIDII . LW

:I..::1a

I,!

:::'...I... .::!.:I.0 :Ir.

Ii; 5/? - 5.00 Fn - 0.13 IIed.1 A £ Nod.1 B

4 +L

. - -uii

ui

UL] UtJU

- U

a.uuuuu

UILUUUUIUU .:

u

.uui.uuu L

I -u

u.u.uuuuuu

U

UI

UUuuuu

bk U

UU

wi lu

iri l4UU.UU.UUUI'I..Ul

u u

uuui

1c

iiiu

uu.

ti uuuuuuuuuwuu

uuuuua

uuuuuu.

uuu

UNN

uuftuuluuuuu"uuaUm

l.LmuuUuuuu...

i

pLUUU - -

iuu'

ji

:Uu

i uuuu

u

v i

w

.flu.DuU.UuuwU u uuuuu

uuu

-Lm mu

mu.

iu

mu.auuuuu u

l!M

uaumu.uu

.umuu

-umi.u.u. UfLIIUUUU

1VDHIIflIII 11111111 h:

u"'uuu .

i a...

uuulrn.

/117 ifI ...:.I B/T13.33

:UUUU :UU

Fn - 0.15 ZN uUrn

'uu:

:.jIIIjJI!..

A .

N.

uuuukrnILuuIw .

...-uurrn .u..umu

' .

.mu.uu..,uu

umm.rnuum..muu

..! uuuu.

urnu.murn...up

u.

urn m

'iiu.

--- . .1.. .

I.

.- -...HI I I

::._1

:.- -.

-L....

U...

ki

ui.mrnrnmmm.

-

mu..

.

... .J

mu..

- UUN ..mr.u. u.0

.. - -. I

.:.:.J.'... I :

um

:

DDDDh !1i :::

-IIIIIIID. N

u.

:

'I

e...

Figure 7.l.d.

Measured and Calculated Heave and Pitch

Motions

(26)

' S Mod.1 A I Md.1 a

--MI

iiI'h R..rU.UU.AL.

--

IMNINW

W4U

II15L :

w

ru .

Pk

I U NM.ra .. I &

kOI

UVLh IUUUUUUUU.

ULLL1

UID5

kU

Radiated energy method (Gerritsma/Beukelman) Integrated pressure method (Boese)

Measured and Calculated Added Resistances

(27)

I :1

j'

:

a M61A

!kI'

I

l}Ifl

II!hllffl

il1aLa:

5flI III IffiflIII HI

-a

IWIB

IBWI

m1fflC

W1

IIftQNllMuIWH1flQfll III Wfl

IIflW

:'ilflWIUffih1lOfflhl D rB IUIfl1]n1fl

i

I Ill 1101 I0I LJJ P411 11li 11111011111111101

0111 110100 11110 1111 1111 01IDIU1LIIIIOM OlE HI 110111100hlIHI011I

IIHI0lU I

U:

.iHIHIUP4 HI WdIHHI11IOW VIIUHI

!lE HIU1U U UU

ii

1_

aUa

UUi*

: HIJ4HI9

::r-.,

B/I - 5.00 PD - 0.05

IUIOI

I I

.0 ::::::::HIil:::IuII:I

U

!HrI iIiIiI!I

EUUUU

UIUU UUUUU Up

'liii

lUU I9UUIUUU UP1

iHfl

iiHIIJHbOUHI

.ari iuuu

-.:.P i:B

l. - B/I - 10.00 PD - 0.00 Kadal A A KadolB

:::::n..:

II;

I

...

flU. UUUfi.l

UUU PU

.UUhaUa.U.fl.u.ufi.

U

flU

UUHIUHIUUUUUUUUUmauUuSuu

flUUUUUfiUUflfl

- -.

IRUUUflUUUUU I

. UU01OMUUU*UUUUUUUUUUUUNU..

UUUPSUURUSUUUUUUflU flAU I

.Iuauumuu.

UUUIIPUIIUIUUUUIIU

III

UVIIIlEiNUIUUUUIIURIUUIU

I..

UUU UUILIUUUUUUUUUINI UJUU(

NUU 11111 III

IIIIIU

trrlUUIuIU

j1I5lPUg

4. T...

-

:inaj-Figure 7.2.b.

Measured and Calculated Added Resistances

at Fn

0.05

B/I - 13.33

- 0.05

B NDd.1 A

Radiated energy method (Gerritsma/Beukelman)

Integrated pressure method (Boese)

(28)

HllhILftU

l

NUiJU

L I1Jd

JDflI'

BIT - 5.00

II N

-lL1

L IN

B Kodet A

tiPI

I1PLIi a Modol B

-'!I iNl

JEt

uI:WIll

NrEINn4

EI

1IU M1aI1

kflI P L NN' NThI!I

g:

uuu

iiiimi

EH 1JI2NI1II

:::.

ig

ii

u.i_ ,

N$Num M1III 'mflirii NuN

INN

a.

N NNlll

$LqJfti

'IbJ "INUl11HltV

,IIi' 1W

i

-u:r:

1

:::

INNuI

-ru

L - 1Mu.

...uumm

I I u

INIUi

N

I-

B/T - 10.00

IUNNIIIffhIILN

d 1 A A Bodol B

NLIIU*II RMILNNU UflThNNI4N NEIL

NII Fifil

IIIIDtNIU1 BUFH!ilJ Nib

IOIINfflhl NNOLP

uirnrn NN

LllN

irnou

b NNNANI

bNI

4INNI NN

ULNNI

ININNI iCIU flflkN!LNUkUSjL ± IIINBJUI

u.rru

UII1

LIU

.N

N

1U"

INbJ

Li

II

IJJ

I

U1Nfl NNU UIN

IhilljP

Ni.N NNN mvcu

i!11lI

:U III

iu.

NLiN9NDLNDhlN

INN

NUNNNLi

UNNI

:::

m:

U Oi!!I - II

UIIItI

Ir 1UI

B/T - 7.50 11111

"U

'

LJ UI

UI

£ Modol B

II

U U

i:

IDII.I

1iliiUiiiiI

i: :wu:

1IUIII: 1 -IIgIUIUU

iu::::

LIIiIIiIiuI I

IIINiILIIiNNkNNU

MIIPILiNUUIN Li

UIIIIUII

-

N

IIU 1I

N N N... UI NdNP4 I INN U HI I

!1NIIIL' I

L 9 NU N

U

:

1::-:

I

-UI -1- -UI

-!!10

NU

!I 1!

LLL..

II

B/T - 13.33 - 0.10 S Modol A

Radiated energy method (Cerritsma/Beukelman)

Integrated pressure method (Boese)

Figure 7.2.c.

