• Nie Znaleziono Wyników

Experiments and computations on unsteady separating flow in an expanding flume

N/A
N/A
Protected

Academic year: 2021

Share "Experiments and computations on unsteady separating flow in an expanding flume"

Copied!
65
0
0

Pełen tekst

(1)

G.S. Stelling and L.-X. Wang

Report No. 2-84

Laboratory of Fluid Mechanics

Department of Civil Engineering

Delft University of Technology

(2)

8.5. Stelling*> and L.-X. Wang**)

Reoort No. 2 - 84

Laboratorv of Fluid Mechanics Department of Civil Engineering Delft University of Technology Delft, The Netherlands

*) Department of Transport and Public Works~ Data Processing Division~ The Netherlands

**) Water Conservancy and Hydroelectric Power Research Institute, Beijing, China

(3)

1. lntroduc:tion

2. Experiments

2.1 Experimental set-up 2.2 Measuring equipment

2.3 Measurements of depth-averaged veloc:ity and water level 2.4 Experimental result.

3. Numeric:al simulation 3.1 The numaric:al model 3.2 Numeric:al experiment.

4. Comparison of c:omputations with ..asurements and c:onc:lusions

Ac:knowledgements Referenc:es

Tables Figures

(4)

investigated with a physical model and a numerical model. To simulate tidal flow, the prescribed flow rate at the inflow boundary was a half-period sine function of time. Measurements of velocities and wave heights were conducted by using LDV and a wave-height meter in a straight open channel with a sudden

widening and a non-reflective outlet. Distributions of depth-averaged velocities at different times were obtained. Numerical simulation of this flow was carried out using a computer

programme of second-order accuracy. The development of the recirculation region in course of time was weIl simulated, and the observed splitting of the main eddy in a later phase of the experiment and the secondary eddy in the concave corner were

reproduced. The computational results are markedly influenced by the boundarv conditions at closed boundaries and the eddy

(5)

width of the expanding flume Chézy coefficient

focus distance of l.ns in LDV ~ gravitational acceleration

~,H water depth

~ water depth when the velocity is zero K optical constant of LDV

l~

length of th. recirculation region

Q

discharge

Q~

maximum discharge R hydraulic radius

Re Reynolds number

Sdistane. between two la.er beams

T

half period of the sine-function flow rate

t time

uJ~ two component. of depth-averaged velocity in

x-

and

y

-direction.

u:

U-v..

maximum velocity in the recirculation region turbulent fluctuation of velocity

time-mean velocity

depth-averaged velocity

cartesian coordinates in three directions coordinates of the eddy centre

6X,by grid size

E:- eddy viscosity

À laser light wavelength

tP

angle

V kinematic viscosity "'C time step

(6)

knowledge of these flows is essential for understanding

hvdrodynamic phenomena in many hydraulic structures. While a lot ot work deals with steady flow, only little on unsteady flow can be referred t~. Because of the difficulty of treatment of the governing equations and the complexity of the boundary

conditions, an analytical solution is not feasible. Experiments in physical models and computations using numeri cal models are resorted to to investigate these problems. Dwing to the rapid development of efficient, high-speed computer hardware, the costly, time-consuming physical models have been gradually replaced by sophisticated numerical models in many

investigations. In numerical modelling, the most frequently

applied prediction method is the computation by means of a finite-difference representation of the depth-averaged momentum

equations and continuity equation. The question is, however, to what extent and how weIl a numerical model can reproduce the hydraulic phenomena in real situations. It must be calibrated and verified with either field measurements or a physical model. lhe work presented here is concerned with measurements in an unsteady separating flow in an experimental flume and

computations for this problem using a numerical model.

A series of experimental investigations on this subject has been done recently in the Laboratory of Fluid Mechanics,

Department of Civil Engineering, Delft University of Technology by T. Koppel (Koppel, 1981) and L.-X. Wang (Wang, 1982). The experlments included flow visualization, float observations,

velocity measurements with LDV and water-level masurements with a

wave-height meter. rhe experiments were conducted in a straight,

open channel with a sudden expansion (widening> and a

non-reflective outlet. To simulate tidal flow, the discharge varied

with time according to a half period sine fuJcion. The same flow

was simulated numerically by means of a programme of second-order

accuracy. In the computation, constant eddy viscosities were

assumed and three types of closed-boundary conditions (i.e.

(7)

employed.

The experiment.l re.ult. pr•• ented here concern mainly the flow pattern in the expansion region, .s measured by L.-X. Wang

(Wang, 1982) with the discharge ~ equal to

16 sin (~~/150)ix 10-3 m3/s (time in seconds). A comparison is made between the experimental and computational results obtained.

(8)

2. Experiments

2.1 Experimental set-up

fhe experiments were conductad in a horizontal, straight flume with smooth, transparent side walls and bottom. The 0,4 m wide flume widened suddenly at the cross-section 10 m downstream from the inlet to a width of 0,8 m. Scr •• ns were placed at the entrance, and sand <median diameter 0,7 mm) was glued on the first two metres of the bottom to provide a uniform, fully-developed turbulent flow. The uniformity of flow was confirmed by velocity-profile measurem.nts near the expansion(9 m

downstream from the inlet). In order to diminish reflexion of long waves, a distributed-inflow (discharge Q\) system and a zig-zag weir (total length 2,8 m) were built at the end of the flume. When QI

=

0.,016m3/s and weir height

a.

