• Nie Znaleziono Wyników

Regularity of pairs of positive operators

N/A
N/A
Protected

Academic year: 2021

Share "Regularity of pairs of positive operators"

Copied!
14
0
0

Pełen tekst

(1)

REGULARITY OF PAIRS OF POSITIVE OPERATORS

SHANGQUANBU,PHILIPPE

CLIMENT

ANDSYLVIE

GUERRE-DELABRIRE

0. Introduction

In

thispaper,we considerapair(A, B)of closed operatorsona Banachspace X

with domain D(A)and D(B). The pair (A,B) iscalledregularifforevery

f

E X, theproblem Au

+

Bu

f

possessesoneandonlyonesolution.

Relatedto thenotion of coercively positive pair of operators, introduced in [S],

wealsoconsidertheexistenceofasolution totheproblem XAu

+

Bu

f

forall

X > 0, with someuniformity inX. Thisstrongerpropertyiscalled X-regularity. Thesenotionsof regularity and X-regularitynaturallyarise invector-valuedCauchy problems; see [G], [DG], [S] and also [CD]. The uniformity in X, givenby the

X-regularity, isoften usefulincertain applicationstopartial differentialequations. In [G],under the hypothesis that 0E p(B)andin[DG],some sufficientconditions aregiventoensuretheregularityofapair(A,B)oncertainsubspacesofX,relatedto the operatorB. Thesesubspaces,denotedby

DR

(0, p),are real interpolationspaces

betweenD(B) andX (Theorem 1.2).

It was observed in [S] that if 0 p(A) (q p(B), then the pair is X-regular on DR(O, p).

Inthispaper,weprovethe X-regularity ofthispair (A, B),considered in [G],on

DR(O,p) under the weaker assumption that 0 6 p(B)only (Theorem 2.1).

Note

that ifBisbounded, then the pairisX-regularonX.

Weconstruct anexampleofaregularpair(A, B) of operatorsin a Hilbertspace,

withBbounded, satisfying theassumptionsofthe theorem ofGrisvard[G],which is notX-regular (Example 2.2).

1. Preliminaries

Inthis section wegive precisedefinitions ofregularity andX-regularityof apair

of operators. Then, for the sake ofcompleteness,werecall aresultofDa Pratoand Grisvard [DG] (seealso[CD]),which isthe starting point ofourresults.

Let XbeaBanach spaceandAand Bbetwoclosed operators inX.

DEFINITION 1. The pair (A, B) iscalled regular, ifforall

f

6 X,there existsa uniqueu D(A)C)D(B) such thatAu

+

Bu

f

ReceivedJanuary29, 1997.

1991 Mathematics SubjectClassification.Primary 46B25, 47A05, 47A10, 47E05, 34B05. Thefirstauthorwassupported bytheNSFof China and the FokYingTungEducationFoundation.

@1998bytheBoardofTrusteesof theUniversityof Illinois Manufactured in the UnitedStatesof America

(2)

358 S.BU,P.

CLIMENT

AND S.

GUERRE-DELABRIRE

Ifthe pair (A, B)isregular,itfollows from the Banach theorem that

(1.0)

Ilull

+

IIAull

+

IlOull

MIIAu

+

Bull

forsomeM > and for allu D(A)C3 D(B). Itiseasytoverifythe following lemma.

LEMMA

l.O. Let AandBbetwoclosed operatorsinX. Then the pair(A,B)is

regular

if

andonly

if

(1) (1.0)holds and

(2) R(A

+

B) isdenseinX.

Moreover,

ifO

p(A)orp(B) (wherep(.) denotes the resolventset

of

anoperator), then(1.0) isequivalentto

[IAu[[

+

[IBull <_

MIIAu

+

for

someM >_ and

for

allu D(A)f3D(B).

Remark

I.

Theoperator A

+

B isclosed if andonlyif

Ilull-+-IIAull

+

Ilnull

M(IIAu

+

Bull

+

Ilull)

for someM > and for allu D (A)N D (B).

In particular,if the pair(A, B) isregular, A

+

Bhastobe closed.

A

regularpair of operators (A,B)iscalledcoercivein[S].

Also, the stronger notion of coercively positive pairis introduced in [S], which motivatesour Definition 2.