Measured and Calculated Added Resistances

(29)

[ -

h_i. " I = :1 iiIjhfl.Jj I Model £

!J1 :J

6 Model 5 I liii ii ;..

itt;

HIfflUJ lU1IIIffl111uhI :11h11JiD1 fl11

I

-NUlflhIIIll11 HI hUll Ifl1lUllIMlI

IH0 0IfflI1111I111 011111 111111111111111011I1111101111111h1101

t0100111 OOILIIOIIIUJU 111111111111 111011010 lHllniI10

; 1111101111101 11011t01t10111111 HID H01UHI11111UI00WUV0HI0Il11D

0IJUHIflhIIffl0.Iff11kDH1O110WH1U11IUI0fl011111lH11HlIH11HIU11H lltl1.HH H111ll0l11ulI11fl 11101110 II01Q fl10H1t11011I1111IDlUHI1111Il0i111H J11UI 11111101011 11111011010 011111101111111 1111I1111l0Ulll0l01111l11l110

I01D01 I.:P11011 Jf0IINI W0I0

ffl11HI11 011I0111001 11HI11 111! 101011;H U

UU II .11111 011 OIhI ID U 01HUU

IJ

011 010;:;

IDUM

UUMUU11ffiUI11UUUD*UH1DJ0R01Rth U. .i JJ U0111I0D01V 11HIU001 11hIUUffl110HIlHULI OW U UU

UWliL IL;.:, LUOUIU0tI I

UI m11ii17' 41

ffl!

I -!i.!:;iI:.::I..:'!UID - 10.00 Ye - 0.15 Model £ A Model I 11

II:: .1, lii;;', ii;:

: I .

II I_,._

II11IA

l.,i.,i rL_,ui_. llj111

iii

ir-

A. It :;

Figure 7.2.d. Measured and Calculated Added Resistances at Fn 0.15 U

!itu1iII

-.0 1: I/T - 13.33 Fe - 0.15 I Model A W U

J

U UU U :

IUI

III T PIIIHIIUNIPIIIIII

lIP IlIOhIHOHA!

lUll lUll

SIll

II UI

UI UI

UUUU U

UI Ill.

#U

UUU

III: ::±:.:

L IUflUI

1

ii:u:

i

!iEII

.11

Radiated energy method (Cerritsma/Beukelman)

(30)

Iffl1hU IIB

l

IflHU 11

ff:

-rth

' pI.

jrji:Ll

I: .

hiHEilr

III

;fl

aiu

WfflW WIIIJ Wft 1D BrnIi IllU[ll Iffl;1 B/T - .00 - 0.00 Md1 A £ Md.1 I lfiThIfl0!flI Th l/T - 7.50 - 0.00 -Md.1 A A fld.L I

Figure 7.3. Measured Non-dimensional Roll Damping Coefficients at Fn = 0.00

1:::I 1/? - 10.00

(31)

1llJHItflfl!lflH1 IW ' lll ih

ijg;

Bllllfl1 HWd Diitfl

I...

OillrnflV ..:...

ii.

I

U1

Lul i

u'nhr

RJU

IJ

ullgw:

3lV4:

F1J rJUU1

U

IIIWDJ?NU

:i:

II

'LI

Li

Mod.1 3 411111

11101

'H

B/T - 5.00 - 0.00 Nd.I A o.2 I...

I

Figure 7.4. Measured and Calculated Heave and Roll Motions at Fn = 0.00

- 7.50

Fn - 0.00

Hdo1 A

(32)

1

0

Theory

Report 815

Figure 7.5. A Comparison of Some Calculation Methods

for Roll Motions at Fn 0.00 and B/T = 7.5

0

0.6

0.8

1.0

kCa

(33)

Appendix I. Summary of Experiments on Drag Forces

Table I-i-A. Current Forces on Model A with BIT 2.5

Run no. L (m) B Cm) T (m) $ (deg) (rn/B) X (N) Y (N) N (Nm) 154 2.250 0.750 0.300 180.0 0.150 -2.38 0.04 -0.06 155 2.250 0.750 0.300 180.0 0.237, -5.67 -0.26 -003 156 2.2500.750 0.300 180.00.358 -13.14 -0.87 0.34 :157 2.250 0.750 0.300 180.00.47O -23.67 1.18 0.09 158 2.250 0.750 0.300 180.0 0.586 -36.90 -1.62 0.31, 1592.250 0.750 0.300 180.0 070i -55.12 -1.08, 0.36 1602.250 0.750 0.300 150.0 0.155 -2.66 5.29: 1..78i 161 2.250 0.750 0.300 150.0 0.238 -6.86 11.79, 3.66i 162 2.250 0.750 0.300 150.0 0.357 -15.85 26.65 7.89 1632.250 0.750 0.300 150.0 0.470 -27.51 50.41 15.29 1642.250 0.750 0.300 150.0 0.588 -45.64 79.17 21.42 1652.250 0.750 0.300 150.0 0.705 -65.18153.99 49.27 181 2.250 0.750 0.300i 135.0 0472 -19.80 72.15 17.55 1822.250 0.750 0.300: 135.0 0.592 -30.99 115.68. 27.32 183 2.250 0.750 0.300. 135.0 0.704 -46.23 168.07, 37.73 1662250 0.750 0.30O 120.0 0.153 -1.40 8.68 1.98: 167:2.250 0.750 0.300 120.0 0.240 -3.46 24.32. 3.70 1682.250 0.750 0.300 1200 0.359 -7.52 53.49 8.45: 1692.250 0.750 0.300: 120.0 0.471 14.47 98.42. 15.63 1702.250 0750 0.300 120.0 0.588 -21.33 162J8 23.70 1712250 0.750 0.300120.0 0.702 -33.25 233.65 32.97 1782.250 0.750 0.300 105.0 0.470 -3.07 108.91 11.65 179 2.250 0.750 0.300 1050 0.586 1.26 180.94 19.97 180 2.250 0.750 0.300 105.0 0.702. 4.12 267.46 27.79 172 2.250 0.750 0.300 90.0 0.152 028 8.95 0.11 173 2.250 0.750 0.300 90.0 0.238 0.36 25.09 0.54 174 2.2500.750 0.300 90.00..358 . 0.33 60.51 -0.07 175 2.250 0.750 0.300 90.0 0.472 -0.71 117.41 -0.34 176 2250 0.750 0.300 90.0i0.586 -2.58 183.60 -2.24 177 2.250 0.750 0;300 90.0 0.703 4.49 271.13 5.21

(34)