= 0,07 m.,the water depth

ho

in the flume was 0.096 m, while the flow velocity in the flume was zero. Wh en the inflow starts, a .mall-amplitude long wave is generated and the related discharge will pass over the zig-zag weir with little or no reflexion. Th. experimental set-up is schematically shown in fig. 2.1.

The control system of the water supply consists of a data-track progammer (R.I. Controls U.S.A.), an electromagnetic flow meter <Foxboro mode 696) and a motor-driven valve. The flow was measured automatically by the electromagnetic flow meter and the signal was fed back to the data-track programmer, which

controlled the electromotor driving the valv. according to a prescribed time-function. In this experiment, the maximum water velocity in the flume was about 0,34 mIs and the maximum water depth about 0,12 m. So the maximum Reynolds number was

-

-2.2 MeasurinQ eguipment

(9)

wave-here), the velocity measurements with a Laser-Doppler

Velocitymeter (LDV) were part of the experiment. In recent years LDV has been frequantly used in experimental fluid mechanics. Several types of LDV systems have been developed. The choice of LDV type depends on the type of measurements. In this

experiment, a forward scatter orthogonal two-component reference mode arrangement (TPD, type 400) was used. A block-scheme of the LDV measurements is given in fig. 2.2. Measurements were done with the direct configuration, see fig. 2.3. The signals

(frequency) from the measuring point were received by two photodetectors, converted into voltage by a frequency tracker

(TYPE 1077/2M), passed filters (low-pass filter, model 452 Dual Hl/LO, cutoff frequency

=

25 Hz), amplified by a preamplifier built-in in the Data Acquisition System (DAS), and recorded on the paper of a HP recorder (7402A).

Parameters of the optical system are as follows: focus distance of the front lens

distance between two laser beams laser light wave length

angle between laser bearns in air optical constant of the system

F = 242.5 mm s

=

29.6 mm

~= 632.8 mm

f=

6.9850

=

192.5 kHz/ms-1

-rhe tracker constant wat» 1 V/200 kHz. Wi th the parameters mentioned above, the following rel_tion.hip between velocity and displacement on recording paper holds:

10.39 cm/s corresponds to 1 cm.

In turbulent flow the valocity can be divided into two parts:

u.(-t)

= ~(.~)

+ ti(-t)

where is the mean velocity, a periodic function of time in

this case, and ~ is the turbulent fluctuation, a random

quantity. In this experiment only the mean velocity u..Ct) was read from the recording paper. Fig. 2.4 shows an example of the recorded veloeities.

(10)

A small cup with a transparent bottom was fixed at the water surface to avoid deflection of the laser beam by the fluctuating free surf ace. The cup had som influence on the velocity

distribution near the free surface. This imposes some

restrictions on the velocity measurements close to the free surf ace.

2.3 Measurements of depth-averaged velocity and water level

fhe measurements were conducted with the discharge given by

with Q

....

= 0.016 m3/s and T= 75 s. The two velocity-components

in

x-

and Y-directions were measured at 145 verticals in the

separation region continuously. Fig. 2.5 gives the scheme of the

measuring points, in which the origin of the coordinates is at

the bottom in the expansion section, the ~-axis is in the flow

direction, the y-axis in the transverse direction and the ~-axis

vertically upwards. When an experiment commenced, a pulse was

created to mark (on the recording paper) the start of the flow in

section O( X

=

-32.5 cm). The values of veloeities were read from

the recording paper at time ~= 5,15,25,35,45,55,65 and 75 s.

The meauring points are identified in the following way.

For example, B2 is the second vertical in section B( ~= 12.5 cm,

y

=

70 cm). At each point, the velocity was measured twice and the

mean value was taken.

Before the depth-averaged velocity measurements, velocity

profiles were taken at several verticals in three sections

(section 0, Band K) with q....

=

0.016 m3/s and T

=

90 s. These

profiles are depicted in fig. 2.6,2.7 and 2.8. Using these

profiles, two measuring points ('r. = 1.6 cm and 7.6 cm) were

selected for the depth-averaged velocity measurements, since for

the velocity profiles shown,

where

~(t)

=

the depth-averaged velocity calculatad according to

(11)

afterwards indicate that the two points selected are fairly

representative at verticals where the velocity profile has a more or less logarithmic farm. At a few verticals in the central area of the recirculation region, the velocities near bottom and free surface were in opposite directions, and the values of

3(

U'.b +

1.(."1-.1.) are close to zero. In fact, this is the case in the centre

of a recirculation regian.

The water depths were measured using a wave-height meter at

16 verticals in two cross section

(e

and H) under the same flow

conditions as the velocity measurements. Before the flow

started, the water depth ho was 0.0096 m. The measured maximum

wave height was about 0.02 m.

2.4 Experimental results

The two components of velocity \:(_(;t;) and

v

Ct) and the angles

between the velocity-vectors and the x-axis are listed in Table

1. The flow patterns are plotted according to the results of the

depth-averaged velocity measurements in fig. 2.9. The variations

in water depths at two cross-sections are depicted in fig. 2.12.