DEFINITION2. The pair(A, B)iscalled,k-regularinX,if for all

f

6 Xand for

all ,k > 0, there exists auniqueu D(A)fq D(B) such that,kAu

+

Bu

f

and moreover, for all,k > 0,

]l.Aull

+

IIBull

<

MII.Au

+

Bull

for someM > 1, independent

of,k

andfor all u D(A) D(B).

Remark 2. Clearlyif(l. 1)holds, then theinequality

llAull

+

zllBull

<

MIIZ.Au

+

#Bull

holds for someM> 1, for all,k,/z > 0andu D(A)(3D(B),whichshows that the definition of,k-regularityissymmetricin

A

andB.

(3)

Itisalso clear thatthisinequalityisequivalenttothe following ones:

IIAull

MIIAu

+

)null,

forsomeM > and all,k > 0 andu D(A)N D(B), and

llnull

MIIAu

+

null

forsomeM > andall,k > 0andu D(A) D(B).

LEMMA

1.0... LetAandBbetwoclosed operatorsinX (notnecessarilydensely defined).

If

0 p A), then the pair A B)is2.-regular andonly

(1) (1.1)4

holds.forall)

>0;

(2) Thereexists)o >0such thatR()oA

+

B) isdenseinX.

Proof.

Clearly, it is enough toprove that conditions (1)and(2) imply that the pair(A, B) ish-regular.

First observe that conditions (1) and (2) togetherwith Lemma 1.0, where A is

replaced by 2.0A,and the fact that 06 p(A), imply that the pair(,k0A, B)isregular.

Thus,inparticular,0 p()oA

+

B).

Next

weshow that if 06 p()A

+

B)forsome > 0, then 06 p(A

+

B)for

all > 0 such that

6 ifM > and ifM=

(*)

L

M+

1’

M-

m+i’

Indeed, problem Au

+

Bu

f

isequivalentto

Au

+

Bu 1- Bu

Settingv Au

+

Bu,wehave

(**) v B(A

From 1.1 )z,itfollows that

IIB(kA

+

B)

-

M.

Under assumption (,), by the Banach fixed point theorem, it is clear that there exists oneandonlyonev 6 Xsatisfying(**)and hence (A, B)isaregularpair for such

.

Noting that

IIB(Au

+

B)

-

Malso holdsfor in this interval, we can

repeatthisargument and, since < and > 1, showbyinductionthat the

pair (A, B)isregularfor all > 0,whichtogetherwith(1.1)zimplies that the pair

(4)

360

s.

BU, P.

CLIMENT

AND S.

GUERRE-DELABRIRE

Letusrecall classical definitions on closed operators:

A

closedlinearoperator

A

D(A) C X X (notnecessarilydenselydefined)iscalled positivein(X,

I1"

II) [Tr]if there exists C >0such that

(1.2)

Ilull

Cllu

+

)Aull, forevery,k >0 andu D(A),

and ifR(I

+

)A) Xfor some,k > O, equivalentlyforall) > O.

Remark 3.

In

[Tr],an operator A is calledpositive if it ispositive and satisfies the additional assumptionthat0 6 p(A).

In

thispaper,it is convenienttorelaxthis

extracondition.

Observe also that

A

ispositiveif andonlyif the pair(A,I)is,k-regular.

IfAispositive, injectiveanddenselydefined, itiseasytoprovethatA

-

isalso

positive.

IfX isreflexive and Aispositive,thenAisdenselydefined[K].

Let

E

:= {,k 6

C\{0};

arg

.1

<r} t2{0},forcr 6 [0, 7r). IfAispositive,there

exists0 6 [0,7r) such that(1.3)holds, [K p. 288]:

(1.3) (i)r(A)

_

E0

and

(ii)for each0’ c (0, 7r],thereexists

M(O’)

> such thatII(.l A)

-M(O’),

forevery,k

C\{0}

with larg

Xl

>_ 0’

wherer(A)denotesthespectrumofA.

The numberCOA .’-- inf{0 6 [0,7r);

(l.3)holds}

iscalled thespectral angleof the

operatorA. Clearly

coa

G [0, 3T).