Table I-2.A. Current Forces on Model A with B/T 5.0 Rm' no. L. Cm) B Cm) T Cm) (dog) V (mis) X (N) Y (N) N (Nm) 122:2.250 0.750 0.150180.0 0.151 -1.17 -0.01 -0.02 123 2.250 0.750 0.150 180.0 0.239 -2.88 -0.04 -0.05, 124 2.250 0.750 0150 180.0 0.358 -6.36 -0.11 -0.05 125 2.250! 0.750 0.150 180.0 0.473 -11.87 -0.26 -0.11 127 2.25010.750 0.150 180.0 0.589 -1925 -0.40 -0.20 128 2.2500.750 0.150 180.00.704 -2984 -0.671 0.13 129 2.2500.750 0.150 80.0I0.,704' -29.01 -0.76 -0.30 130 2.250 0.750 0.150 150.0 O.152 -1.29 1.75 0.52 131 2.250 0.750 0.150 150.0 0.237 -3.15 4.25 1.26 132 2.250 0.750 0.150 150.0 0.358 -7.42i 9.70 280 133 2250 0.750! 0.150 150.0 0.469' -13.601 173 4.75 134 2.250 0.7500.150 150.0 0.588 -22.30 27.44 7.36 135 2.250 0.750!0.150 15000.704 -33.37 41.97 10.29 151 2.250 0.750!0.150 135.0 0.470 -9.33t 26.70' 6.16 152 2.250 0.75010.150 135.0 0.588 ' -153i 44.11 9.74 153 2.250 0.750 0.150 135.0 0.703 -23.56 68.95 15.02 136 2.250:0.750015o 1200 0.151 -0.60! 3.40 0.70 137 2.2500.7500.150120.0 0.238 -1.55 8.06 1.65 138 2.250 0.7500.150 120.0 0.359, -3.51 20.64 2.87 139 2.250 0.75010.150 120.0 0.472' -6.27' 39.03 5.08 140 2.2500.7500.150 120.0 0.589 -9.94 63.72 9.18 :1412.250 0.7500.150 120.0 0.704 -15.09101.59 13.65 148 2.250 0.750: 0.150 105.0 0.473 -3.40! ' 43.80 5.36 149 2.2500.7500.150 105.0 0.589 -4.20 74.40! 8.44 150 2.250 0.7500.150 105.00.704 -6.26'114.32 12.56 142 2.2500;750 0.150 90.0 0.149 0.09 2.871 0.20 143 2.250 0.750 0.150 90.0 0.238 ' 0.09! 8.10! 0.11 '144 2.250 0.750 0.150 90.0 0.358 0.07: 23.52 0.72 14512.250 0.750 0.1501 90.0 0.472 -0.13 43.59' 0.66 1:462250 0.750 9000588 -0.13 75.02 1.52 1472.250 0.750 0.150! 90.0 0.705 -0.86 116.44 0.72

(35)

Run no. L (m) B Cm) T (m) (deg) V (rn/B) X (N) Y (N) N (Nm) 523 L125; 0.375 0.075 180.0 0.167 -0.35 0.02 0.01 524 1.1250.375 0.075 180.00.25O -0.81 0.02 0.01 5251.125 0.375 0.075 l8O.O.O.333 -1.50 0.02 0.01 526 1.125 0.375 0.075 180.0 0.415 -2.38 0.04 0.02 527 1.125 0.375 0.075 180.0 0.499 -3.58 0.06 0.02 528 1.125 0.375 0.075 150.0 0.167 -0.40 0.53 0.09 529 1.125 0.375i 0.075 150.0 0.250 -0.93 1.16 0.20 530 1.125 0.375 0.075 150.0 0.334 -1.74 2.15 0.35 531 1.125 0.3750.075 150.0 0.417 -2.85 3.52 0.55 532 1.1250.3750.075 150.0 0.499 -4.25 4.26 0.76 533 1.125 0.375 0.075 120.0 0.167 -0.17 0.84 0.11 534 1.125 0.375 0.075 120.0 0.249 -0.37 1.96 0.25 535 1.125 0.375 0.075 120.0 0.332 -0.67 3.76 0.44 536 1.125 0.375 0.0751 120.0 0.415 -1.11 6.30 0.75 537 1.125 0.375 0.075 120.0 0.499 -1.69 10.00 1.10 538 1.125 0.375 0.075 90.0 0.167 0.01 0.81 0.02 539 1.125 0.375 0.075 90.0 0.249 -0.02 1.83 0.03 540 1.125 0.375 0.075 90.0 0.334 -0.02 3.72 0.08 541 1.125 0.375 0.075 90.0 0.416 -0.02 7.17 0.11 542 1.125 0.375 0075 90.0 0.499 0.06 11.15 0.12

(36)

Table 1-3-A. Current Forces on Model A with B/T = 7.5 Rtm no. L Cm) B Cm) 7 (m) (deg) V (rn/a) X (N) Y (N) N (Nm) 092 2.250 0.7500.100 180.0 0.149 -0.74 0.01 0.01 093 2.250 0.7500.100 180.0 0.238 -1..78 -0.03 0.00 094 2.250 0.750 0.100 180..00.356 -4.16. -0.08 -0.03 095 2.250 0.750 0.100 180.0! 0.471 -7.83 -0.06 -0.01 096 2.250 0.750 0.100 180.00588 -13.091 -0.23 -0.13 97 2.250 0.750 0.100 180.0 0.703 -20.56 -0.27 -0.14 099 0982.250 2.250 0.750 0.750 0.100 0.100! 150.0 150.0 0.149, 0.239 -0.76 -1.98 0.94, 2.37 0.24 0.65 100 2.250 0.750 0.100 150.0 0358 -4.65 5.7,7 1.53, 1012.250 0:750 0.100L 150.0 0.472 -8.74 10.41 281 1022250 0.750 0.100' 150.0 0.589 -14.31 16.80 4.33 103 2.250 0.750 0.1001 150.0 0.705 -21.87 25.52 5.91 119! 2.250: 0.750 0.100135.0 0.472 -6.61 16.53 3.77 120 2.2501 0.750 0.100 135.0 0.589 -10.74 26.79 6.14 121 2.25010.750 0100 135.00.705. -16.99 42.21 9.55 104 2.250 p.750 0.100 120.0 0.1501 -0.39 1.80 0.42 105 2.250 0.750 0.100 120.00.239 -0.97 4.52 1.05 1082.250 0.750 0.100120.0 0.358 -2.31 11.52 2.01' 106 2.250 0.750 0.100 120.0 0.472, -4.02 22.30 3.26 107 2.250 0.750: 0.100 120.0 0.588 -6.87: 39.95 4.90 108 2.250 0.75010.100 120.00.703 -9.84 60.79 7.77 109 2.2500.75010.100 120.0 0.703 ;iO.2O 6276 8.29 116 2.250 0.75010.100 105.0 0.472 -2.50. '25.10' 2.33 117 2.250 0.7500.100 105.00.588 -4.00 42.35 3.59 118 2.250 0.750 0.100 105.0 0.706 -5.68: 69.60 5.74. 110 2.250 0.750 0.100 90.0 0.152 0.01' 1.61 0.04 111 2.250 0.750 0.100 . 90.0 0.238 0.06; 4.99 0.17 1121 2.250 0.750 0.100' 90.0 0356 , 0.13 14.05 0.30 113' 2.250 0.750 0.100 90.0 0473 -0.20: 25.29,: 0.34 114:2.250 0.750 0.100' 90.0 0.591 0.08: 43.28'009 1'I52.25O 0.7500.1001 90.0 0.702 -0.54 69.93 0.061

(37)