It is believed that the characteristics of the unsteady

separating flow (the development of eddies, the splitting of the

main eddy, the meandering of the main stream, etc.) depend on

boundary conditions as weIl as flow conditions, such as the

magnitude of velocity, acceleration and deceleration, the period,

etc. It is insufficient to draw general conclusions from

measurements with one or two sets of flow conditions. The

results presented here, however, can provide a test case for a

numerical investigation as weIl as a few conclusions about

unsteady, separating flow.

(1) A separating eddy occurs immediately behind the protruding

corner at the very beginning of the flow.

In the acceleration phase, the separating eddy

(recirculation region) develops with time. lts size is

increasing while the eddy centre is moving downstream, see

fig. 2.9-a,b,c and d. The eddy still grows in the

(12)

experiment> the separating length

l~=

(6 to 8)~ (Abbott and Kline, 1962). In fig. 2.9-h,

L~

is at least 2.65 m

(= 6.6 B).

During acceleration the main stream is driving the flow in the separation region. In the decel.rating phase the main stream is suppressed by the widening separation region, and a slight meandering of the main stream was observed. A

small reverse velocity was measured near the straight wall in section L, see fig. 2.9-c and h.

(2) In the decelerating phase, the main eddy seems to split into two parts, see fig. 2.9-e,f,g and h. Bath splitted eddies grow simultaneously and move downstream and transversely towards the main flow as weIl. This can also be recognized from Koppel's measurements (Koppel, 1981). Fig. 2.11 is a copy of a flow pattern taken from Koppel's report (flow conditions: Q~= 0.016 m3/s, T= 90 s, t

=

60 s). Fig. 2.10 is a copy of fig. 2.9-f.

The splitting of the main eddy in two-dimensional

accelerating, separating flow was observed by other workers, experimentally and numerically (Macagno and Hung, 1970). In their experiments, the first eddy is swept away by the main flow, and the splitted eddy (the third eddy, as it was

named) grows slowly and turns into a captive and steady eddy.

(3) The fluid in the concave corner almost remains

stagnant,except for a secondary circulation existing during a certain time. The valocity in this secondary circulation is at most ten percent of that in the main flow at the same

instant.

(4) In a cross-section the water surface deviates from the horizontal, especially in the accelerating phase. A

relatively steep slope of the water surface appears in the mixing layer. At section C the slope between vertical CS and

(13)

0.04 t

=

25

(section K), the mixing layer gets wider, a large transverse variation in water level occurs between verticals H3 and H8.

In the decelerating phase the water surface seems smoother than in the accelerating phase.

(5) The prescribed discharge-time relationship (a sine function) holds true at the inlet of the flume. Dwing to the

deformation during propagation of the long wave, neither velocity nor wave height is a simple sine function at the expansion. These variables can be expressed in the form of Fourier series.

According to the measured data, the following expressions were obtained:

for the velocity component in x-direction in section 0 (upstream)

3

\':L(t)

=

u.

0 +

2:.

Llk S'VI. kt...>t

k~1

for the water level in section K (downstream)

h(.t)~ ho when 0.(. 1:- ~ to

'3

hLt)e, ~o+-

'f;1

~k. S~\I\ Icc..v(t--t"o) when 1:0 '- -t: ~ T

where 0

=

211'/2T; T

=

75 s;

U,1

=

0.05 mis,

hl.

=

0.001 m,

(.(.3

=

0.01 mis;

1,10

=

0.0005 m;

LLO

=

0,

u-,

=

0.375 mis,

ho

=

0.1 m, L1.

=

0.021 m,

to

=

L/(~L.o'/'l..; L

=

the distance

between sections 0 and K. The above expression5are to be

used in the subsequent numerical modelling as the condition5

at the open boundaries.

In this experiment, measurements of turbulence

quantities were not carried out. To meet the need for the

eddy viscosity in the numerical simulations, eddy

viscosities were determined from Koppel's measurements

(Koppel, 1981>, using the following formula,

- (.,(..'v' -vl.: v'

e

::. -::::::.

"Di.4: )\:1

,u--

+

(14)

The calculated 6 values in the miMing layer, for Q~= 0.016 m3/s and T= 90 s, are listed in Table 2. E varies in time and space and it is, in this cAse, in the range of

(15)

3.1 The numerical model

In this chapter the numerical model that has been used will be described briefly. A detailed description is given by

Stell ing (1983). The numerical model is based upon the well

-known shallow water equations,

(3.1-1a)

(3.1-1b)

(3.1-1c)

where:

7

=

waterlevel with respect to a horizontal reference plane

H

=

total waterdepth,

H

=

d.

+-

5

For the numerical approximation of (3.1_1) first a fully

staggered grid is defined, see fig. 3.1.

n+-I

v

v

v

h

1-11+1

fig. 3.1, Spatial grid

For the inner points of the grid given by fig. 3.1, i.e. for those points that are not influenced by an open or a closed

boundaryof the numerical model, (3.1-1) is approximated by an

ADI type finite-difference scheme. Each derivative of (3.1-1) is

discretized by central differences , except for u.y in (3.1-1a) and

~ in (3.1-1b). These terms are approximated by third-order

upwind differencing. For the numerical integration in time a

non-standard ADI/predictor-corrector approximation has been

(16)

Stage 1:

L ,/ I I-~I -Ic 'J( (

=

k+'L k )

7k.t-

'

h.