An

operatorA issaidtobe oftype(09, M) [Tan],ifAispositive,coisthespectral angleofA and

M := inf{C > 0; (1.2)holds min{C >0; (1.2)holds}. NotethatM isalso the smallestconstantin(1.3) ii)for0’

Two

positive operators A and B in X are said to be (resolvent) commuting if the bounded operators (I 4-

.A)-

and (I 4-/z

B)-

commute for some

.,

tt > 0, equivalently for all.,/z >0.

IfA and B arecommuting positiveoperatorsthen A4- B (withdomain D(A) D(B))isclosable[DG].

The following theorem,which is aconsequence ofatheoremofDaPrato-Grisvard

[DG]and ofGrisvard [G]willbeessential inthesequel.

THEOREM 1.1. LetAandBbetwocommutingpositiveoperators inXsuch that (i) D(A)

+

D(B) isdenseinX,

(5)

Then the closure

of

A

+

Bis

of

type (o, M)with09 < max(wA, wn).

If

moreover

(iii) 0E p(A)orp(B) (resolventset

of

AorB), then

(a) thereexistsM > such that

(1.4)

Ilull

MIIAu

+

Bull,

for

allu D(A)fqD(B),

andO p(A

+

B),

(b) R(A

+

B)

_

D(A)

+

D(B),

(c) A

+

B isclosed

if

andonly i(R(A

+

B) X Oandonly if(l.l)holds, (d) theinverse

of

A

+

B

isgivenby

(.) (A

+

B)-x

f(A

+

z)

-I(B

z)-xdz,

27ri

J

where y is anysimplecurve in p(B) f)

p(

A)from

e-iO to e

iO,

with

o)B

Oo

mO)A

Remark4. (1) Under hypotheses (i)-(iii) of Theorem I.1, assumption 2) of

Lemma

1.0 isalwayssatisfied. Therefore, in ordertoprovethe regularity of a pair

(A, B),itis sufficienttoverify inequality (1.1), whichmeansthatA(A

+

B)

-

is a boundedoperator.

(2) Similarly, under hypotheses (i)-(iii) of Theorem 1.1, assumption (2) of

Lemma1.0.)isalwayssatisfied. Therefore,inordertoprovethe,k-regularityof a pair (A, B),it is sufficient toverify inequality (1.1),whichmeans that)A()A

+

B)-1

is auniformlybounded operator for all,k > 0.

Inthispaper,weshallalwaysbeinthe situation of(i)-(ii)of Theorem 1.1,which means that we will consider the following threehypotheses for a pair ofpositive

operatorsAand BinXoftype respectively (OOa, MA)and (OB,Mn):

Ho"

D(A)

+

D(B) isdense in X.

H"

AandB areresolventcommuting.

H2"

OOA WO)B <

.

Inordertoobtainresultsonthe regularity and the -regularity ofapair ofoperators,

we need to introduce the interpolation spaces

DA

(0,p), associated with a closed operatorA,for 0 6 (0, 1)and p 6 1,+cx]. ThesespacesaresubspacesofXwhich

aredenseinXfor thenorm

II.

wheneverAisdenselydefined.

For0 6 (0, 1)and p E [1,+),

DA

(0,p)isthesubspaceofX consistingof all x such that

(6)

362 S.BU, P.

CLIMENT

AND S.

GUERRE-DELABRIRE

P

where

L.

isthespaceofp-integrableBorel functionson(0, +cxz)equippedwith its invariant measuredt

/

t.

For0 6]0, 1[,

DA

(0, 0) isthesubspaceofX consistingofallx 6 X such that

sup{lltA(A

q-

t)-xll

(0, -t-a)} <

+.

When0belongstop(A),

DA

(0,p) equippedwiththenorm

IIxlIzgAO.Z,)

IItOA(A

+

t)--xll’.

becomes a Banach space.

When0 6 p(A) andA isbounded,

II.llDa(0.p)

isequivalenttothenormofX.

The following fundamental result, due to Grisvard (Theorem 2.7 of[G]) is the startingpointofthispaper.

THEOREM 1.2. LetXbeacomplexBanach space, and letAandBbetwopositive operatorsin X,

of

type (O)A,MA) and (w,MI) respectively, satisfying hypotheses

Ho, H,

H2.