TabLe 1-3-B. Current Forces on Model B with B/T = 7.5 Run no. L Cm) B Cm) T Cm) fi (deg) (rn/a) X (N) Y (N) N (Nth) 503 1.125 0.375 0.050 180.0 0.165 -0.21 0.01 -001 504 1.125 0.375 0.050 180.0 0.250 -0.50 0.00 -0.01 505 1.125 0.375 0.050 180.0 0.335 -0.97 -0.01 0.00 501 1.125 0.375 0.050 180.0 0.416 -1.56 -0.01 0.01 502 1.125 0.375 0.050 180.0 0.500 -2.46 -0.02 -0.01 506 1.125 0.375 0.050 150.0 0.166 H -0.28 0.25 0.04 507 1.125 0.375: 0.050 150:.0 0.250 -O.63 0.62 0.10 521 1.125 0.3750.05Ô 150.0 0.250 H-0.58 0.66 011 508 1.125 0.375:0.050 150.0 0.333 -1.22 L16 0.19 522 1.125 0.375: 0.050 150.0 0.333 -1.07 1.20, 0.20 509 1.125 0.375 0.050 150.0 0.415 -2.00 1.91 0.31 Sb 1.125 0.375: 0.050 150.0 0.500 -3.05 2.96 0.45 511 1.125 0.375 0.050 120.0 0.167 -0.11 0.50 0.07 512 1.125 0.375 0.050 120.0 0.249 -0.25 1.16 0.16 513 1.125 0.375 0.050 120.0 0.333 -0.48: 2.24 0.31 514 1.125 0.375 0.050 120.00.416 0.79 3.74, 0.49 515i1.125 0.375 0.050 120.0 0.500 -1.21 5.97 0.75 516 1.125 b.375 0.050 90.0 0.167 0.01 0.48 0.01. 5171.125 0.375 0.050: 90.0 0.250 0.05 1.16 0.01 518 1.125 0.3750.050i 90O 0.334 0.06 2.37 0.03 519 1.125 0.3750.050 90.0 0.416 0.08 3.96 0.05 520 1.125 0.375 0.050 90.0 0.500 0.13 6.89 0.11

(38)

Table 1-4-A. Current Forces on Model A with B/T - 1O.00 Rim1 no. L Cm) B Cm) T Cm) $ (deg) V (mis) X (N) Y (N) N (Nm) 061 2250 0.750 0.075 180.0 0.151 -0.56 0.00 -0.01 0622.250 0.750 0.075 180.0 0.238 -1.34 -0.03 -0.02 0632.250 0.750 0.075 1800 0.358 -3.18 -0.07 -0.03 064 2.250 0.750 0.075 180.0 0.472' -6.17 -0.09 -0.04 0652.250 0.750 0.075 180.0 O.5gl-lO.82 -0.13: 0.00 066,2.250 0.750 0.075 180.0 0.7031 -16.36 -018 0.05 0672.250 0.750 0.075 150.0 °'50H -0.54 0.65 0.18 0682.250 0.750 0.075150.0 -1.42 1.62 -0.48 069 2.250 0.750 0.075 150.0 0.3591 -3.40 3.83 1.09 0702.250 0.750 0.075 150.0 0.472 -6.29 7.00 1.98 0712.250 0.750 0.075150.00.58811-jO.31 11.43 3.09 072 2.250 0.750 0.0751 150.0 0.704' -16.49 18.01 4.18 091 2.250 0.750 0.075 150.0 0.705'-16.59 17.97 4.28 0882.250 0.7500.075 135.0 0.471, -5.15 11.49 2.74 0892.250 0.750 0.075 135.0 0.589' -8.47 18.84 4.45 090 2.250 0.750 0.075 135.0 0.705' -12.84 30.72 681 0732.250 0.750. 0.075 120.0 0.151 -0.30 1.31 0.36 074 2.2500.7500.075 120.0 0.237 -0.74 3.20 0.78 075 2.250 0.750 0.075 120.0 0.356 -1.68 7.99 1.46 076 2250 0.750' 0.075 120.0 0.471 -3.02 15.19 2.69 077 078 2.250 2.250 0.7500.075 0.750 0.075 120.0 120.0 0.588 0.703 -5.181 -7.93 27.38, 45.82 4.10 5.75 085 2.250 0.7501 O075 105.0 0.473 -1.52: 17.97' 1.64 086 2.250 0750 0.075 105.0 0.590 -2.83. 31.89 280 087 2.250 0750 0.0751 105.0 0.704 ' -4.30 51.82 423l 079f 2.250 0.750 0.075 90.0 0.151' 0.02 1.30 O.13 080 2.250 0.7500.075 90.0 0.238 -004 3.95 0.01 081 2.2501 0.750 0.075 90.0 0.358 , -0.13 10.31 -0.04 082 22500750,0.o75 90.0 0.471 -0.24 18.64 -0.14 083 2.2501 0.750 0.075 90.0 0.588 0.11 34.13 0.30 084 2.250 0.750 0.075 90.01 0.703 -0.26 55.33 -0.24

(39)

000

L9

00o ooco ooe: eeooctco L9 000

Z6

000 Lto 008 9C00 'ci.ro cvt 1L9 000 eo 000 O06 oeoo cLeo cit oi O00 960 000 6ZO 006 eoo ceo czrt 699 000 ero 00.0 ro oos ecoocco czrt ggg 000 000 191- toco ooet ecooceo ctt 199 000 000 cvi-

9To

oogt gcooceo cti 999 000 000 oco- cco ooei gcooctro ctt 99 000 000 Lro-

00

008t eeoocteo cgrt gg 000 000 LVO- cro oot ecoo cico ctt egg (WN) (N) (N) (9/rn) (sep) (w) (w) . N A X A U A 9 'I

O001

= I/ [apo UO SO31Qd U311fl W-i-I

rqi

(40)

90C coc czi oco ogo

90

zo oIo oto LT gtt

gt

610 oyo 96o 160 igo oio

go

co

oIo- too- coo- 0o- coo- 'O.O- 100- ZO0- Z00- 000 000 18Z1 egi :99 Z9 et oc it cti

to

agi cti cvc :1 gvc tc 1OO

gc

oez gg 9L1 ti tzo- o- cro- ero- goo- coo- too- too- boo Z00 coo- OO- 9t-

6CI-

981-

c-

z- 0t- cot- sro- oo- tggt- toe- ote- cg-

g-

cI- Lzc1- egg- ice- Lg-

t-

90T- toct- ;og- erg- tg- 99- ccz- ce- ot- In- aro- 6r0- L9zI-coLocLct oco oeco 06c0 oio ego ccco cro