( " ...... 'Io_" "'".. )/-1..-r-...

+

u..

..

,

\A...

..."

0,11.. + ..oy v , u,

+-

1

1»)( (3.1-2a) For

F

=

1,2 : --y (VCl>l_

v"-)

/

\.

r

+-

s.,

l

~I<., V[t>l,

'b(p

t

f)1

+V

k

V;;l

+-

1

~~y I

(1'][(

=")'1..

(

k.)2.1"'i.jCAtHk)_

é:

(

l*]

[I"J)_

+-

'3

V

u..

+-

V j L.. Vox/(

+

v oyy - D

at t"tfl

r1+-1

(3.1-2b)

(3.1-2c)

Stage 2:

For ~

=

1,2 :

kJ.. /

bitf:lx

cl

[::::\..t-t

Cr1 ]

(1.4.'(>]_1.<...

t- ....)

11: +-I.A.-

LtOA +-- Y+y V

,u..

,2)(~t-f")

+--+-tiJ u.tl'l[(~f,..d.)'1.-+-/l.c..k. ~..\ ..

l

y

\.

·

.,'/"L.

/

(è\tk.,"~\

)

_

G

(_

u.CP]

OT-X + lA..

Clt-,Jf-]

oyy ) :::.0

I

at Io\-It·ï.. ,~ (3.1-2d)

at t\1J IH ~ (3.1-2e)

(17)

where Hl<.

C

~ ~)~

+- ~

"-

cL

o{_ h- ~) at 1';\+ 1.\ ,''' denotes 1.1

...,

....

,)

'"

+-

+-~)h rYt,

'"

I I

(

'

L

k.

H

at t\I1 IH-z.. denotes

L

S ~,~

+-

7

rn, 1'\+/ .j- oL"", +- oL

,

VI)

) , \11 1'11-ï.. ' =k I I

(l{.k..

I:.. L Ic. ) u, at ....,)~Hi. denotes y +- 1--1.. +- \,.t. +k.. It.\ - 11. ' .. Wt+i_, ... )l1+\.,~+1 ~-~I ~+, =1.. V is defined according to at 1\1\)'" denotes

-

y

V at is defined according to at denotes Voy• Y ,Y etc.

7o~ 7o'f are defined according to ~o~

denotes

~ (CI'J;\ I

v+lt14.// ,i;at I')t) h+t.. denot ..

and ~+y are defined according to ~oy and

'?H'

"

r

is defined according to

I

at ~}h+1_ denotes

denotes the sum of ~ over all grid points)

(18)

and C~~]

Lloy'l at

KoI+-\

,

I') denotes

In order to represent a unique solution, (3.1-1) has to be completed with boundary condition ••

At closed boundaries the following boundary conditions are prescribed:

(3.1-3a)

if 6

t

0 (3.1-3b)

where u.L denotes the vel oc ity normal to the boundary, t(../I

denotes the velocity parallel to the boundary,

o

l

Dn

denotes the derivate normal to the boundary, b a length related to the

distance between the closad boundary and the nearest grid point, and ~ denotes a slip parameter.

At open boundaries a variety of boundary conditions can be prescribed, a detailed description including the numerical

consequences of the open boundary conditions and of (3.1-3a) is given by Stelling (1983).

Since (3.1-3b) plays an important part in the numerical experiments of this work, we will consider this boundary

condition in more detail. (3.1-3b) represents a weighted average of a no-slip and a perfect-slip boundary condition, i.e. if ~

=

0 then (3.1-3b) represents a no-slip boundary condition, whereas if

~= 1,then (3.1-3b) represents a perfect-slip boundary condition. In general ~

=

1, i.e. perfect-slip, because for many application the grid size is much too large to represent boundary layers that occur in case of no-slip boundary conditions. Numerically,

(3.1-3b) only affects the approximation of 01.u.,///'P":-nearclosed boundaries, i.e. other terms of (3.1-1) are treated irrespective of (3. 1-3b) •

_ ').'- / 1.

(19)

~h·1 ~ t'I +-

i.

v

~

'7

h- l1. -V h - I

;-tM

v

v'

.._. point under consideration

0)

~

~

~

---_1/

1/--",-...closed boundary

~

5

~

~

" virtual point

Fig.3.2 Boundary treatment for second-order derivative.

The boundary condition (3.1-3b) influences the approximation of

u.yy

at the point under consideration.

At inner poi nt s IA.yy is approx imated by

'LlA... +

"'" +

1.

,1'\ (3.1-4)

For the situation of fig. 3.2, however, U.1\1+-L 11-1 is located at a

" I

missing gridpoint. Let us assume that this point contains a

"virtual" value for which the following relation holds:

LA. ~ •• L I

..-..,..l.I1'\- ï.

(3.1-5)

Let us assume the slip parameter~, also see figure 3.3 as

follows:

lA. , I

~+1.'\'\-ï. (3.1-6)

From this relation it follows thAt if eX.