If

0 p(B), the pair(A, B) isregularin

Dt

(0, p). 2. Results

The firstresult ofthis paperis the following theorem which is an extension of Theorem 1.2tothe case of ,k-regularity.

THEOREM2.I. Let X be a complex Banach space, and let A and B be two positive operators in X,

of

type (O.)A,MA) and ((_OB, MB) respectively, satisfying

hypotheses

Ho, H,

H2.

If

0 p(B), thepair (A, B) is )-regularin DB(O,p)

for

everyO <0 < and < p <_ (x.

Remark5. If moreoverB isbounded,it isclear that the pair(A, B)is,k-regular

inX.

The nextexample shows thatin particular, even ifX is aHilbert space, the

hy-pothesis 0 6 p(B)cannotbe omitted in Theorem 2.I.

Example2.2. There exists aHilbertspace Gand thereexist twopositiveoperators

A and B inG satisfying hypotheses H0,

H

and H2, with Bbounded, such that the pair(A, B) isregular,butnot)-regularinG.

Remark 6.

In

[L,Theorem2.4] (seealso[CD]),anotherexampleisgiven, where

Aisthe derivativeactingon LP ([0, T]; Y)for somenonreflexivespace Y,such that thepair (A, B)isnot,k-regularin

DA

(0, p).

(7)

Proof of

Theorem2.1. Fix ,k > 0.

By

Theorem 1.2, we know that the pair (A, ,kB)isregularinDB(O,p). Inparticular, for all x E DB(O,p),

yz (A

+

)B)-x

D(A)f3D(B)

andwehave

Byz

DR(O, p)togetherwiththeinequality

II)Byzllo,O,p)

CIIxllD,O,p).

We

shall show thatCisindependentof

..

Forthis, we aregoingtouseequality (,)

of Theorem 1.1, appliedto A and.B. Withoutloss ofgenerality, since0 6 p(B), we cansupposethatVconsistsof the halfline (oe

-iO,

ge-i],

the arc of the circle

C

{z

Izl

,

larg(z)l <

00}

and the half line

leei, cxei"),

for some fixed

00, (_OB < (90 < 7r O)z and for sufficiently small e inorder toinsure that ?, is in p(-A)f3p(,kB). SinceAisof type (COA,MA),by (1.3)thereexists

M

such that for allzsuch thatlarg

zl

< 00,

II(m

+

z)

-As

intheproofof Theorem 3.1 of[DG],forevery > 0we canwrite

()B

+

t)-yz

()B

+

t)-(A

+

)B)-x

f

2rri (A

+

z)

(.B

+

t)

(.B

z)-x

dz

f

dz 2rri (A

+

z)

(.B

z)

X

+

z

f

dz 2rri (A

+

z)

-

()B

+

t)-x

+

z

f

dz 2rri (A

+

z)

(.B

z)

X

+

z (,kB

+

t)

-

f

(A

+

z)-x

dz

+

z

f

dz 2rri (A

+

z)

-

()B

z)-x

+

z by (,)and

H

(A+z)

-

M’

by analyticityof thefunction

(A+z)-’t+z.

and the fact that t+z. <

Iz(z+t)l for larg

zl

_<

0o.

Hence

LB(;B

+

t)-y

y t(kB

+

t)-Iy

(8)

364 S.BU, P.

CLIMENT

ANDS.

GUERRE-DELABRIIRE

Then 2zri (A

+

z)

()B

z)-x

dz

l

(A

+

z)

-()B

z)-xdz

2rci

Jr

+z

I

z (A+z)

-()B-z)-xdz

2rri

Jy

t+z

)B(,kB

+

t)-IYz z

4-

(A

+

Z)-!

(,kB

z)-xdz.

First,weclaimthat

lim

I

z (A

+

z)

-()B

z)-xdz

O.

--,o+

Jc

z

+

Since B is invertible, II(,kB z)

-

is uniformly boundedwithrespecttozin a neighborhood of the origin. Sothere existse0such thatII(kB z)

-

< 211(B)

-Then fore < e0wehave for

Izl

_< e0.

We

can supposethate0 < 7"

z

(A

+

z)

-()B

z)-x

dz

z+t

<

II(A

4-z) II(ZB-z)

Ilxll Idzl

Iz/tl

dO

8M

(,n)

-

IIx

I10o

<

2M

II(.B)

-

IIIIxll

a-o,, 4-ecosO

whichtendsto zerowhene

--

0

+.

