• Nie Znaleziono Wyników

Uziarnienie gleb wytworzonych z osadów glacjolimnicznych (zastoiskowych) w badaniach metodą areometryczną, pipetową i dyfrakcji laserowej

N/A
N/A
Protected

Academic year: 2021

Share "Uziarnienie gleb wytworzonych z osadów glacjolimnicznych (zastoiskowych) w badaniach metodą areometryczną, pipetową i dyfrakcji laserowej"

Copied!
8
0
0

Pełen tekst

(1)

http://www.degruyter.com/view/j/ssa (Read content)

SOIL SCIENCE ANNUAL

Vol. 65 No. 2/2014: 72–79

* miroslaw.orzechowski@uwm.edu.pl

DOI: 10.2478/ssa-2014-0011

INTRODUCTION

Soil texture influences most soil chemical and water-physical properties as well as their quality usage. The existing regional, national and international classification systems of soil texture have various terminology and size limits of granulometric fractions (Drzyma³a and Mocek 2004; Kaba³a and Marzec 2007; IUSS Working Group WRB 2007; Prusinkie-wicz et al. 1994; PrusinkiePrusinkie-wicz 2003; Soil Survey Staff 1999). In the latest soil texture classification adopted by the Polish Society Soil Science in 2008 (PTG, 2009), which is similar to USDA classifica-tion, new particle size limits and terminology were established.

The soils formed from heavy glaciolimnic sedi-ments abundant in clay fraction (<0.002 mm) show a distinction as compared to other Polish soils. These soils are abundant in macro- and microelements, have high sorptive cation capacity and high water reten-tion ability, and they either increase their volume (swelling) or decrease it (shrinkage) depending on their moisture content (Uggla and Witek 1956). The measurements of soil particle size distribution by for example areometric and laser diffraction methods

carried out in Poland, gave various results for the same soil material (Ry¿ak et al. 2004).

The aim of this paper is to present the results of particle size distribution of fine-grained glaciolimnic sediments depositedin shallow basins of ice-dammed lakes origin in north-eastern Poland analyzed by are-ometric, pipette and laser diffraction methods.

MATERIALS AND METHODS

The research was carried out at glaciolimnic areas in Sêpopol Lowland and northern outskirts of Mazurian Lakeland in NE Poland. As a result of ice deglaciation, local shallow water basins were formed and fine-grained material was deposited in them. Some geomorphologists call it a formation of ice-dammed lakes origin and the other call it glaciolimnic sediment (Kondracki 1972; Körnke 1930; Mojski 2005; Roszko 1968). At five glaciolimnic basins located in the vicinity of Kêtrzyn, Lidzbark Warmiñski, Reszel and Sêpopol, which are different in terms of hipsometry, usage and relief, drillings and soil pits were made.The study of mineralogical composition showed that swelling smectite minerals, illites with the addition of mixed layer illite/smectite (I/S) minerals, chlorite minerals MIROS£AW ORZECHOWSKI1*, S£AWOMIR SMÓLCZYÑSKI1, JACEK D£UGOSZ2,

PAWE£ POZNIAK1

1University of Warmia and Mazury in Olsztyn, Department of Soil Science and Soil Protection

Plac £ódzki 3, 10-727 Olsztyn, Poland

2University ofTechnology and Life Sciences in Bydgoszcz, Department of Soil Science and Soil Protection

Bernardyñska St. 6, 85-029, Bydgoszcz, Poland

Measurements of texture of soils formed from glaciolimnic sediments

by areometric method, pipette method and laser diffraction method

Abstract: The aim of the research was to compare the results of texture analyses of glaciolimnic sediments deposited in the basins

of ice-dammed lakes origin in north eastern Poland. The study was carried out using aerometric method, pipette method and laser diffraction method. The studied soils were classified as Haplic and Mollic Vertisol, Vertic Cambisol, and Gleyic Chernozem. The soils were formed from clayey (clay, heavy clay), loamy (loam, clay loam, sand clay loam) and silty (silt loam, clay loam) deposits. The studied soils did not contain fractions > 2.0 mm. The amounts of clay fraction (< 0.002 mm) measured by areometric and pipette methods were similar and strongly correlated. In comparison to laser diffraction method, these amounts were 3–4-fold higher. The sub-fraction of fine silt (0.02–0.002 mm) predominated in soil formations analyzed by laser diffraction method. In comparison to areometric or pipette method, the amounts of fine silt were 2–4 fold higher. Basing on the calculated sedimentological indices, it was stated that the examined soils were well sorted and the mean grain diameter (GSS) was very low and did not exceed 0.005 mm in areometric and pipette methods, and 0.011 mm in laser diffraction method for clay sediments.

Key words: soil texture, glaciolimnic sediments, areometric method, pipette method, laser diffraction method

(2)

and small amounts of vermiculite predominate in clay fraction (D³ugosz et al. 2009). In changing water con-ditions, the alternating processes of swelling and shrinkage (vertilization) played an important role in the origin and properties of these soils (Uggla and Witek 1956).

Twenty soil samples were taken for the measure-ments of particle size distribution using three methods, after removal of coagulating components. The soil samples were pretreated in accordance with the valid standards (PN–ISO 11464, 1999). The particle size distribution was analyzed using the following me-thods: of Bouyoucos modified by Casagrande and Pró-szyñski (areometric) (Mocek et al. 1997), pipette method (Eijkelkamp pipette apparatus; upper and lo-wer pipette matches the requirements of NEN 5753 and PN–ISO 11277 standards), and laser diffraction method using Mastersizer 2000 with dispersing Hy-dro MU adapter. The samples were dispersed ul-trasonically for 2 minutes with stirring speed of 2500 rpm. The analysis was carried out at the obscu-rance of 18–25%. The Mie theory, which describes Maxwell equation, was used for calculations (refrac-tion of light 1.577, absorp(refrac-tion factor 0.10). The me-thodology of particle size distribution of Cambisols, Luvisols, Phaeozems, Fluvisols and Gleyosols con-taining clay fraction (1.0–18.0%) was prepared by the scientists from the Institute of Agrophysics, Po-lish Academy of Sciences (Bieganowski et al. 2013; Ry¿ak and Bieganowski 2011; Ry¿ak et al. 2009). In pipette and areometric methods, sand fractions (2.0–0.1 mm) were analyzed by sieving. The results were compi-led in accordance with the classification of Polish So-ciety of Soil Science (PTG 2009).