=

1 (3.1-6) represents a

perfect-slip boundary condition, whereas if

0::::

=

0 (3.1-6) is a

no-slip boundary condition.

Substituting (3.1-6) into (3.1-5) yields:

IA. I

1-1.1.+ 1...' 11-\ (3.1-7)

Near closed boundaries (3.1-7) is substituted into (3.1-4). It is

(20)

(3.1-3b) with ho= :t

A_f (or

th;). which is indeed the distance of the nearest gridpoint to the closed boundary.

y

"

n-.!.1. rl-I

Fig. 3.3 Values of l.t.

11\1+.1.... ,,.,-1

2.2 Numerical experiments

In this section a few numeri cal .xperiments are described to illustrate the effect of the eddy viscosity

e

and the effect of the sI ip parameter 0(.

For the purpose of the numeri cal calculations, the flume as

described is covered by a grid with a gridsize 6X= 4y

=

0.025 m. A timestep,T, has been chosen such that T= 0.125 s.

The initial conditions are given by:

u.(o)

=

0,

vè)

=

0,

?~)

=

0

The boundary conditions are given by:

1> at X

=

0:

where

(21)

=

j(.-t)

=

0, 0 ~

t

~ 5 s .3

~ Ct)

=

r

Ih' S~iI1 co: [4:-S-)

i::.

1

d-

J

I

=

0.021,

hl.

=

0.001 and

h ""'

0.0005 m. ")

The depth hoiS 0.1 mand the Chézy coefficient is 62.64 m1/2ts.

were tested.

With these boundary conditions sevaral numerical values for t and ~

The results are illustrated by figures 3.4 to 3.8.

The numerical values for

e

and~ are given by table 3.1.

Table 3.1 Computation number Figure €r (m2/s) 1 3.4 a-d 2.3)(10-4 1 2 3 3.6 a-d 3.5 a-d 2.3Xl0-4

o

o

Comment

This example has a perfect

slip boundary condition. The

growth of a time-dependent

eddy is demonstrated. Only

one eddy develops. The flow

in bac~ward direction follows the rigid walIs.

This example has a no-slip

boundary condition. Here the

emergence of several eddies is shown. Despite the complicated flow patterns numerically

stability was maintained. When compared with

measurements the development of secondary eddies is too fast.

The increased viscosity

(22)

4

3.8 a-h 2.3xl0-4

3.7 a~ 2.3xl0-4 0.75

5 0.9

secondary eddies and changes the flow patterns completely. By changing the slip condition at the rigid walls the

emergence of secondary eddies is delayed, which improves the agreement with measurements. By increasing ~ the emergence of secondary eddies is delayed further.

The calculations show the i.portance of eddy viscosity and also the importance of the slip parameter at closed boundaries.

lhe next chapter gives a more detailed study of the numerical results of calculations 4 and 5 through a comparison with measurements.

(23)

The results of computations no. 4 and no. 5 (with low eddy viscosity and partial slip condition at the closed boundaries) are compared here with the results of the measurements. The

length of the recirculation region

(ls)'

the eddy centre (Xc.'Yc.) and the maximum velocity (Ve~) in the recirculation region are estimated from measurements and computations, and listed in

Tables 3, 4 and 5. Comparing the computational results, presented in figs. 3.4 through 3.8, wth the experimental results, presented in fig. 2.9, we can draw the following conclusions:

(1), The development of eddies in an unsteady separating flow with a free surface is fairly weIl simulated by the

numerical model. However, the computational results are much influenced by the conditions specified at the closed boundaries and the applied parameters. As far as the depth-averaged veloeities are concerned, the reproduction of the flow pattern in the numerical model is quite good in the early ph ase of the experiment, but the deviations from the measurements are getting larger in a later ph ase of the experiments, see fig. 4.1-a and b.

(2), From Table 3 it is seen that at the successive instants the computed lengths of the recirculation region is quite close to the measured one. Thi& means that the present numeri cal model could satisfactory predict the development of the separation area.

(3), From Table 5, the computed values of velocities in the recirculation region are seen to be in the same range as those measured. However, th~ listed v~ values may occur at different locations in numerical and physical modeis.

(4), In computation no. 5, the second eddy seems to be the

secondary eddy shedding from the protruding corner, instead of the observed upstream part of the splitted main eddy, see fig. 3.8. In computation no.4 (fig. 3.7), the main eddy tends to split at t

=

45 s. If the no-slip (computation no. 2) or partial-slip (with weak slip) condition is employed at

(24)

the closed boundaries9 the splitting of tha main eddy can be

reproduced numerically.

(5)7 The computational results are sensitive to the boundary condition at the closed boundaries (perfect slip versus no-slip). When the amount of slip applied along the side walls is decreased, the main stream becomes more meandering, the recirculation region develops more slowly, the final value of the recirculation length becomes less and the shape of eddy becomes less 'rectangular'.

(6), The results are also sensitive to the eddy viscosity

assumed. Although the specified values of the viscosity é are in

the range of physical values (se. Table 2)9 the differences

between computations with different values of ç are quite

noticeable (see figs. 3.5 and 3.6). lt seem. that the value of é

=

0.001 m2/s is too large9 but that

6

=

0.00023 m2/s is toa

smalle It is suggested that the eddy viscosity applied in the

computations should be varying with time and location, as in the

physical situation. Prescribing the dependence of eddy viscosity

on location would be cumbersome9 however.