Theclaim isproved;hencewehave

fr,

z

(A+z)

-()B-z)-xdz

)B()B

+

t)

-

yz

z

+

where Voconsistsof the half-lines{z’arg(z)

-0o}

and{z’arg(z) -0o}.

By

hypotheses

H

and H2, B()B

+

t)

-)Byz

2rci z

+

(A

+

z)-)B()B

z)-x

dz

andso II*B()B 4- t)

-

)Byzll < II(m/z) II,n(,n z) 2rr

,,

Iz

+

tl

xll Idzl

+ r

z(r)dr

< K

v/t

24-r24-

2trcosOo

r

(9)

where Kis a constantdependingonlyonAand B,and

x(r) max{ll.B(.B

rei")-xll,

II,kB(B

re-i")-xll}

dp

The hypothesis x e_ DB(O, p)meansthat

r(r)

E

Lt,’(R

+)

(see [DG]);thuswe have

t

II,kB()B

-I-

t)-

Byzll

+ rt (r)dr < K

v/t

2

+

r2

+

2trcosOo

r

(rt-)

-

dr

rx(r)

K

v/1

+

(rt-)2

+

2rt-cosOo

r

K.f

g(t) where

tl-O

f(t)

v/l +

2

+

2tcosOo

g(t)

tz(t)

L,P(R+)

6

L(R

+)

By Young’s

theorem,we canwrite

(10)

366

s.

BU,P.

CLIMENT

AND S.

GUERRE-DELABRIRE

hence

or

L]lLBy)llo(O.p)

<_

IILB(A

+ LB)-IxIIDu(O,p)

<_

This is theinequalitythat we wanted. It impliesthat

I]LB(A

+

LB)-I

]ID(O,p)

<_

whichshows theL-regularityof thepair (A, B) onDs(O, p)byRemark4.2.

Letusmentionanothercaseof L-regularity whichis aconsequenceofTheorem1.2

appliedinthe context of[DV],namelywhenBc isbounded for alls 6 [-1,

+

]"

COROLLARY2.3. Let H be a Hilbert space and let A and B be twopositive operators inHsatisfying

Ho,

H1

and

H2.

If

0 p(B) andsup{

Bi’

Is

<_ <

+cx,

then the pair(A, B)isL-regularinH.

Proof

of

Corollary2.3.

As

mentioned in [DV], under the hypothesis that

sup{llBi’llllsl

< 1} < -t-cx, D8(0,2)

D(B).

Thus Theorem 2.1 implies

that(A, B) isaL-regularpairin

D(B).

Then

Dore

and Venni show that, under the hypothesis ofCorollary 2.3, (A, B) is aregular pair in H.

An

adaptation of their

proofcanbe done toprovethatinfact, the pairisL-regular. Indeed, forx 6 H, by

Theorem 2.1, observing that

B-x

D(O, 2),wehave

IILB(A

+

LB)-xll

IIBLB(A

+

LB)

-

B-xll

< C

B

B-x

C

Ilx

whereC > 0isindependent ofL > 0. 12]

Construction

of

Example2.2.

Let

G be acomplex Hilbertspace and letA and

B be two positive operators with B bounded, satisfying hypotheses

H1

and

H2.

Observe thatsince Bisbounded,

H0

isalsosatisfied. If moreover 0 6 p(A),thenby

Theorem 1.1, the pair(A, B)isregularandG D(O, p) forevery0 6 (0, 1) and p 1,cxz]. Henceifthe pair(A, B)is notL-regular,wearedone.

Inordertoconstructsuchapair, we consider, as in [BC],thespace

G e2(H) x (xk)er xk Hand

Ilxll

2

(11)

where (H,

II.ll)

isacomplexHilbertspace.

A

family (Ak)kNofbounded operators on H definesthe following closeddenselydefinedoperatorAonG"

(2.1) D(A) := {x- (x,),r, x, H,

-,r

IlA,x:]]

2

< cx:}

(Ax)k

A:xk

k E

N

forx (x,)kN 6 D(A).

Moreover

A isbounded if andonly ifsupksN

IlAk

< and ifthis isthe case, we have A supN

A,

II.