6O

6CO

6I0

8r000cI eBcoctct eococici ego ego coco coio oeco oeco

to

'io coca coco oeco oec000et 69O cro LcZ0 tcgo 8t0 6VO '0L00ocrgcoo ot'octct

0000gI

cr000gt ooci ooct ooct ooct oocct ooct ooct oocr ooc.t ctct ctct ocgi ocgt ocgt ocgt ocgt ocgi oogt oogt oogt 0091 oo8t 000t nO9i noBtacno noet oocIgc000cco gcoo gcoo gcoo 9coo gcoo 9coo .coo coo coo 9c000cto 9c000ceo gcoo coo co-o gcoo gcoo coo gcoa gcoo gcod gcoó gcoo gcao gcoo gcoo 9coo 9c000cco 9c000cco gcoo 9coo acoo gc000cco gcoOocLooczZ occo occo octo occo occo oco ocLó occo occo octo oceo oceo ocio occo occo octo octo occo oceo oceo occo occo occo occo occo occo occo occo occo

Oo

ocz ocg ocz ocg6to oczz Oczzeto oc oczgto oczLcbo oc oczz oczg oczz oczoco ocz oczz ocz oczz ocz oc ocz ocz ocz oc ocz ocz ocz ocz DcZZ ocz OcZZ oczz ocZZ ocz' co o IZO oo tb to £10 eco ago tco .gco cco co cco co ico oco 6O goo coo oto 600 coo oo BOO too ZOO too to ito

(t)

N (N) A

()

X (/w) A (sep) U (w) (w) g (w) /q V

19P°N

UO

S3Oo

U911fl3

-v-c-i

9qJ.

(41)

=

4T'

V

ir°w

uo

soio

uain

q-v-c-i

aqj.

coo- 9t0- 'too- zro- 'COO- oto- too- eoo- coo- coo- 00.0 LO0 cg c8 98 89 L.I cct 18.0 100

co

ogo 61.0 oci 9VO evg

oz

T8I

eet

8L

t te

gz

C60

0t

ozc

cec

8Z0Z 8661

tLt

ctt

scc czz c ceo 98o

tro-

910- 00.0 900- oo oo 000 oao :o.o O0 £00 £0'O ctc- osc- 6C- gc-

c-

cz-

8t-

gi-

zco- co- ego-

oo-

oco COLO 99c0 toco £L0OO6 CLO 8cC.0 scco

00

Zt0

cto coco coto oeco 69co :690 r69O oco gco

icto

icro

ccc000t

ccc000zi 006 006 006 006 ooe 006 006 006 006 006 ooa

ooi

oozt 00Z1

oot

oozt

oot

oot

oogi

oot

0OZt9c00 coo gcoo gcoo gcoo gcoo gcoo coo coo 9coo 9c0o coo gcoo gcoo gcoo 9coo coO gcoo coo coo gcoo 9coo gc000cLo gco:o!occo occo occo occo ocL.o OSLO ocLo oceo occo occo 000 octo :occo occo occo oceo ocio occo octoocz ocL.o occo ocio octo ocz Ocz8'io

oczgo

oco

oczz4o

oczco

ocz

ocz

ocoo

ocz

oc

ocz

ocz

OcZZ oczz oczz

0Z

ocgztco oczz

ocz

ocz

ocz

oc

to

zo

to

eco 8C0 ico gco cco CCO co Z0 oco eo 90 90 gzó czo (uij) N ftfl A (N) X (s/ui) (sep) (UI) A (UI) (UI) '1 0ü

(42)

Table

11-2-A-Appendix II. Summary of Experiments in Regular Head Waves

Motions in Simple Regular Head Waves

of Mode]. A with B/T = 5.00

Note: In these tables some values are marked with *,

This means that this partic:uiar measurement failed.

:: L B 7

"

A ci-1L i

LJ

a Za -s:--- ezc 1a

Cm) Cm) Cm) (deg)'(mfs), C-) C-) (1/s) Cm) (-) (deg) (-) (deg) (-) (deg)

(N) (-) 416 2.250 0.750 0.150 180.0 0.000 1.000 1.0001 5.240 0023 0.100 0 0.274 -111 0.89 0.69 378 2.250 0.750 0.150 180.0 0.000 1.170 0.926 4.856 0'.'020 0.222 * 0.534 * 0.53 0.55 379 2.250 0.750 0.150 180.0 0.000 1.330 0,866 4.540 0.017 0.337 -7 '0.562 -106 0.23 0.32 383 2.250 0.750, 0.150 180.0 0.000 1.500 0.816: 4.268 0.01:9 0.405 -8 :0.831 -97 0.10 0.12 408 .250. 0.7501 0.150 180.0 0.000 2.000 0.707: 3.700 0.011 0.733 -11 1.036 -97 -0.01 0'00 387 2.250 0.750 0.150 180.0 0.000, 2.000 0.707 3.700 0016' 0.688 -5 i.000: -98 * * 412 2.2500.75010.150 180.0 0.000 2.000. 0.707 3.700 0.0221 0.733 -10 .01.979' 95 0.02 0.02 395 2.250 0.750' 0.150 180.0 0.000 2.500 0.632 3.307 0.016 0.804 -3 1.150 -97 0.01 0.02 396 2.250 0.750 0.150 180.0 0.000: 3.000 0.577 3.038 0.012 1.042 -8 ' 1.446j -99' 0.06 0.18 403. 2'250 0.750 0.150 180.0' 0.000 3.500: 0.535: 2.796 0.018: 0'921 -5 1.335' 100, H0.10 013 404 2.250 0.750, 0.1501 180.0 0.000 4.000 0.500 2.620 0.0181 0.8861 -3 1.400' -991 0.04 0.05 417 225O 0.750 0.150' 180.0 0.235 1;000 1:000 5.900 0.023: 0.0701 -16 0.181 -1481 2.63' 2.07 3752.250 0.750 0.150 180.0 0.235 1.170 0.926 5.449 0.015 0.292 -33' 0.734 -132. 2.53 4.36 380 2'.2500.75a1 0.150 180.0 0;236 1.330 0.866 5.043 0.021' 0.327 ' -281 0893 -113 2.13 2.01 384 2.2501O.75OO.15O 1800 0.236 :1.500 0.816 4.707 0.019 0.527 '25 0.887 -118 1.36 1.61 409 2.250 0.750 0.150 '180.0 0.234 2.O00 0.707 '4.043 0.011 0.709 12 1.068 -100 0.24 0.81 389 2.2501 0.750 0.150 180.0 0.235 2.000 0.707 4.043 0.017 0.697 -8 1.061 -101 0.53 0.80 413 2.25010.7500.150 180.0 0.236:2.000, 0.707 4.028 0.022'. 0.736 -8'' 0909 -97 0.96 0.81 394 2.250(0.750 0.150 180.0 0.237 2.500 0.632 3.594 0.017 0.848 -13 ' 1.146 -106 0.35 0.53 397 402 2.250" 2.2501 0.750 0.750 0.150 0.150, 180.0. 180.0: 0.236 0.236' 30O0' 3.500' 0.577 3.244. 0.535 2.995 0.018 0.018 0.876 0.931 -7 -6. , 1.222 1.312 -99 -99' 0.32 0.40 0.41 0.53 405 2.250 0.750 0.150' 1800 0.236, 4.000 0.500 2.802 0.017 1:0.91.8 -10' ' 1.365 -101 0.29 0.39 418 2.250 0750 0.150 180.0'0:.:469'1.000, 1.000 6.545 0.020 0.092 -75 ' 0.112 -172 4.47 4.80' 376 2.250 0.750 0.150 180.01 0.471 1.1701 0.926 6.007' 0.018 0.217 -46 ' ' 0.429 -178 5.85 7.53: 381: 2.250 0.750 0.150 180.01 0.4711 1.330' 0.866 5.53610.O1T 0.4351 -62, 0.760 . -127 4.90 6.92' 3852.250 0.750. 0.150 180.0' 0.472 1.5001 0.8161 5.197 0'.021 0.5071 -54: ' :0.942 'i50 4.74 4.27 410 2 250 0 750 0 isol180 0 0 47012 0001 0 707' 4 3791 0 011 0 794 -27 I 1 168 -114 1 04 3 71 39022500750015018000 472,2 000 0 707'4375O 016 0785 -27 1150 -115 149: 229 41422500 7500 150 18000470i2000 0707'4366'0022 0814 -27 1131 -116 094 0791 393 2.250 0.750 0.150 180;0' 0.471 2.5001 0.6321 3.843 0.'018 0832 -8 1.087 -991 149 1.80 398 401 2.250 2.250 0.750 0.750' 0.150 0.150 180.0 180.0 0.470' 0.470 3.000' 3.500 0.5771 3.468, 0'.'535 3.181 0,017' : 0'017' 0.920 0.994 -13 -9 ' 1.315 1416 :-98 -100' 1.19' 0.45 1.61, 0.61 4062250075010150180004714000 0500129780017' 0965 -11