The amounts of soil fractions were analyzed by theSiewca software. Particle size distribution curves were drawn and sedimentological indices determining

the state of soil sorting and dominating soil fraction were calculated: mean grain diameter (GSS) for frac-tions from 2.0 to < 0.002 mm, standard deviation (GSO), skewness (GSK), kurtosis (GSP) and the cu-mulative curves (Folk and Ward 1957; Prusinkiewicz and Proszek, 1990). The results of texture analysis were used to calculate the granulometric indices which take into account the relations between soil fractions (Kobierski 2010; Kowalkowski and Pru-sinkiewicz 1963). In the paper, due to fine-grained cha-racter of soil formations, the particle size distribution indices were calculated for the following fractions: A – (0.25–0.05 mm):(0.05–0.002 mm);

B – (0.25–0.05 mm):(< 0.002 mm); C – (0.05–0.002 mm):(< 0.002mm); D – (0.02–0.002 mm):(< 0.002 mm); E – (0.05–0.02 mm):(0.02–0.002 mm)

RESULTS AND DISCUSSION

The studied soils were classified as Haplic and Mollic Vertisol, Vertic Cambisol, and Gleyic Cher-nozem (IUSS Working Group WRB 2007). These soils were formed from clayey (clay, heavy clay), lo-amy (loam, clay loam, clay loam sand) and silty (silt loam, clay loam) formations (Table 1). The studied soils did not contain > 2.0 mm fraction and the amo-unt of clay fraction (<0.002 mm) ranged from 8.15 to 85.14%.

The measurements of texture by areometric and pipette methods revealed that clay fractions of < 0.002 mm predominated in the studied soils. However, in laser diffraction method, the sub-fraction of fine silt (0.02– 0.002 mm) predominated. In areometric and pipette methods, clay fraction was the highest, amounting to 63.68–85.14% in heavy clays, and 37.00–57.83% in clays (Table 1). The quantity of this fraction in clay

TABLE 1. Texture of analyzed soils (PTG 2008) d n a e t i S e l p m a s r e b m u n d o h t e M Percentageoffractionswithdiameter[mm] Soil e r u t x e t 0 . 1 – 0 . 2 1.0–0.5 0.5–0.25 0.25–0.1 0.1–0.05 0.05–0.02 0.02–0.002 <0.002 ) C H ( y a l c y v a e H l o p o p ê S 7 * P A D 0 0 0 0 0 0 0 0 6 0 . 0 0 0 4 6 . 0 9 1 . 2 0 3 7 . 0 6 8 . 4 0 0 . 1 6 4 . 3 1 8 . 7 0 0 . 1 2 7 7 . 0 7 4 1 . 5 8 0 0 . 8 7 4 3 . 4 2 * * c i c i i y p l o p o p ê S 2 P A D 0 0 0 0 0 0 . 1 4 1 . 0 0 0 0 . 2 0 1 . 1 0 6 . 0 0 0 . 2 4 6 . 1 8 1 . 4 0 0 . 5 5 5 . 2 1 8 . 3 0 0 . 5 8 3 . 8 4 8 . 0 1 0 0 . 7 7 9 . 9 5 7 5 . 0 8 0 0 . 8 7 1 2 . 6 2 c i c i i y p k r a b z d i L i k s ñ i m r a W 2 P A D 0 0 0 4 3 . 0 0 5 7 . 0 9 9 . 0 0 0 . 2 3 6 . 1 5 1 . 2 0 0 . 2 1 7 . 1 7 8 . 2 0 0 . 3 3 8 . 1 6 6 . 3 0 0 . 3 4 7 . 8 3 8 . 4 1 0 0 . 9 0 6 . 4 6 6 1 . 5 7 0 0 . 1 8 2 7 . 0 2 c i c i i y p l o p o p ê S 6 P A D 0 0 0 0 0 0 . 1 0 0 6 . 0 0 0 . 2 0 5 1 . 2 0 0 . 3 2 1 . 1 5 8 . 3 0 0 . 4 6 3 . 4 5 8 . 6 0 0 . 5 8 4 . 8 1 6 . 3 1 0 0 . 9 5 4 . 2 6 5 9 . 2 7 0 0 . 6 7 8 5 . 3 2 c i c i i y p

(3)

Explanations: P – pipette, A – areometric, D – laser diffraction; gz – loam (L), gi – clay loam (CL), gpi – sandy clay loam (SCL), pyg – silt loam (SL), (pyi – silt clay (SC), i – clay (C), ic – heavy clay (HC).