(7), Because of (5) and (6), the computed flow pattern cannot be

expected to agree closely with the measurements. Only very

simple formulations were u.ad in the computation for the

eddy viscosity and for the closed-boundary condition. An

appropriate turbulence model would b. required to improve

(25)

Wang~ L.-X. wants to express his gratitude to Prof. M. de Vries for the opportunity to stay in the Laboratory of Fluid Mechanics~ Department of Civil Engineering~ Delft University of Technology. Wang is grateful to Prof. J.P.Th. Kalkwijk and Dr.

c.

Kranenburg for the interesting subject and many instructive

di scussi ons. Many thanks are given to Mr. L.E.A. Calle~ Miss H.

Klaasman and Mrs. T. Capel, for their help concerning

(26)

References

Abbott, D.E. and Kline, s.J.,

Experimental inve.tigation of Bubsonic turbulent flow over single and double backNard facing steps.

J. Basic EngineerinQ, Trans. ASME, Sept. 1962, p. 317. Boutier, A.,

Optical systems in Laser Anemo.etry,

Lectures series 1981-3, ven Karman Institute for Fluid Dynamics.

Chow, Ven Te,

Open-channel Hydraulics, 1959, McSraw-Hill. George H. Lean and T. John Weare,

Modelling two-dimensional circulating Flow.

Proc. ASCE, J. Hydr. Div., vol. 105, HY1, Jan. 1979, p. 17. Koppel, T.,

Experiment. on unst •• dy separating flow in an open channel. Internal Report no. 3-81, Lab. of Fluid Mechanics,

Department of Civil Engineering, Delft University of Technol ogy, 1981.

Metha, P.R.,

Flow characteristics in tNo-dimensional expansion.

J. Hydr. Div., Proc. ASCE, vol. 105, HY5, 1979, p. ~01. H-J. Pfei fer,

Introduction to LDA signal analysis and signal Processing. Lectures Series 1981-3, von Karman Institute for Fluid Dynamics.

Stelling, G.S.,

On the construction of computational methods for shallow water flow problems.

Ph.D. Thesis, Delft University of Technology, 1983. TPD, Beschrijving van de Laser Doppier Snelheidsmeter,

Rapport, 1977. Wang, L.-X.,

Experiments on Unsteady Separating Flow with a Free Surface. Internal Report no. 7-82, Lab. of Fluid Mechanic, Department of Civil Engineering, Delft University of Technology.

Macagno, E.O. and Hung, T-K.,

Computational study of accelerated flaN in a two-dimensional conduit expansion,

(27)

I

V (cmis) ______ ~_" 4-(degr~ - flow "i,-. • _ _..

_-

-

.- --'I ".~. t~!île ':'''-, s) 5 15 25 35 .45 I C· -65 7 :)

"

... :J_')

"

._ ...

-

-

-~.~-~...-- .. _ 1 .'-._.

i

, ! V

0

V

0

V '/) V

0

V

0

V Vi V I

0

, V ~5 vcrrica i, J :

i

...__._...-, . ..

'

.

.~._ .... _'. o• I 0

-

7 ~8.5 0 28.7 0 i 39.I

o

'

37.1 0'35.7 0 :22.9

o

,11.7 01-2•9 0 I I - 8 9.0 0 129•2 0 ,39.2 0 37.8 0 33.5 0 '26.0 0'12.6

o

i

I 2.9 0: 139.1 I

,

I

-

9 ,9.1 0 '29.3 0

O

~

38.7 0,34.8 0 26.0 0;13.8

O

l

0.2 0 I I 128•9

-

10 18•7 0

o

!

38.3 0 36.5

o

i

31.3 0 23.3 0'12.5 01-1.7

O

·

I

I 351 , 45

!

i I 1 1801 4.1 I

o

t

A - 0.0 0 1.4 45 2.5 1.2 411 1•1 290.7 0.0 I I I

I

I 90! i

I

271

O

l

I' 0.5 I 2. I -114;I 3.8 74 1.4 73'I 1.2 0.0 0 0.0 0.0 0'

!

1 -1031 I I 901 I 90

I

-

2 1•1 901 3.7 3.5 123 2.6 1.3 901 I.2 44 0.8 0.0

o

.

I

I

I

I

I I 2.3~221 -90

!

-

2' 1.0 901 5.2 -85 4.6-1101 0.5 -901 0.5 -90I 0.5 0.0 0 ! -83j I I I 90! i

ol

-

3 2.0 5.5 -81 3.7 0.8 -90 0.9 -901 0.8 180, 0.0 1.6 -90I 901

!

I

-

3' 2.2 4.8 -77 4.5 -90

I

1.9-102 I.7 -90! 0.8 -90~0.0

ol

2.5 -90i 1401 1.5 -90

i

!

- 4 3.8 4. I -83 5.8 -76i 0.7 -90 1.6 -90 0.8 -90 4.1~03i

I

I I

,

12

!