If 0 6 p(A) for all k 6

N

and supkN

IIA

-

<

,

then 0 6 p(A). Asin[BC],

we shall say that thefamilyof positive operators (A)N of type (0, M) satisfies

property (P) ifforeveryk 6

N,

(i) r(Ak) C [0, xz) and

(ii)forevery0 6 [0,7r[,thereisM (0),independent of k, such that (I/

zA)-ll

_< M(0), forevery z 6

E0.

Wewillneed the following slightextensionofLemma4.1 of[BC],which we state withoutproof.

LEMMA2.4. Let (A,),r, (B,),rbetwo

families

ofboundedpositiveoperators on H, satisfying property (P) and such that

Ak Bk

Bk Ak

for

all k

N.

Then the operators AandB

defined

by (2.1)aredensely

defined

and

of

type (0, MA)and

(0, Me) respectively. Moreover,the pair(A, B)

satisfies

hypotheses H0,

H,

H2.

Now supposethat (A,)kr and (B,)ks are twofamiliesofoperatorsin H asin

Lemma2.4 satisfying(2.2)and

(2.3):

(2.2) 0 6 p(Ak) foreveryk 6

N

and

sup"

-IlAk

k6N

(2.3) ’v’l >_ qxl 6 H,

IIx/ll

1, such that

lllAlxl

+

lXlll

IIAIxlll.

Set

Bk

/zk/k,

with/zk > 0, k 6

N

such that

B

_< for allk 6

N.

Thenthe

families (Ak)kN and (Bk)kN also satisfy the assumptions ofLemma2.4. Thepair (A, B) definedby (2.1) satisfies H0,

H,

H2.

Moreover0 6 p(A) by (2.2)andB is boundedwith B _< 1.

Weclaimthat the regular pair (A, B) is not ,k-regular. Clearlyforevery ,k > 0, the pair (A,,kB) is regularand if (A, B) is ,k-regular, then there exists M >_ 1, independent of,k such that for all y 6 G,

(2.4) IIA(A

+

,kn)-Yll

<

MllYll

Choose y

y/)

(yt))kN

with

yl)

0 for k

:/:

(12)

368 S. BU, P.

CLIMENT

AND S.

GUERRE-DELABRIRE

Hence

withL

#-,

from(2.4)weobtain

(2.5) MII(A!

+/z)xzll

IIAzxzll

lll(Ai

+/z)xzll

forevery E

N,

acontradiction since (At

+/t)xt

=

0.

Itremains to constructtheoperators

At

and/t.

For

thispurpose, weshall need thefollowinglemma,whichcanbe essentially found in[BC].

LEMMA

2.5.

Let

HbeacomplexseparableHilbert spacewith aSchauderbasis

e*

(e,,),,rand let

,,),,r

be the correspondingcoordinate

functionals.

Let (Cn)nrbe anondecreasing sequence ofpositive real numbers and let

Ct

bethelinearoperators

defined

by (2.6)

where

Nt

N

for

all k

N.

Ctx

Z

cte

(x)et

/=0

Then theoperators

Ct

arebounded positive operators

of

type (0,

Mk

satisfying property(P). Moreover,0 p(Ct)

for

all k

N

andsuptr

I[C-

< o.

In

view ofthis lemma, if(a,,),,r and (b,,),,r are twonondecreasing sequences

ofpositive numbersand

At,

/t

aredefinedby (2.6) where (Nt)tr is an arbitrary

sequenceof natural numbers, then theoperators

At,/k

satisfy allrequiredproperties

except

(2.3). In

ordertosatisfythis condition, wechoose for(en),r aconditional basis of

e2

asin[BC]andwechoose for(a,,),,r, (b,,),,Nthesequencesdenotedby

f(n)

andg(n) in[BC], havingthe property that

sup (x)et

xGo, Ilxll--! k=0ak

+

bt

ek

where

Go

span{e,, n 6 N}. Itfollows that forevery E

N,

there exists

Nt

6

N

andott,t 6 Cfor0 <k < such that

t=oak

+

bt

et

>l

where

y(t)

-,’=o

ott,tet,0 <

Ilya)ll

1. Setting

U (X)em

Atx

y

=0

am

em

k

x

Y,n=O

N,

bm

e*(X)em

weobtain

(13)

REGULARITY OF PAIRS OF POSITIVE OPERATORS 369

orequivalently

wheret/) (At

+/t)

-

yt)

_

0. Setting

X!)