TABLE 1. continued d n a e t i S e l p m a s r e b m u n d o h t e M Percentageoffractionswithdiameter[mm] Soil e r u t x e t 0 . 1 – 0 . 2 1.0–0.5 0.5–0.25 0.25–0.1 0.1–0.05 0.05–0.02 0.02–0.002 <0.002 ) C H ( y a l c y v a e H l e z s e R 5 1 P A D 0 0 6 1 . 0 1 5 . 0 0 1 5 . 0 5 1 . 1 0 0 . 1 8 4 . 0 8 1 . 2 0 0 . 2 3 9 . 0 4 9 . 2 0 0 . 2 9 3 . 1 2 9 . 3 0 0 . 5 4 5 . 7 9 4 . 6 1 0 0 . 0 2 8 4 . 2 7 1 8 . 2 7 0 0 . 0 7 1 5 . 6 1 c i c i i y p n y z r t ê K 0 2 P A D 0 0 0 2 5 . 0 0 0 . 1 8 0 . 0 2 8 . 0 0 0 . 1 6 1 . 0 9 2 . 1 0 0 . 2 0 5 . 1 6 2 . 5 0 0 . 7 8 5 . 2 3 4 . 7 0 0 . 3 8 9 . 7 5 1 . 6 1 0 0 . 6 1 4 3 . 0 7 4 5 . 8 6 0 0 . 0 7 4 3 . 7 1 c i c i i y p k r a b z d i L i k s ñ i m r a W 2 1 P A D 0 0 0 0 0 0 0 0 0 . 1 0 8 3 . 1 0 0 . 2 8 4 . 1 8 3 . 2 0 0 . 3 3 3 . 3 6 1 . 9 0 0 . 7 5 9 . 0 1 2 3 . 0 2 0 0 . 3 2 8 9 . 3 6 4 8 . 6 6 0 0 . 4 6 6 2 . 0 2 c i c i i y p l e z s e R 2 1 P A D 0 0 0 6 2 . 1 0 0 . 1 8 0 . 0 5 6 . 2 0 0 . 2 8 8 . 0 1 2 . 3 0 0 . 3 3 3 . 2 0 5 . 4 0 0 . 4 8 3 . 2 0 1 . 5 0 0 . 2 2 2 . 5 1 3 . 7 1 0 0 . 0 2 1 0 . 7 6 7 9 . 5 6 0 0 . 8 6 8 1 . 2 2 c i c i i y p l e z s e R 1 1 P A D 0 0 0 9 3 . 0 0 0 . 2 9 4 . 0 8 2 . 1 0 0 . 4 5 5 . 1 7 7 . 6 0 0 . 6 7 2 . 3 2 0 . 7 0 0 . 5 6 5 . 3 9 7 . 6 0 0 . 8 5 4 . 8 7 0 . 4 1 0 0 . 7 9 6 . 4 6 8 6 . 3 6 0 0 . 8 6 9 9 . 7 1 c i c i i y p ) C ( y a l C l e z s e R 0 1 P A D 0 4 . 0 0 0 . 2 0 1 5 . 0 0 0 . 2 7 2 . 0 1 0 . 2 0 0 . 5 4 9 . 0 1 2 . 5 0 0 . 7 8 9 . 2 3 9 . 7 0 0 . 5 9 4 . 4 4 7 . 0 1 0 0 . 6 6 4 . 1 7 3 . 5 1 0 0 . 1 2 1 5 . 3 6 3 8 . 7 5 0 0 . 2 5 4 3 . 4 1 i i i y p k r a b z d i L i k s ñ i m r a W 1 P A D 8 9 . 0 0 0 . 2 0 9 1 . 1 0 0 . 2 8 4 . 0 4 5 . 1 0 0 . 4 8 8 . 1 2 3 . 4 0 0 . 5 9 6 . 3 7 0 . 9 0 0 . 7 6 9 . 7 5 0 . 1 1 0 0 . 8 6 9 . 0 2 7 4 . 0 2 0 0 . 1 3 6 7 . 3 5 7 3 . 1 5 0 0 . 1 4 7 2 . 1 1 i i g y p l e z s e R 1 P A D 0 0 0 . 1 0 7 9 . 0 0 0 . 2 0 1 6 . 4 0 0 . 5 7 4 . 0 0 8 . 5 0 0 . 7 4 4 . 2 4 6 . 1 1 0 0 . 0 1 6 1 . 5 8 6 . 3 1 0 0 . 1 1 6 3 . 8 1 5 8 . 3 1 0 0 . 1 2 7 2 . 1 6 6 4 . 9 4 0 0 . 3 4 0 3 . 2 1 i i i y p n y z r t ê K 5 1 P A D 2 7 . 2 0 0 . 3 8 0 . 4 9 0 . 1 0 0 . 5 1 2 . 1 2 3 . 3 0 0 . 3 6 5 . 0 7 6 . 4 0 0 . 7 7 9 . 2 1 8 . 6 0 0 0 . 7 1 2 . 6 6 5 . 3 1 0 0 . 1 1 8 3 . 4 1 4 4 . 1 2 0 0 . 7 2 7 6 . 8 5 0 4 . 6 4 0 0 . 7 3 2 9 . 1 1 i i g g y p k r a b z d i L i k s ñ i m r a W 6 1 P A D 2 7 . 0 0 0 . 1 0 1 6 . 1 0 0 . 2 3 4 . 0 7 8 . 6 0 0 . 7 5 3 . 2 5 0 . 1 1 0 0 . 2 1 1 1 . 8 2 7 . 3 1 0 0 . 6 1 2 6 . 7 1 1 . 0 1 0 0 . 8 6 3 . 2 1 7 6 . 3 1 0 0 . 4 1 0 4 . 5 5 6 2 . 2 4 0 0 . 0 4 4 7 . 3 1 i i g i y p ) L C ( m a o l y a l C n y z r t ê K 5 P A D 4 3 . 0 0 0 9 5 . 1 0 0 . 1 8 1 . 0 6 5 . 6 0 0 . 6 0 0 . 3 1 2 . 4 1 0 0 . 3 1 6 7 . 7 8 1 . 9 0 0 . 9 8 8 . 5 5 3 . 1 1 0 0 . 6 7 0 . 1 1 5 6 . 9 1 0 0 . 5 2 7 7 . 7 5 2 1 . 7 3 0 0 . 0 4 8 4 . 4 1 i g i g i y p l o p o p ê S 1 P A D 8 9 . 2 0 0 . 3 0 2 2 . 4 0 0 . 5 6 3 . 0 0 2 . 6 0 0 . 6 8 4 . 2 1 5 . 9 0 0 . 0 1 6 1 . 6 5 0 . 4 1 0 0 . 3 1 8 8 . 0 1 0 0 . 6 1 0 0 . 6 1 2 7 . 9 1 7 3 . 2 1 0 0 . 4 2 7 6 . 1 5 7 6 . 4 3 0 0 . 3 2 2 7 . 8 i g z g g y p l o p o p ê S 4 1 P A D 0 0 0 4 3 . 1 0 0 . 1 9 0 . 0 2 8 . 3 0 0 . 4 8 2 . 0 7 6 . 5 0 0 . 6 5 1 . 4 1 2 . 8 1 0 0 . 9 1 0 2 . 2 1 3 0 . 5 2 0 0 . 5 2 4 1 . 3 2 6 5 . 3 1 0 0 . 6 1 0 0 . 2 5 7 3 . 2 3 0 0 . 9 2 5 1 . 8 i g i g g y p n y z r t ê K 4 P A D 9 6 . 1 0 0 . 1 0 4 0 . 3 0 0 . 3 2 8 . 0 6 7 . 9 0 0 . 0 1 2 5 . 3 7 2 . 4 1 0 0 . 3 1 4 2 . 8 1 7 . 0 1 0 0 . 1 1 1 7 . 7 2 4 . 0 1 0 0 . 7 9 8 . 7 1 7 7 . 1 2 0 0 . 9 2 6 8 . 0 5 5 3 . 8 2 0 0 . 6 2 6 9 . 0 1 i g z g g y p ) L C S ( m a o l y a l c y d n a S n y z r t ê K 6 P A D 7 0 . 2 0 0 . 2 0 1 7 . 3 0 0 . 3 6 0 . 1 1 3 . 3 1 0 0 . 3 1 1 5 . 7 0 3 . 1 2 0 0 . 8 1 4 0 . 4 1 1 9 . 5 1 0 0 . 4 1 3 2 . 8 2 0 . 6 0 0 . 7 6 0 . 1 1 1 3 . 4 1 0 0 . 0 2 7 9 . 8 4 6 3 . 3 2 0 0 . 3 2 3 1 . 9 i p g i p g g y p ) L ( m a o L k r a b z d i L i k s ñ i m r a W 5 1 P A D 2 4 . 2 0 0 . 2 0 1 3 . 4 0 0 . 4 5 2 . 0 9 3 . 9 0 0 . 9 1 5 . 2 5 7 . 4 1 0 0 . 5 1 3 8 . 9 2 0 . 4 1 0 0 . 5 1 7 5 . 1 1 9 2 . 3 1 0 0 . 4 1 8 0 . 8 1 9 4 . 9 1 0 0 . 9 1 5 7 . 7 4 3 3 . 2 2 0 0 . 2 2 1 0 . 0 1 z g z g g y p