-50

I

I 5 5.1 1.7 127 2.4 1.0 0 2.1 -76 1.4-112; 1.0 -90 4.3 -105 6 10.7

I

O

l

37.0 1

I

35.9 2 27.9 0120•7 0; 7.8 -81 508 -I30

-

19127.9 ! I ; -21

-

7 8.6 16128.2 0 37.9 0 36.2 30.6 2123.3 2;12.5 5.0 -148i I , 14129.0 I \

-

8 7.9 38.5 -I 36.9 0 33.1 0 26.0

O

!

12.4 -4 3.2-139; ) 28.7 I I

-

9 7.3 39.0 -2 37.2 -1 34.8 -2 26.5 -3.15.0 -6 2.7 -90I

,

I I

-

10 7.4 0 28.9 38.9 0 36.4 0 32.3 0 23.8

O

!

13.5 0 ),,2 -63 I I I

I

(28)

B - 1 - 9 - 10

c

-- l' - 2 - 2' - 3 - 3' - 5 - 6 - 7 - 8 -. 9

I

I

!

I

l.

.

.

- 10 - 2 - 3 - 3' - 4 - 5 - 6 - 7 - 8 4 1 ' 2' 5.0 5.0 5.9 6.8 7. I 6.1 6.0 I .6 2. I 1.9 2. I 2.8 3.5 1 3.8 4.1

14.5

5.6 5.8 5.3 6.2

v

1.0

o

6.2-172 1.0 0, 7.0-153 45i 6.9-138 I 7.0 -150 1.8 -135: 0.8 I•J 1.6 50i

,

i 67

i

i

59'

I

8. I -69 4.4 -145 1.6 8.8 -90 2.8 64 6. I -46 40 5.4 -30 ! 28/29.2

,

,

21128.9 I 17128.7 11128.0

I

0.27.0 0

I

Oil2.0-l75

i

0' 13.2 -164

o

13.8 -ISI 29 9.6 -132 42,8.3 -90 I ! 44!10.0 -51 37112.5 -25

I

F 31113.2 -10 28 28.3 22 29.3 21 29.3 1128.6

o

28.1 15 2 40.0

I

o

i

40.5

,

I

o

!

41.0 1 I 1 1 1

,

I. 25 t V :

0

2.8 5. 1 -145 3.5 -13~ I i 5.1 -9d 4.0

-9J

i

5.4 -4~

,

6.0 -2~ ~

o

39.2 -~ 2 38.3 36.6

o

36.8

I

36.2 I

I

3.0 -16

I

8.6 -15 11.2 -14 8.3 -13 8.7 -11 6.8 8.2 3 39.0 9.2 35.5 2 i

i

Ol

O

l

0.8 -9~ 0.9 180 0.5 180!

I

o •

9 -I 22 1.0 180

I

2.6 -127: 2.0 -124i j 2.9 -133 2.6 - 130

I

1.5 -701,11.3 -90; I~4 -80; i -53!

I

-121 2.2 -I25l

I

o

2.2

o

l

i

o

1.9 180

I

Q 1.6 180

I

1.0 -112J 0.8 -90 2.4 -160

I

1.6 -140; 1.7 -163 2.6 -1621 2.3-153( 3.0 -164 4.0-1571

I

2.7 -144

i

-90 1.6

-9o

i

1.2 -135 3.9-1321 -121 3.2 -3212.1

i

I

0,'17 • 9 0 I 5. 0

i

0123.1 0112.0 O! 26.5 0j 14.6 I I 0128.6 0,!17.2

i

38.4 0.34.3 0

I

24.4 0113•5 I

I

!

1 \ 1 1

I

I

'

·

~

I

..

.

'

,_

_

.

__

I

.

.

_

_

.

_

.i

.

35 V

o

Q

2.0 0: 1.3 1.4-163j

I

3.2-161i 2.1 I I 2.7-1151 202 4.4 -541 2.7 1.6 ,-531 I 4.6

0i

2.5 36.8 1128.2 37.4 -I 30.7 34.7

o

31.4 35.4

o

33. I 34.4

o

29.5 1.7 -18 0.0 2.6-154 1.5-160 3.7-150 3.2 -135 3.6 -159 3.0 -149 ,

-79

I !

-2&

1

-21

cl

I

Q 3.5-129 2.6-108 4.3 -22 8.1 33.3

o

25.5 36.9

o

30.3 i

:

/

::::

:

::::

o

i

I

,

I

I 55

v

V

o

1.5 0, 0.5 180 0.0

o

.

0.0 -131' J

!

-107!

!

-I18Î : I -351 1.6 -23; 1.0

I

d

20.7

i

0' 22. 4 - 2:10 • 6 f , 1.0

o

i

0.0 !

o

25.9 0113.3 '-7 !

o

26.8 , 0; 16.2 I 0: 15.3

o

23.9

o

0.0 O! 0.0 180 0.0 1.0 -112 1.3 -141 65 V 75 ('1 i

v

;

0

0.0 0: 0.0 0; i 1.7-159:

I

• 2.2-1431 f 3.7-128

1

3.6-1231

,

,

4.1-127.

!