11.47-103048

064

(43)

Table 11-2-A-b. Motions in Simple Regular Head Waves of Model A with B/T = 5.0,0 L B T I V A 1L

::

(m) Cm) Cm) (deg) (mis) (-)

[-j

C-) e (1/s) a (m) C-) (deg) (-) 6ç (deg) C-) (deg) AR, (N) (-) 419 2.2500.750 0.150 180.0 0.704 1.000 1.000 7.181 0.019 0.000 0048 * * *' 377 2.250!0.75OO.150 180.0 0.701 1.170 0.926 6.531 0.017 0.135 * 0.269 * 0.62 0.87' 382 2.2500.750 0.150 180.0 0.705 1.330 0.866 6.018 0.018 0383 -74 0.574 -156 4.31 5.43 386 2.2500.750 0.150 180.0 0.704 1.500 0.8165.5850.0180.413 -61 0.846 -168 435 2.00! 411 2.25010.750 0.150 180.0 0.705 2.000 0.707 4.699 0;010 0.874 -26 1.347 -117 0.37 1.421 391 2.250! 0.750 0.150 180.0 0.705 2.000 0.707 4.707 0.015 0.857 -25 1.315 -117 0.79 1.361 415 2.25010.750 0.150 180.00.703 2.000 0.707 4.826 0.022 0.810 -24 1.302 -118 2.00 1.75 392 2250 0.750 0.150. 1800 0.705 2.5001 . 0.632 4.115 0.016 I 0.950 21 1.318 -104 1.30 2.07 399 2.250 0.750 0.150 180.0 0.708, 3.000 0.577 3.711 0.013 1.472 0 .980 -85 1.42 3.71 400 2.250 0.750 0.150 180.0! 0.706' 3'.5001 0.535 3.391r 0021 0.778 15 1.853 103 0.44 0.40 405 2.250 0.750 0.150 180.0 0.703! 4.000 0.500: 3153j 0017 1.000 -16 1.544 -100 0.27 0.38,

(44)

Table 11-2-B. Motions in Simple Regular Head Waves of Model B with BIT = 5.00

L B T V

A L

a 5zç

1RL

P82B2'

(m) Cm) (m) (deg) (mis) (-) (-) (lIe') (m)

', (-) (deg) C-) (deg) C-) (deg) (N) (-)

597 1.125 0.375 0.075180.0 0.000 1.000 1.000 7.392 O.012 0179 * O.173 -114 0.11 0.58; 593 1.125 0.375 0.075 180.0 0.000 1.500 0.816 6.036 0.010 0.378 0 b.545 -93' 0.03 0.26' 589 1.1250.375 0.075 180.0,0.000 2.000 0.707 5.232 0.011 '0.702, -13 0.877 -96 0.01 008 601 1.1250.375 0.075.18Ooo.:oOo 2.500 0.632 4.668 0.010 0.808: 0 0.969 -89 -0.01' -o.o8 605 1 125 0 375 0 075 180 0 0 000 3 000 0 577 4 292 0 010 0 939 -11 1 137 -108 -0 04 -0 31 609 1.12510.375 0.075 180.0 0.000 3.500 0.535 3.952 0.011 0.868 -7 0.991 -98 -0.01 -0.04 613 1.125!0.375 0.075 180.00.000 4.000 .0.500 3.703 0.011 0.907, .0 0.993 -98 0.02 0.13: 598 1.125! 0.375 0.075 180.0 0.167' 1.000 1.000 8333 0.012 :0.164' -6 . 0.307' -112 0.37 2.03' 594 1.125! 0.375 0.075' 180.0! 0.166' 1.500 0.816 6.642 0.013 0.413 -10 . 0.744 -108 '0.18 0.91 590' 1.125 0.375 0.075 180.0; 0..166 2.000' 0..7Ô7 5.707' 0.011 0.762 -11 0.952 . -99 0.05 0.33, 602 1.125 0.375 0.075 180.01 0.166! 2.500' 0.632 5.047' 0.009 0.914 -10, . 1:050 '-95 -0.04 -0.42' 606 1.125! 0.375 0.075 180.0! 0.167 3.000! 0.577' :4.580 0.011 0.805 . -7, " :0.905-102 '0.03 0.16 610 1.1250375 0.075 180.Oi0.167'3.500 0.535;4228;Q.O1OO.874' 0 0:956'' 98 0.06 0.44 614, 1.125 0.375 0.075 180.0 0.165! 4.000! 0.500 39370.011, 'p.924 -'10 ' 1.048 102 0.01: 0.07 599 1.125 0.375 0.075 180.0' 0332' 1.000' 1'.00Oi 9.281 0.'Ol"l, 0.076 *' 0.149 -125 0.53 3.92 618112503750075180003311500 081672640006' 0455 -41 0750 -133 003 068 59511 1250 37510 075180003341500 0816729810011 0564 -33 0874 -130 067 455 617 1.125 0.375: 0.075 180.0 0.332 1.500 '0.816' 7.264 O.01'7: 0.532 -31 0.854 -130 1.25 3.42' '591 1.125 0.37,5! 0.075 180.0 0.333. 2.000 0.707 6.154 0.011 0.857 -23 1.018; -97 0.27 2.01 03 1.125. 0.375! 0.075 180.0 0.332 2.500. 0.632 5.4121 0.009 0.989 0 1.092! -87 0.04 0.33 607 1.125, 0.375' 0.075180.0 0.332 3.000 0.577 4.878 0.011 01.898 10 0.981. -95 0.00 '0.00 611. 1.125 0.375 0.075 180.0,0.3333.500 0.535 4.494 0.011 0.925' -9 0.971 -105' 0.09 0.61 615! 1.125 0.375 0.075 180.0 0.331' 4.000 0500 4.172 0.010 0.980: 0 0.925 : -0.05 600 1.125' 0.375 0.075! 180.0 0.499. 1.000 1.000 10.20 0.011 '0.038!, *: 0.113 -17& 0.31' 2.32 596 1.125' 0.375 0'.075 180.0' 0.500 1.500' : 0.816 '7.893' 0012 0.522 -43! 0.897 -117 1.08 ' 6.67 592 1.125:0.3750.075 180.0 0.500 2.000 0.707 6.621 0.011 0.815 '21, ... 1.099 -106 0.50 ' 3.48:' 604'1.125!0.375' 0;075.180.010..500:500,O 632 5.786o.'olo.::o.893 -12 ' .1.138 98; 0'28 2.13! 608 1.125 0.375 0.075 180.0 0.499! 3..000 0.577 5.206, 0011 0.'972 -11 . 1.025 -100' '0.19 1.30! 612 1.125 0.375 0.075 180.01 0..500j 3.500! 0535! 4J601o.,oio::0.!951 -11 1 , 1.019 -93 '0.24 1.88 616 1.125, 0.375'. 0.075, 180.01 0.5001 4000 ' 0.500! 4:397! 0!010: 1I.'051' ..4' ' ' .. . 1122 ' 95 '0.06 0.51