(4)

loams, measured by pipette method, ranged from 28.35 to 37.12% , in sandy clay loam it amounted to 23.36 % and in loam to 22.33%. The amounts of clay fraction (< 0.002 mm) measured by pipette method were similar to the amounts measured by areometric method, but 3–4 fold higher in comparison to laser diffraction method. Considerable differences in the amounts of soil fractions were noted in the measure-ments by laser diffraction method comparing to other two applied methods. The measurements by laser dif-fraction method showed that silt dif-fraction, with sub-fraction of fine silt (0.02–0.002 mm), predominated in studied soil formations. Compared to areometric and pipette methods, the amounts of fine silt were 2–4 fold higher in laser diffraction method and ranged from 53.76 to 70.77% in clays and from 47.75 to 57.77% in loams. It may be a result of a very strong aggrega-tion of clay particles. As a result, the microaggrega-tes which diameter exceeds 0.002 mm are formed. They are so stable that they are not destroyed even under prolonged exposure to ultrasound.

The ratio of sub-fraction of coarse silt (0.05–0.02 mm) and fine silt (0.02–0.002 mm) in clay formations was low and ranged between 0.02 and 0.39 in laser diffraction method. In loams the ratio amounted to 0.19–0.45 (Table 3). In clay formations, the ratio of silts was 3–6 fold higher than of clay fraction in laser diffraction method. In pipette and areometric methods this ratio did not exceed 1. The analyses of sand frac-tion (2.0–0.05 mm) including sub-fracfrac-tions of very coarse sand (2.0–1.0 mm), coarse sand (1.0–0.5 mm), medium sand (0.5–0.25 mm), fine sand (0.25–0.10 mm) and very fine sand (0.10–0.05 mm), did not show si-gnificant differences between three studied methods. The results of particle size distribution analyses were collated according to the data obtained by the pipette method, which was taken as a reference in this study. The studied soil formations were classi-fied as: heavy clay (HC), clay (C), clay loam (CL), sandy clay (SC), sandy clay loam (SCL) and loam (L) using pipette and aerometric methods, and as: silt loam (SL) and silt clay (SC) using laser diffraction method (Table 2). Nine soil formations which were

classified as heavy clay in pipette and aerometric methods, were classified as silt clay in the laser dif-fraction method. Five soil formations of clay were classified as clay (3 soil formations) and clay loam (2) in pipette and aerometric methods, and in laser diffraction method they were silt clay (3) and silt loam (2). In the group of 6 loams (sandy clay, sandy clay loam , loam) analyzed by areometric and pipette me-thods, five was classified as silt loam and one as silt clay in laser diffraction method.

Basing on the calculated sedimentological indi-ces, it was stated that studied soils were very well sorted and the values of standard deviation (GSO) did not exceed 0.396. Better state of segregation of soil material was notedin the soil samples analyzed by areometric and pipette methods, where the maxi-mum of GSO index did not exceed 0.153. In other glacial soil formations (boulder loam), studied by Kobierski (2010) and Paku³a (2013) poor and very poor sorting of soil material, and values of the GSO ranging from 2.32 to 4.70 were stated. The mean gra-in diameter (GSS) was very low, not exceedgra-ing 0.005 mm for clays in pipette and areometric methods and 0.011 mm in laser method. In loam formations, mean grain diameter amounted to 0.025 mm (Table 3).

In most analyzed soils samples the skewness in-dex (GSK) was positive (symmetric right-handed distribution) in pipette and areometric methods. The calculated values of GSK ranged from 0.01 to 0.91. In the soil samples analyzed by laser diffraction me-thod, the calculated values of GSK were negative, and except for one, did not exceed a threshold of – 0.30 (skew, negative) (Prusinkiewicz and Proszek 1990). In most analyzed soil samples the graphic cu-rve was normal (mezokurtic), and the values of kur-tosis (GSP) were in the range of 0.90–1.10, or sligh-tly lower than 0.90 (platykurtic).

Analyzing the cumulative curves and particle size distribution diagrams, it should be noted that heavy clay, clay loam and clay were very similar in pipette and areometric methods, whereas in laser diffraction method these soil formations were different (Figures 1–3). These differences were most evident in the con-tents of clay and silt fraction.

TABLE 2. Comparison of textural groups according to PTG (2008) e t t e p i P d o h t e m f o o N s e l p m a s d o h t e m c i r t e m o e r A Laserdiffractionmethod ) C H ( c i i(C) gi(CL) gpi(SCL) gz(L) pyi(SC) pyg(SL) ) C H ( c i 9 9 9 ) C ( i 5 3 2 3 2 ) L C ( i g 4 2 2 1 3 ) L C S ( i p g 1 1 1 ) L ( z g 1 1 1

(5)

