• Nie Znaleziono Wyników

Evaluation of the Integral ??1+1?Plm,n(x)Plm?2,n(x)?dx

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of the Integral ??1+1?Plm,n(x)Plm?2,n(x)?dx"

Copied!
4
0
0

Pełen tekst

(1)

Texturesand Microstructures,1987,Vol.7, pp.207-210

Photocopyingpermittedbylicenseonly

(C)1987 Gordon and Breach Science PublishersInc. Printed in the UnitedKingdom

SHORT

COMMUNICATION

Eva

lu

atio

n of

th

e nteg

ral

i+,

_P;’(x)P;

x)

dx

C.

M.

BRAKMAN

DelftUniversity ofTechnology,Laboratory ofMetallurgy,Rotterdarnseweg 137, 2628ALDelft, TheNetherlands

(Received21December1986;infinalform30 April1987)

Integralsof thetypeindicatedcanbeevaluated using the Fourier-seriesdevelopment

of theJacobi-polynomials. Analternative procedureisgiven yielding an analytical

expressionin termsofl, m andn.

KEY WORDS: Jacobi-polynomials,definiteintegral,texturedevelopment.

In

texture analysis, for instance in the case of the

series-development

of crystallite rotations used for the prediction of

texture-development,

one

frequently

encounters integrals of the

type:

lP’’"(x)PT’-2’"(x)dx

The expression can be evaluated using the Fourier-series

develop-ment of the

PT’"

given by

Bunge (1982,

p.

359).

However,

an

analytical expression can be obtainedrelatively easy.

Assume

>

0 oddoreven,m even and

>-2,

n even and _->0. Using

the definition of the

P7

given

by

Bunge (1982,

p.

351)

the factor 207

(2)

208 C. M. BRAKMAN

independentof

x

in the integralis written:

-(l

+

{(1-

m)!

(l-

m

+

2)! (1

+

m)!

(l

+

m

2)!}

-1/2

(1)

C

22/(

1

n)!

Writingf

P(x)

(1

X)-"+m-(1

+ X)-"-m+Dq-"){(1

x)l--m(1

V

X)

l+m)

1,

(l-n)

)l-n-k

(1+ m)!

(l-k=0 -k

(-1

(1

+

rn

k)!

(n

rn

+

x

(1-

x)k-(1

+

x)

l-n+l-k

(2)

Q(x)

(1

X)/-m+2(1

-t-

X)

,+m-2

(3)

Theintegral reads:

c

P(x)

x

D(I-"-)Q(x)

dx

(4)

Integrating by parts yields:

d

cP(x)Dt--X)Q(x)l+

c

D)P(x)

x

D’--2)Q(x)

dx

(5)

Evaluation of the stock term requires analyzing whether negative exponents of

(1-

x)

or

(1

+

x)

occur.

It

can be shown that negative exponents do not arise.

Conse-quently,

the stock term

equals

zero.

It

can beshown for the

general

case

(1

-<_

q

<-

n)

that:

c(-1)q-D(q-1)e(x)D(l-n-q)Q(x)

1_+

0

(6)

Eventually, after

repeatedly

integrating

by

parts

Eq. (5)

yields:

c(-1)l-n

+lD(l-n)p(x)D()a(x)

dx

(7)

For

D(-’P(x)

itcan be written"

/)(-,o

A[(-x

+""

+

11

k--1

+ Dq-’){A0(1

X)-1(1

h-

X)

’-n+l}

(7a)

fLeibniz’s rule is applied, thesymbolD(’)stands ford"/dx’*and in the sum

onlyk values leadingtonon-negative factorials are allowed: rn n-<_k<-_ +rnforn<m.

(3)

EVALUATION OF THE INTEGRAL 2O9 Using l(1-x)P(l+x)qdx=

P!q!

2p+q+l

(p>O’q>O)

(8c)

(p+q+

1)!

it follows for the n

<

rn case for

Eq. (7)

2

((l+m-2)!(l-m+2)!}

1/2

21

+

1

(1

+

m)! (l- m)!

(9)

For

the n

->_

rn case evaluationof

Eq. (7)

requires calculation of the

-

Usehas been made of the well-known formula

t=0

r- r

r, s, and u are integers. For u-r<0 the sum starts at r-u but the result

expressionremainsthe same.

where

(l--

n)

l)l_n_k

(l

+

m)! (l-

m)!

Ak

k

(-

(l

+

m

k)!

(n

m

+

k)!

accordingto

Eq.

(2).

Two

cases can be distinguished:

(i)

n

<

m"

Ao

does not existand"

D(l_n)p(x)

(__1)1__1{(i

n)!}2X

(l+m)(l-m)

(8a)

k k l-n -k

(ii)

n->

m: the k-sum occurring in

Eq. (8a)

must start at k 0 now.

Consequentlyf

Dl-")p(x)

Dl-")(Ao(1

x)-l(l +

x)

’-n+l)

+

the result of

Eq.

(8a)

(_1)(,_._1){(/_n)!)

2 l+rn 1-0 n

(-1)’-"

(l- m)!

(n

m)

D(’-){(1

-x)-l(1 +

+(-1)’-n-l(l-n)!(t-n)’{(

21

)_(l-m)}

l-n l n

(8b)

(4)

210 C.M. BRAKMAN

integral

f_Q(x)Df’-n)((1-

x)-(1

+

x)

1-n+l}

dx

(10)

Repeatedly

integrating

by

parts it can be shown that the

general

stockterm

(_l)q-lo(q-1)a(x)O(l-n-q)((

1

x)-1(1

+

x)l-n+l}[+__.

(l

<_-

q

_<-

n)

does not exhibit negative exponents of

(l-x)

or

(1

+

x).

Consequently,

it

equals

zero.

As

aresult,

Eq.

(10)

reads:

(-1)/-n

D(1-n)a(x)O()((1-

x)-l(1 +

x)

’-=+1)

dx

(10a)

Using Leibniz’s rule and

Eq.

(8c)

it isfound for

Eq.

(10a):

(/+m-2)(

l-m+2

)

k n-m+2+k

22/+1

1-n

(l-

n)!

(-1)

k

"21

+

1k=O -re+l+

(11)

It

can be shown

("trial

and

error"

methods,

no proof found

yet)

that the sum in

Eq. (11)

equals:

(l+m-2)!(l-n+l)!(n-m+l)!{(

21+1

)_(l-m+12)}

(20!

l-n

+

1 l-n

+

(lla)

For

then

>-rn

case itfollows

(via Eqs.

(8b)

and

(lla))

for

Eq.

(7):

2

{(l+m-2)!(l-m+2)!}1/2{

(2l+l)(n-m+l)

}

21

+

1

(1

+

m)! (l-

m)!

1

(l-

m

+

1)(1-

rn

+

2)

(12)

Equations

(9)

and

(12)

have been checked using the Fourier-series

development

ofthe

P7

for

4(1)23,

rn

2(2)1,

n

0(2)1.

References

Cytaty

Powiązane dokumenty

Semestr zimowy Kolokwium próbne. Javier

Ekstrema funkcji i funkcji uwik lanych.. Ekstrema

We need to find

W a l f i s z, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag Wiss., Berlin, 1963.. Institute of Mathematics Department of

In this note we present the theorem on the rate of pointwise summability of Fourier series by means of generalized Voronoi-N¨ orlund sums.. 2000 Mathematics Subject

Before leaving this section, we note that it is possible to improve on the result of Heath-Brown for gaps between squarefull numbers by combining the above estimate for S 1 (x 3/13

[r]

[r]