(45)

Table 11-3-A. Motions in Simple Regular Head Waves of Model A with BIT 7.50

Run no. L B T P V

-L

rLi

L-i

A We

---

a ER.L kc PSca B2 2

Cm) Cm) Cm) (deg) (rn/a) C-) (-) (1/B)! (rn) C-) (deg) C-) (deg) (-) (deg);

(N) (-) 3252.2500.750 0.075 180.00.000 L000! 1.000 5.2230.021 0.117 -288 0.260 -70' 0.59 0.57 349 2.250 0.750 0.075 180.03 0000! 1.5001 0.816 4.2803 0.013 0.385 0 0.672 -941-0.06 -0.15. 324 2.250 0.750 0.075 180.0' 0.000 1.500' 0.816 4.277 0.018 0.406 9 0.720 -87 0.03 0.04 353 2.250 0.750 0075 180.0! 0.000' 1.500 0.816, 4.2801 0025 0.407 9 0.706 -86 0.23 0.53 3262.250 0.750 0.075180.030.00032.000, 0.701 3.71130.019 0.616 0 0.890 -95 0.07 0.08 330.: 2.250 0.750 0.075 180.0 0.0001 2500) 0.632' 3.298 0.018 0.743 -2 1.055 -97 -0.08 -0.11 334 2.250 0.750 0.075 180.0 0.000) 3.000' 0.577 3.031 0.018 0.780 -4 1.114 -94 -0.03 -0.09 338 2.250, 0.750 0.015 180.0! 0.000! 3.500) .0.'535 2.808 0.018. 0855 9 1.187 -99 -0.03' -0.04 34212.250 0.750 0.075 180.0'0.00034.00O 0.500'2.63030.0j8 0.914 -5 ' 1.216 '-97 -0.04 -0.05 317 2250 O:.750 0.075 180.01 0.2371 1.000! 1.000; 5.916! 0.029. 0.084 42 0.056-105 2.28 1.15 350 2.250, 0.750 0.075 180.0 0.2363 1.500' 0.816 4.7073 0.015 0373 -14 0:595 '-110 060 1.09 321' 354 2.250 2.250 0750 0.750 0.075 0.075 18003 180.0 0.2353 0.237' 1.5001 1.3003 0.816, 0.8161 4.696 4.699 0'.:022. O.029 0.382 0388 0 -18 . ' 0'627 0.607 -110 -1021.18 [.73 1.02 1.17 327 2.250 0.7,50 0.075 180.0 0.2383 2.000' 0.707 4.035 0.021 . 0.610 0 ' 0.886 -87 0:54 0.53 331 2.250 0.750 0.075 180.0.0.23632.5oo,o63233.5663o':,o1g; 0.728 -5 . ' '1.005 '-95 0.18 0.18 '3352250075000751600 023633 000 0 577'32491 0183 0769 -3 1053 -96 007 009 339 2.250 0.7500.075 180.0 0.235:3.500 0.5352.9950.0181 0.852 -8 1.144 -98 0.15 0.19 343 2.250 0.750 0.075 180.0 b.2364.000 0.500,2.808.0.018' 0.867 -10 1.176 -103 0.09 0.11 318 2.250 0.750 0.075 180.0 0.471 1.000 i.000; 6.531. 0.020' 0.160 -8 0.250 -114 4.58 4.68' 351 2.250 0.75010.075 180.0, 0.470 1.500 0.816 5.171,0.018 0.389 '0 0.595 128 1.74 2.19' 322 2.250, 0.750, 0.075 180.0. 0.472 1.500 '0.816 5.184. 0.026: 0.365 0 '1.123, -126 3.11 1.88 354.2.250075010075 180.0 0.469:1.500 '0.816;5.180 0.02930.448 0 0.729 -123' 4.36' 2'12 328 2.250 0.7500.075 '180.0 0.472 2.000 0.7074.366 0.024i0.570, -16 0.7863 -111. 1.52 1.11 3322.250 0.750 0.075 180.0 0.469 2.500 .0.6323.8410.020 'O750i 0', 1.017 ' -90i 0.72' 0.74 33632.250 0.750 0.075 180.0 0.471:3.000 0.5773.462 001Q 0.7813 -8 1.055 -961 0.61, 0.71 34012.250 9750 0.0753 180.0 0.4703.500 0.5353198 0.018 b,.as23 :-1O . ' 1.144 -99' 0.763 0.94 349 2.250 0.750 0.0753 180.0 0.470 4.000 0.500 2.965 0.017 0.884 -63 ' ' 1.230 -102 ' 0:28) 0.38 3192250)0 7500075180007051000 100072140021,0073 0, L 0095 -132 132 1283 352 2.250, 0.750 0.075. 180.0) 0.,706' 1.5003 ' 0.816 5.590 0.013' 0.466 , -29 , . 0.791 -138: 1.29 1.633 323,2.2500.750 0075 180.03 0.:706' 1.5003 0.816 5:5950.019, 0.430' -241 0:803 '-.1293 246 2.70 355 2.250 0.750 0.075 180.0' 0.7063 1.5003 0816 5.57530.025 " 0.448 -24'