TABLE 3. Granulometric and sedimentological indices of soils

Explanations: A – (0.25–0.05 mm):(0.05–0.002 mm), B – (0.25–0.05 mm):(<0.002 mm), C – (0.05–0.002 mm):(<0.002 mm), D – (0.02–0.002 mm): (<0.002 mm), E – (0.05–0.02 mm):(0.02–0.002 mm), GSS – mean diameter [mm], GSO – standard deviation, GSK – skewness, GSP – graphic kurtosis. e l p m a s d n a e t i S r e b m u n d o h t e M Soil e r u t x e t s e c i d n i c i r t e m o l u n a r G Sedimentologicalindices A B C D E GSS GSO GSK GSP y a l c y v a e H l o p o p ê S 7 P A D C H C H C S 7 1 . 0 – 2 0 . 0 3 0 . 0 – 6 0 . 0 5 1 . 0 8 2 . 0 5 0 . 3 9 0 . 0 7 2 . 0 1 9 . 2 2 6 . 0 5 0 . 0 5 0 . 0 1 0 0 . 0 1 0 0 . 0 4 0 0 . 0 4 0 0 . 0 3 5 1 . 0 6 9 3 . 0 2 0 . 0 2 0 . 0 5 0 . 0 -7 9 . 0 7 9 . 0 5 0 . 1 l o p o p ê S 2 P A D C H C H C S 3 3 . 0 8 5 . 0 6 0 . 0 6 0 . 0 9 0 . 0 6 1 . 0 8 1 . 0 5 1 . 0 1 6 . 2 3 1 . 0 9 0 . 0 9 2 . 2 5 3 . 0 1 7 . 0 4 1 . 0 1 0 0 . 0 1 0 0 . 0 5 0 0 . 0 0 3 0 . 0 1 0 0 . 0 3 6 2 . 0 2 0 . 0 -0 1 . 0 8 0 . 0 -4 0 . 1 5 8 . 0 8 0 . 1 k r a b z d i L i k s ñ i m r a W 2 P A D C H C H C S 7 2 . 0 2 4 . 0 5 0 . 0 7 0 . 0 6 0 . 0 7 1 . 0 5 2 . 0 5 1 . 0 4 5 . 3 0 2 . 0 1 1 . 0 2 1 . 3 5 2 . 0 3 3 . 0 4 1 . 0 1 0 0 . 0 1 0 0 . 0 5 0 0 . 0 7 2 0 . 0 7 0 0 . 0 9 7 2 . 0 1 0 . 0 -1 0 . 0 0 1 . 0 -0 0 . 1 8 9 . 0 2 1 . 1 l o p o p ê S 6 P A D C H C H C S 9 2 . 0 0 5 . 0 8 0 . 0 8 0 . 0 9 0 . 0 3 2 . 0 8 2 . 0 8 1 . 0 1 0 . 3 9 1 . 0 2 1 . 0 5 6 . 2 0 5 . 0 6 5 . 0 4 1 . 0 1 0 0 . 0 1 0 0 . 0 5 0 0 . 0 3 0 0 . 0 1 0 0 . 0 3 8 2 . 0 2 1 . 0 0 1 . 0 2 1 . 0 -4 8 . 0 6 8 . 0 0 1 . 1 l e z s e R 5 1 P A D C H C H C S 5 2 . 0 6 1 . 0 3 0 . 0 7 0 . 0 6 0 . 0 4 1 . 0 8 2 . 0 6 3 . 0 5 8 . 4 3 2 . 0 9 2 . 0 9 3 . 4 4 2 . 0 5 2 . 0 0 1 . 0 1 0 0 . 0 1 0 0 . 0 5 0 0 . 0 3 3 0 . 0 0 4 0 . 0 1 5 3 . 0 1 0 . 0 -3 0 . 0 2 7 . 0 -1 0 . 1 5 9 . 0 6 0 . 1 n y z r t ê K 0 2 P A D C H C H C S 8 2 . 0 7 4 . 0 5 0 . 0 0 1 . 0 3 1 . 0 4 2 . 0 4 3 . 0 7 2 . 0 2 5 . 4 4 2 . 0 3 2 . 0 6 0 . 4 6 4 . 0 9 1 . 0 1 1 . 0 1 0 0 . 0 1 0 0 . 0 5 0 0 . 0 3 1 0 . 0 0 5 0 . 0 2 3 3 . 0 8 0 . 0 5 0 . 0 -0 1 . 0 -8 8 . 0 6 0 . 1 9 0 . 1 k r a b z d i L i k s ñ i m r a W 2 1 P A D C H C H C S 3 1 . 0 7 1 . 0 6 0 . 0 6 0 . 0 8 0 . 0 4 2 . 0 4 4 . 0 7 4 . 0 0 7 . 3 0 3 . 0 6 3 . 0 6 1 . 3 5 4 . 0 0 3 . 0 7 1 . 0 1 0 0 . 0 1 0 0 . 0 6 0 0 . 0 1 0 0 . 0 0 4 0 . 0 4 8 2 . 0 7 2 . 0 7 0 . 0 2 0 . 0 -8 7 . 0 1 9 . 0 2 0 . 1 l e z s e R 2 1 P A D C H C H C S 4 3 . 0 2 3 . 0 7 0 . 0 2 1 . 0 0 1 . 0 1 2 . 0 4 3 . 0 2 3 . 0 6 2 . 3 6 2 . 0 9 2 . 0 2 0 . 3 9 2 . 0 0 1 . 0 8 0 . 0 1 0 0 . 0 1 0 0 . 0 5 0 0 . 0 1 2 0 . 0 1 7 0 . 0 1 1 3 . 0 1 0 . 0 8 0 . 0 -7 1 . 0 -7 9 . 0 6 1 . 1 4 2 . 1 l e z s e R 1 1 P A D C H C H C S 6 6 . 0 3 7 . 0 9 0 . 0 2 2 . 0 6 1 . 0 8 3 . 0 3 3 . 0 2 2 . 0 7 0 . 4 2 2 . 0 0 1 . 0 0 6 . 3 8 4 . 0 4 1 . 0 3 1 . 0 2 0 0 . 0 1 0 0 . 0 6 0 0 . 0 5 0 0 . 0 1 0 0 . 0 1 6 2 . 0 5 1 . 0 3 4 . 0 9 1 . 0 -3 8 . 0 6 7 . 0 1 2 . 1 y a l C l e z s e R 0 1 P A D C C C S 0 5 . 