1)

I111

weobtain(2.3). Thisconcludes the construction ofExample2.2. U]

Remark7. Inthisconstruction, wecanobtainaboundedoperator

A’

by defining A

k-vkAkwithv,

>0, kEN

inordertoensurethat

A,

1. Then,similararguments show that the pair

(A!,

B)

doesnotsatisfy (1.1)zalthoughit satisfies(1.1).

Itfollows from Theorem 2.1 that 0 p(A’)U p(B). Henceone cannot assert as inExample2.2 that the pair(A

!,

B)isregular.

REFERENCES

[BC] J. B.Baillonand Ph.CI6ment, Examplesofunbounded imaginary powersofoperators,J.Funct.

Anal.100, (1991), 419-434.

[CD] Ph. Cl6ment andS. Guerre-Delabribre, On the regularityofabstract Cauchy problemsoforderone andboundaryvalueproblemsofordertwo,Publ. Math. deUniv.P.etM.Curie119 (1997), 1-44.

[DG] G. Da Prato et P. Grisvard, Sommes d’oprateurs linaires et quations dlTrentielles

oprationneiles,J.Math.PuresetAppl.54 (1975), 305-387.

[DV] G.DoreandA.Venni,On the closednessofthesumoftwoclosedoperators,Math.Zeitschr.1911 (1987), 189-201.

[G] P.Grisvard,Equationsdffrentiellesabstraites,Ann.Sci.lcoleNorm. Sup.(1969), 311-395.

[K] H. Komatsu,Fractionalpowersofoperators, PacificJ.Math. 19 (1966), 285-346.

[L] Ch.Lemerdy,CounterexamplesonLt’-maximalregularity,preprint.

IS] P.E.Sobolevski, Fractionalpowersofcoercively positivesumsofoperators,Dokl.Akad. Nauk

SSSR225 (1975), 6, 1638-1641.

[Tan] H.Tanabe, Equationsofevolution,Pitman,SanFrancisco,1979.

[Tr] H.Triebel,Interpolation theory,functionspaces,dfferentialoperators,North Holland, 1978.

Shangquan Bu,

Department

of Mathematics, UniversityofTsinghua,Beijing 100084, China

Equiped’Analyse, Case186, Universit6 Paris6, 4 Place Jussieu, 75252 Paris, Cedex 05,France

sbu @ math.tsinghua.edu.cn

Philippe Cl6ment,

Department

ofTechnical Mathematicsand Informatics, Delft

Uni-versityofTechnology,

E

O.Box5031, 2600GADelft, The Netherlands clement @ twi.tudelft.nl

(14)

370 S.BU,P.

CLIMENT

AND S.

GUERRE-DELABRIRE

Sylvie Guerre-Delabrire, Equiped’Analyse, Case 186, Universit6 Paris6, 4 Place Jussieu,75252Paris,Cedex05,France

Cytaty

Powiązane dokumenty

If we put the problem of short vowels before single consonants aside for a little while, we are presented with a structure that explains why a vowel can be long before a

etc. Dem Ehrenvesten und wol-Vornem en Kauft- und Handelsmann in Lublin / meinem insonders geehrten Herren und Freunde. Mein Vielgeehrter Herr Pfoertner /

Kościańska, Irena

przyzwoiciej byłoby dla owego m onarchy polskiego, gdyby on, zamiast niewieścim żalom się oddawać, sam na czole wojsk swych za kraj swój był walczył - - M odlić się a pracować,

cells inflates the membrane, causing the cells to rise, fall and stretch, just like in a real heart?.

cechowało albsolutne solidaryzowa111ie się w każdej sytuacji, z każdym towarzyszem niedoli. ZakTes solidarności i współdziałania wyznaczany był na ogół własnymi

This paper investigates the challenges that future aviation accident investigators will face in UAM accidents by conducting a prognostic survey study on accident

Meeting of the Heads of State or Government of the participating States of the Conference on Security and Co-operation in Europe (CSCE): Austria, Belgium, Bulgaria, Canada, Cyprus,