..'. 0:783 132 '616

3.96 329 2.250 0.750. 0.075 180.0 0.1051 2.000 0.707! 4.6993 0.018! 0.867 0 1.231 -111 0.85 1.17 333 2.250 0L7501 0.075 180.0 0.704 2.500 0.632' f..104 0.019;, 0.795 -13 1.054 -98 1.11 1.32 356 2.250 0.750'O.075 180.0 0.7063.000 0.577 3.698:0.018 1.097' -8 1.308' -102 116 1.97 337 2.250 0.750 0.075 180.0 0.705 3.000 0.57.7 3.698 0.018 1.061

7

' 1.1933 -103 1.26 1.72 341, 2.250' 0.750 0.075 180.0 0.705 3.5003 0.535. 3.369. 0.021, 0.714' -25 1.116 -115 0.34 0.32 345! 2.250 0.750 0075' 180.0 0.704 4.000 0.500 3.18130.019 0.840' -15 1.085, -99 0.96 1.12

(46)

Table 11-3-B. Motions in Simple Regular Head Waves of Model B with B/T = 7.50 L Cm) B Cm) T (rn) (dog) V (rn/s) ) C-) L [;:-] C-) We (1/s) a Cm) (-) e (dog) e (deg) (dog) (N) (-) C-') pg2B2 C-) 554 1.125 0.375 0.050 180.0 0.000:1.000 1.000. 7418! 0.009: 0.148 35 O.337 -114 0.10 1.10 5501 12503750050180000001500 081660590009 0468 0 0719 -97 003 031 546 1125 0.375 0.050 180.0 0.000 2.000 0.707 5.236' 0.010' 0.657 0 0.797 91 0.01 0.07 558112503750050180000002500 063246890010 0789 -7' 0987 -94 002 015 562 1.125 0.375 0.050 180.0 0.000 3000 0.577 4.27.1 0.0101 0.898 0 1.052 -93 o.oi 0.11: 566 1.125 0.375 0.050 180.0 0.000 3.500 0.535: 3.957 0.010. 0.908 -3 1.094 -98 0.00 0.00 570 1.125 0.3750.050 180.0 0.000 4.000 0.5003.70010.010i 0.908 0 1.059 -95 0.01 0.09 555 1.125 0.37510.050 1:80.0 0.166 1.000: 1.000: 8.322 0.009; 0.380 32 0.380 -133 0.29 2.84 551 1.125 0.3751 0.050 180.0 0.168 i.500; 0.816 8.468. 0.010: 0.490 0 0:.7421 -104 0.18 1.49 547 1.125 0.375 0.050 1800 0.187 2.000 0.707' 5.707 0.011 0.667 -3 0.868 -100 :0.09 0.63 559 1.125 0.375 0050 180.0' 0.165 2.500 0.632 5.047 0.010 0.777 0 . ' 0.9481 '-92' 0:05 0.37 563 1 125' 0 3751 0 050 180 0 0 165 3 000 0 577 4 580 0 010 0 847 -3 1 0331 -96 0 04 0 32 567 1.125:0.3751 0.050 180.0 0.165 3.500 '0.535 4.2231 0010 : 0899 0 .. 1.050 90 0.02 '0.16 571 1.12510.37510.050 180.0 0.1654000 0.500 3.932 0.009 0.915 0 1.104 -91 0203 030 556 1.125J 0.375 1.12510.375, 0,'050 180.0 0.333 1.000 1.000: 9.281 0.010 0.154 14 0.189; -158 0.72 5.44 575 0.050 180.0 0.334 1.500 0.816 7.281 0.005 0.612 -7 0.7181 -125 0.20 6.87: 552; 1.125' 0.375 0.050 180.0 0.334 1.500 0.816 7.281 0.010 10.650 4 0.731 -117 064 522 574 548' 560 564 1 125,0 1.125 1425 1.125 375:0 0375 0.375 0.375: 050 0.050, 0.050. 0.050 180 0 180.0 180.0, 180.0 0 334 0.334 0.334 0.333' 1 500 2.000 2.500 3O00 0 816 0.707 0.632 .0.577 7 281 6.166 5.435 4.893: 0 014 0.0101 0.012 0.010 0 559 ; 0.680 :0.802 0.875' 9 -10 0 .0 0 761, 1.0631 0.9431 1.055: -125 -98 -96 -88 1 02 0.24 0.17 0.32 4 08 2.10 1.03' 2.44 568 5721 1.125 1.125 0.375, 0.375 0.050 0.050 180.0 180.01 0.333 0.333 3.500 4.000 0.535 0.500 4.485 4.167. o.oio: 0.010 0949 0.909 . -5 ' 0 , 1.094' 1.180: -99 -90 0.04 0.27 0.31 2.26 557' 553 1.125 1.125' 0.375' 0.375 0.050 0.050 180.0 180.0 0.498 0.500: 1.000 1.500 1.000 0;816 10.18 7.884 0.010; 0.011. 0.0961 0.593: 18 -21 ' 0.165 0:809 -161. -131: 0.52, 0.97' 391 '6.17 549,1.125' 0.375 0.050' 180.0 Ô.499 2.000 '0.707 6.628 0.011 0.790 -14 . . "' 1.042 -114 04i 3.02 561 1.125;à.375 0.050' 180.0 b..499 2.500 0.632 5.796 0.010 0.847. '-4' ''1236' -107 0.33: 2.79 565, 1.1251 0.375 0050 180.0 0.499 3.000 .0.577 5201 0.010 10.942. 01 1:028 . -95: 01251 1.94 5691125103750050180004gg3500 053547460011 0843 -8: 1013 -95 017 117 573 1.125, 0:375 0.050. 180.01 0.498 4.000 .0.500 4.397 01011 O.84l, 0: .' '" 01957 '-91''0112 0.82:

Cytaty

Powiązane dokumenty

Thoolen Methodieken voor de berekening van staalconstructies van transportwerktuigen Literatuuropdracht/scriptie, Rapport TT.0392, Sectie Transporttechniek. In dit verslag is

8, jednomilimetrowe na- kładanie się ścieżek hartowniczych na siebie umożliwiło uzyskanie na odległości do 0,025 mm od powierzchni materiału, zahartowanej strefy

Correlation among the number of stations in the same model grid cell, ratio of the simulated annual mean surface NO 2 concentra- tions in 2015 driven by (a) the DECSO inventory,

[r]

sięgnięcia do różnych cząstkowych rozwiązań, a następnie podjęcia próby synte- tyzacji uzyskanych konkluzji. Rozwijając ten wątek, w punkcie wyjścia przyjąć trzeba

By odpowiedzieć na te pytania nie wystarczy ogól­ ny bilans wilgoci wynikający z porównania zawarto­ ści wody w powietrzu wentylacyjnym na wlocie i wy­ locie z kopalni,

Do rozwoju większej ilości kompleksowych i zintegrowanych struktur kierowni- czych oraz strategii dotyczących w szczególności interakcji i współzależności przepły- wu wiedzy,

W rezultacie, opisy spraw zostały przez autorów w odpow iedni sposób posegregow ane, stanow iąc raczej ilu ­ strację rozważań o charakterze ściśle