0 4 4 . 0 1 1 . 0 3 2 . 0 3 2 . 0 2 5 . 0 5 4 . 0 2 5 . 0 3 5 . 4 7 2 . 0 0 4 . 0 3 4 . 4 0 7 . 0 9 2 . 0 2 0 . 0 2 0 0 . 0 2 0 0 . 0 5 0 0 . 0 2 0 0 . 0 3 2 0 . 0 6 2 3 . 0 2 3 . 0 1 0 . 0 8 2 . 0 -3 8 . 0 0 9 . 0 3 5 . 1 k r a b z d i L i k s ñ i m r a W 1 P A D C C L S 2 4 . 0 1 3 . 0 6 1 . 0 6 2 . 0 9 2 . 0 3 0 . 1 1 6 . 0 5 9 . 0 3 6 . 6 0 4 . 0 6 7 . 0 7 7 . 4 4 5 . 0 6 2 . 0 9 3 . 0 1 0 0 . 0 4 0 0 . 0 1 1 0 . 0 9 1 0 . 0 6 6 0 . 0 3 4 2 . 0 2 2 . 0 8 0 . 0 -3 0 . 0 5 8 . 0 6 9 . 0 3 0 . 1 l e z s e R 1 P A D C C C S 3 6 . 0 3 5 . 0 0 1 . 0 5 3 . 0 0 4 . 0 2 6 . 0 6 5 . 0 4 7 . 0 7 4 . 6 8 2 . 0 9 4 . 0 8 9 . 4 9 9 . 0 2 5 . 0 0 3 . 0 1 0 0 . 0 4 0 0 . 0 1 1 0 . 0 9 1 0 . 0 6 6 0 . 0 3 4 2 . 0 2 2 . 0 8 0 . 0 -3 0 . 0 5 8 . 0 6 9 . 0 3 0 . 1 n y z r t ê K 5 1 P A D C L C L S 3 3 . 0 7 3 . 0 2 1 . 0 5 2 . 0 8 3 . 0 7 7 . 0 5 7 . 0 3 0 . 1 3 1 . 6 6 4 . 0 3 7 . 0 2 9 . 4 3 6 . 0 1 4 . 0 5 2 . 0 1 0 0 . 0 5 0 0 . 0 0 1 0 . 0 0 1 0 . 0 0 4 0 . 0 6 8 1 . 0 9 3 . 0 9 0 . 0 4 2 . 0 -6 9 . 0 8 9 . 0 5 3 . 1 k r a b z d i L i k s ñ i m r a W 6 1 P A D C L C C S 4 0 . 1 7 2 . 1 3 2 . 0 9 5 . 0 0 7 . 0 4 1 . 1 6 5 . 0 5 5 . 0 3 9 . 4 2 3 . 0 5 3 . 0 3 0 . 4 4 7 . 0 7 5 . 0 2 2 . 0 2 0 0 . 0 4 0 0 . 0 1 1 0 . 0 8 0 0 . 0 8 1 0 . 0 8 9 1 . 0 7 4 . 0 7 3 . 0 9 1 . 0 -0 9 . 0 8 8 . 0 9 9 . 0 m a o l y a l C n y z r t ê K 5 P A D L C L C C S 5 7 . 0 1 7 . 0 0 2 . 0 3 6 . 0 5 5 . 0 4 9 . 0 4 8 . 0 8 7 . 0 5 7 . 4 3 5 . 0 3 6 . 0 9 9 . 3 8 5 . 0 4 2 . 0 9 1 . 0 4 0 0 . 0 5 0 0 . 0 0 1 0 . 0 0 2 0 . 0 0 5 0 . 0 8 9 1 . 0 9 3 . 0 1 0 . 0 3 2 . 0 -0 9 . 0 8 7 . 0 8 0 . 1 l o p o p ê S 1 P A D L C L L S 3 8 . 0 8 5 . 0 4 2 . 0 8 6 . 0 0 0 . 1 5 9 . 1 2 8 . 0 4 7 . 1 9 1 . 8 6 3 . 0 4 0 . 1 3 9 . 5 9 2 . 1 7 6 . 0 8 3 . 0 5 2 0 . 0 5 1 0 . 0 4 1 0 . 0 8 6 0 . 0 7 5 0 . 0 0 3 2 . 0 8 7 . 0 7 2 . 0 5 0 . 0 -6 3 . 1 0 1 . 1 8 9 . 0 l o p o p ê S 4 1 P A D L C L C L S 2 6 . 0 1 6 . 0 2 2 . 0 4 7 . 0 6 8 . 0 1 0 . 2 9 1 . 1 1 4 . 1 2 2 . 9 2 4 . 0 5 5 . 0 8 3 . 6 5 8 . 1 6 5 . 1 5 4 . 0 2 2 0 . 0 5 2 0 . 0 4 1 0 . 0 9 2 0 . 0 0 3 0 . 0 9 6 2 . 0 1 9 . 0 5 8 . 0 6 0 . 0 7 0 . 1 1 0 . 1 2 9 . 0 n y z r t ê K 4 P A D L C L L S 8 7 . 0 7 6 . 0 3 2 . 0 8 8 . 0 2 9 . 0 6 4 . 1 4 1 . 1 8 3 . 1 7 2 . 6 7 7 . 0 2 1 . 1 4 6 . 4 8 4 . 0 4 2 . 0 5 3 . 0 2 1 0 . 0 3 1 0 . 0 4 1 0 . 0 6 4 0 . 0 6 7 0 . 0 8 9 1 . 0 9 2 . 0 1 0 . 0 -8 0 . 0 -7 8 . 0 8 7 . 0 4 0 . 1 m a o l y a l c y d n a S n y z r t ê K 6 P A D L C S L C S L S 3 8 . 1 9 1 . 1 8 3 . 0 9 5 . 1 9 3 . 1 4 4 . 2 7 8 . 0 7 1 . 1 8 5 . 6 1 6 . 0 7 8 . 0 6 3 . 5 2 4 . 0 5 3 . 0 3 2 . 0 3 2 0 . 0 3 2 0 . 0 9 1 0 . 0 1 5 0 . 0 5 6 0 . 0 3 6 1 . 0 5 5 . 0 4 4 . 0 2 2 . 0 -0 9 . 0 1 8 . 0 8 7 . 0 m a o L k r a b z d i L i k s ñ i m r a W 5 1 P A D L L L S 8 8 . 0 1 9 . 0 3 3 . 0 9 2 . 1 6 3 . 1 4 1 . 2 7 4 . 1 0 5 . 1 8 5 . 6 7 8 . 0 6 8 . 0 7 7 . 4 8 6 . 0 4 7 . 0 8 3 . 0 8 1 0 . 0 8 1 0 . 0 5 1 0 . 0 1 5 0 . 0 2 5 0 . 0 4 0 2 . 0 9 3 . 0 2 4 . 0 4 0 . 0 -5 0 . 1 9 0 . 1 2 9 . 0

(6)

FIGURE 2. Cumulative curves and diagram of clay. Methods: 1 – laser diffraction, 2 – areometric, 3 – pipette

FIGURE 3. Cumulative curves and diagram of clay loam. Methods: 1 – laser diffraction, 2 – areometric, 3 – pipette FIGURE 1. Cumulative curves and diagram of heavy clay. Methods: 1 – laser diffraction, 2 – areometric, 3 – pipette

(7)

The statistical analyses showed that the results of texture measurements by pipette and areometric me-thods are significantly correlated (α = 0.01). Howe-ver, except for two cases (Kêtrzyn 4 and Sêpopol 1), there was no such relation between the laser diffrac-tion method, and the pipette and areometric methods (Table 4).

ACKNOWLEDGEMENTS

The Project was financially supported by the funds of National Science Centre nr N N310 776040.

REFERENCES

Bieganowski A., Chojecki T., Ry¿ak M., Sochan A., Lamorski K., 2013. Methodological aspects of fractal dimension esti-mation on the basis of particle size distribution.Vadose Zone Journal, Vol. 12(1): 1–9.

D³ugosz J., Orzechowski M., Kobierski M., Smólczyñski S., Zamorski R., 2009. Clay minerals from Weichselian glacio-limnic sediments of the Sêpopolska Plain (NE Poland). Geo-logica Carpathica 60(3): 263–267.

Drzyma³a S., Mocek A., 2004. Uziarnienie ró¿nych gleb Polski w œwietle klasyfikacji PTG. PN-R-04033 and USDA. Rocz-niki Gleboznawcze – Soil Science Annual 55(1): 107–115 (in Polish).

Folk R.L., Ward +W.C., 1957. Brazos River Bar: A study in the significance of grain size paraments. Journal Sedimentary Pe-trology 27: 3–27.

Kaba³a C., Marzec M., 2007. Niektóre konsekwencje zmiany kla-syfikacji uziarnienia gleb. Roczniki Gleboznawcze – Soil Scien-ce Annual 58(1/2): 33–44 (in Polish).

IUSS Working Group WRB, 2007. World Reference Base for Soil Resources 2006. First update 2007. World Soil Resour-ces Reports, 103. FAO, Rome.

Kobierski M., 2010. Uziarnienie gleb ró¿nych typów wytworzo-nych z glin lodowcowych w aspekcie klasyfikacji PTG 2008. Roczniki Gleboznawcze – Soil Science Annual 61(3): 65–74 (in Polish).

Kondracki J., 1972. Polska pó³nocno-wschodnia. PWN. Warsza-wa: 271 pp. (in Polish).

Körnke B., 1930. Letztglazialer Eisabbau und Flussgeschichte im nördlichen Ostpreeussen und seiner Nachbargebiten. Ze-itschrift Deutschen Geologischen Gesellschaft 82. Berlin. Kowalkowski A., Prusinkiewicz Z., 1963. WskaŸniki

granulo-metryczne jako kryterium jednorodnoœci osadów lodowco-wych. Roczniki Gleboznawcze –Soil Science Annual 13, Supl.: 159–162 (in Polish).

Mocek A., Drzyma³a S., Maszner, P., 1997. Geneza, analiza i klasyfikacja gleb.Wyd. AR, Poznañ: 416 pp. (in Polish). NEN 5753. 2006. Soil – Determination of clay content and

par-ticle size distribution in soil and sediment by sieve and pipet. Mojski W., 2005. Ziemie polskie w czwartorzêdzie. PIG

Warsza-wa: 404 pp. (in Polish).

Paku³a K., 2013. Zró¿nicowanie w³aœciwoœci i sk³adu chemicz-nego gleb p³owych Wysoczyzny Siedleckiej pod wp³ywem pedogenezy. Wyd. UPH w Siedlcach. Rozprawy naukowe 127: 125 pp. (in Polish).

PN–ISO 11277. 2005. Jakoœæ gleby. Oznaczanie sk³adu granulo-metrycznego w mineralnym materiale glebowym – Metoda sitowa i sedymentacyjna.

PN–ISO 11464. 1999. Jakoœæ gleby. Wstêpne przygotowanie pró-bek do badañ fizyczno-chemicznych.

Prusinkiewicz Z., Proszek P., 1990. Program komputerowej in-terpretacji wyników analizy uziarnienia gleb – TEKSTURA. Roczniki Gleboznawcze –Soil Science Annual 41(3/4): 5–16 (in Polish).

TABLE 4. Correlation coefficients between the methods e t i S Sample r e b m u n n e e w t e b s t n e i c i f f e o c n o i t a l e r r o C s d o h t e m e h t r e s a l n o i t c a r f f i d c i r t e m o e r a r e s a l n o i t c a r f f i d e t t e p i p e t t e p i p c i r t e m o e r a l e z s e R 1 0 1 1 1 2 1 5 1 6 1 4 . 0 0 0 4 . 0 6 5 1 . 0 9 2 4 . 0 2 3 3 . 0 1 3 2 . 0 7 6 2 . 0 1 8 2 . 0 3 9 3 . 0 2 7 2 . 0 * * 5 7 9 . 0 * * 1 8 9 . 0 * * 9 8 9 . 0 * * 8 9 9 . 0 * * 8 9 9 . 0 k r a b z d i L i k s ñ i m r a W 1 2 2 1 5 1 9 1 9 9 5 . 0 3 4 2 . 0 1 7 4 . 0 4 2 6 . 0 3 6 2 . 0 9 4 3 . 0 7 2 3 . 0 6 2 4 . 0 5 3 6 . 0 7 5 2 . 0 * * 2 4 9 . 0 * * 6 9 9 . 0 * * 8 9 9 . 0 * * 7 9 9 . 0 * * 4 9 9 . 0 n y z r t ê K 4 5 6 5 1 0 2 * 8 3 7 . 0 9 5 5 . 0 2 7 5 . 0 8 9 5 . 0 3 6 2 . 0 0 7 5 . 0 7 6 4 . 0 9 0 3 . 0 0 0 4 . 0 7 5 2 . 0 * * 1 5 9 . 0 * * 0 8 9 . 0 * * 4 4 9 . 0 * * 4 6 9 . 0 * * 4 9 9 . 0 l o p o p ê S 1 2 6 7 4 1 * 0 6 7 . 0 5 2 3 . 0 8 9 2 . 0 6 4 4 . 0 7 6 4 . 0 0 9 1 . 0 0 8 3 . 0 0 7 3 . 0 0 7 2 . 0 8 6 3 . 0 * 0 9 7 . 0 * * 8 9 9 . 0 * * 7 9 9 . 0 * * 1 8 9 . 0 * * 2 9 9 . 0

* significance level at α= 0.05; ** significance level at α = 0.01.

CONCLUSIONS

1. Studied eutrophic brown soils with vertic featu-res, humic Vertisols and gleyic black earths in north-eastern Poland were formed from the follo-wing materials of ice-dammed lakes origin: clay, heavy clay, loam, clay loam, sand clay loam, silt loam and clay loam.

2. The contents of clay fraction (< 0.002 mm) analy-zed by aerometric and pipette methods were simi-lar, but in comparison to the laser method, these amounts were 3–4 times higher.

3. The sub-fraction of fine silt (0.02–0.002 mm) pre-dominated, among other fractions of < 2.0 mm, in the soil fractions analyzed by laser diffraction method. Compared to the results obtained by pi-pette and areometric methods, these quantities were 2–4 fold higher.

4. Basing on the calculated sedimentological indices, the soil materials were very well sorted and mean grain diameter (GSS) was very low, and did not exceed 0.011 mm for clay formations.

(8)

Prusinkiewicz Z., Konys L., Kwiatkowska A., 1994: Klasyfika-cja uziarnienia gleb i problemy z ni¹ zwi¹zane. Roczniki Gle-boznawcze – Soil Science Annual 45(3/4): 5–20 (in Polish). Prusinkiewicz Z., 2003. Klasyfikacja uziarnienia gleb a Polskie Normy. Roczniki Gleboznawcze – Soil Science Annual 54(3): 121–123 (in Polish).

PTG 2009. Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczniki Gleboznawcze – Soil Science Annual 60(2): 5–16 (in Polish).

Roszko L., 1968. Recesja ostatniego l¹dolodu z terenu Polski. Prace Geograficzne 74. Inst. Geografii PAN. PWN Warsza-wa: 65–110 (in Polsh).

Ry¿ak M., Walczak R.T., Niewczas J., 2004. Porównanie rozk³a-du granulometrycznego cz¹stek glebowych metod¹ dyfrakcji

Uziarnienie gleb wytworzonych z osadów glacjolimnicznych

(zastoiskowych)

w badaniach metod¹ areometryczn¹, pipetow¹ i dyfrakcji laserowej

Streszczenie: Celem niniejszej pracy by³o porównanie wyników badañ sk³adu granulometrycznego osadów glacjolimnicznych,

zdeponowanych w zbiornikach zastoiskowych na obszarze Polski pó³nocno-wschodniej przeprowadzonych metod¹ areometryczn¹, pipetow¹ i dyfrakcji laserowej. Badane gleby zakwalifikowano do Haplic i Mollic Vertisol, Vertic Cambisol oraz Gleyic Chernozem. Gleby te wytworzy³y siê z utworów ilastych (clay, heavy clay), gliniastych (loam, clay loam, sand clay loam) i py³owych (silt loam, clay loam). Badane gleby nie zawiera³y frakcji szkieletowych o œrednicy > 2,0 mm. Oznaczone zawartoœci frakcji i³owych (<0,002 mm) metod¹ pipetow¹ i areometryczn¹ by³y do siebie zbli¿one i istotnie skorelowane. W porównaniu z iloœci¹ frakcji i³owej oznaczonej metod¹ dyfrakcji laserowej wielkoœci te by³y oko³o 3–4 krotnie wiêksze. W badanych utworach glebowych analizowanych metod¹ dyfrakcji laserowej zdecydowanie, spoœród wszystkich czêœci ziemistych, dominowa³a podfrakcj¹ py³u drobnego (0,02–0,002 mm). W porównaniu z metod¹ pipetow¹ i areometryczn¹ iloœci oznaczonego py³u drobnego by³y przewa¿nie 2–4-krotnie wiêksze. Na podstawie wyliczonych wartoœci wskaŸników sedymentologicznych stwierdzono, ¿e badane gleby charakteryzowa³y siê bardzo do-brym wysortowaniem materia³u glebowego, a przeciêtna œrednica ziaren (GSS) by³a bardzo ma³a i w metodzie pipetowej oraz areometrycznej, dla utworów ilastych nie przekracza³a wartoœci 0,005 mm, a w metodzie laserowej 0,011 mm.

S³owa kluczowe: sk³ad granulometryczny, utwory zastoiskowe, metoda areometryczna, metoda pipetowa, metoda dyfrakcji

lase-rowej

laseroweji metod¹ sedymenyacyjn¹. Acta Agrophysica 4(2): 509–518 (in Polish).

Ry¿ak M., Bartmiñski P., Bieganowski A., 2009. Metody wyzna-czania rozk³ady granulometrycznego gleb mineralnych. Acta Agrophysica 175: 84 pp. (in Polish).

Ry¿ak M., Bieganowski A., 2011. Methodoglical aspects of de-termining soil particle-size distribution using the laser dif-fraction method. Journal of Plant Nutrition and Soil Science Vol. 174 (4): 624–633.

Soil Survey Staff, 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Wa-shington. DC: USDA. 869.

Uggla H., Witek T., 1956. Czarne ziemie kêtrzyñskie. Nauk. WSR w Olsztynie Nr 3: 69–108 (in Polish).

Received: May 28, 2014 Accepted: August 29, 2014

Cytaty

Powiązane dokumenty

Wszystkie obecne tam panie i dziewczęta przysłuchiwały się temu i nawet wtrącały swoje trzy grosze, co mnie - nawiasem mówiąc - szalenie peszyło.. Kiedyś tłumacząc

• To sum up, a possible solution to the current situation could be more study on the middle managers’ roles in safety, and the process of middle managers’ decision-making,

Wielość podejść do metody projektów, jej zastosowań oraz konkretnych rozwiązań wynikających z wypracowanego warsztatu pracy nauczyciela akademickiego pozwala na wskazanie

przedstawienie świata jako główne zajęcie wychowania (por.: Herbart

Podobnie w przypadku prezen­ tacji myśli Klemensa Aleksandryjskiego stwierdza, że „należy rozpocząć od wiary, która jest rodzajem elementarnego poznania Boga, by potem,

„U sgift des kom pturs vor allerley notdorft im hawße und hofen dis jo r obir coventlichen, vor ochsen vel cleyn und gropsalcz m yt fracht und allerley unkost”..

An intimate contact between Fischer-Tropsch active phase and Brønsted acid sites partly compensates for their different optimal operating conditions, when combining

Based on the shape of the velocity profiles of the experimental flows, it was ascertained that the most complete anatomy of subaqueous clay-rich gravity flows is composed of