3.6-1111: 5.0-129 I I -7 4.8 -I38l i 3.8 -124

i

,

,

2.2 -I 18 5.6 -125 1.45 -6 3.7-135 -6 2.3 -90 -661 4.9 -125 -2213.9-122 -5 3.5 -63

i

I

o

:

3.6 0 i

(29)

D - 2.5 - I' 2.6 - 2 2.7 - 2' 2.6 - 3 3.0 - 3' 3.5 - 4 '3.5 - 5 3.3 - 6 4.6 - 7 :5.2 - 8 5.4 9 5.~ - 10 i5.7 E-I '2.7 - I' '2.9 - 2 ,3.4 - 3 3.6 3' 3.0 - 4 3.5 - 5 ,3.8 - 6 4.3 - 7 4.0 - 8 :3.6 - 9 ,5.0 - 10 4.4

v

0

v

v

o

v

v

o

v

o

o

16.8 -180 9.7 -169 0.8 0 0.5 180 1.0 180 I .0 180

i

3.3 180

o

16.3 -18013.9 -159 2.1-148 1.9 -106 1.2 -130 1.5-147' 3.0-165

o

I 3 •0 -I 80I2•8 -15I 4.2 -I 6 I 3. 7 -I62 I •2 -148 2•2-I 73 3•2-I70 14 8.1 -18010.7 -143 3.4-158 2.9 -145 1.6 -140 2.0-148: 4.2-150' , 25 1.6 -18 9.4 -109~ 2.7-140 3.1 -146 2.0 -141 2.4-131 3.7-140 33 11.6 08.4 -60 4.0-127' 4.0 -137 3.0 -141 2.7-144 3.7-145 24: 16.1 011.7 -33' 3.4 -90 2.2 -45 2.3 -90 2.1 -90 3.5 -131, 27 29.6 28,22.4 10,14.1 -11,6.0 -15 7.2 -12 4.3 -14 3.2 -81 5.1-135

o

31.0 0 24.7 17 29.5 5i39.5 -2: 36.7 I 5:40.2 -137.1

°

i

34•5 I

o

31.0 12 28.0 14 28. I I 3:4I.6 0 39.5 0136.4 1 I I

o

27.5 0140.5 0137.4 0:32.7

,

-I70! 4.1-16513.3

!

i -1701 5.0-159: 3.1 !

o

15.4+178iI6.7 !

o

15.1 169 :16.3

o

17.5

o

23.4 0:24.6 0,29.1

o

26.0 180 2.4 180 2. I 04.3-145.0-1411

o

12.3 -7,2.9-114

o

14.3 -5: 3.4 -99

o

17.7 -3: 3.8 -16 i

o

15.6 0' 5.2 0 I80 2. I 180 3.3 I80 180 2. I 180. 4. 2 180 , I 012.01.50'14.6 -169.7.4-164: 4.1 -163,2.3 180 3.118014.1180

i

o

8.9 114 12.2 -ISO; 2.9 -135i 4.6 -137 2.3 -153 3.5 -171 ' 5.1 -168 , 1710.1 65 7.4 -1134.4-135' 2.8 -138 1.4 -138 1.4-146 3.7-164

i

20 13.3 32: 9.6 -29 i 3.2 -1041

,

3.2 -126 26 17.8 -58

i

I

-

2

1

I 8.9 -12 1.0 0.5 -90 16'26.8 -5 10.4 14 28.4 12f3i 3.5

o

29.2

o

,

24.1 14 27.0 9 :41• 6

o

37.1 0j3Il.2 0137.8 0134.0

o

38.4 0!36.9

o

37.9 0'33.0 6 25.3 7 41.6 6,26.6 5 41.6

o

25.2 3 40.2 3.3 -141 1.4 -156

o

5.2

o

18.4

o

23.1

o

26.0

o

28.8

o

24.9 3.0-142 5.4-151 1.3-141 4.7-153: -5 1.3-614.1-146

o

6.7 -13 5.0-1351 , I

o

13.5 -4 4. 1 -I30 •

o

14.2 -2 2.7-101

o

17.7 0 5.7 0

o

17.1 0 6.0 0

(30)

F -- i' - 2 - 2' - 3 - 3' - 4 - 5 - 6 - 7 - 8 - 9 - 10 G - 1 - l " - 2 - 2' - 3 i ). ... 2.4 2.7 :3 2

I

I \3. 1

I

13•2 13•5 ,4.2 14.1 I I 13•6

!

\4.3 13.6 2.4 3.2 i 3.1 - 3' 3.2 3.6 - 4 - 5 3.6 - 6 3.2 - 7 14,I

b.6

I 13•6 14•0 I l - 8 - 9 - 10 0, 8.0 0: 10.5 I

!

0111.3 i

o

;

11.3 14113.7 6!17.7 21121.9 17

!

25.2 I 11123.8 i 11123.7 ! 8\23.3 I 14124.3 0123.3 i

O

!

2.5

o

3.6

o

7.2

o

11.0

o

14.3 8 116.8

I

13 t18.9

o

19.3

o

20.6

i

01

21•7

o

,21.6

I

o

122.9

o

122.5

I

.

1

167 22. 8 173 2. 0 -i 4 1 3 • 3 180 L• 6 I 80 3 • 3 180

i

1 150' 19.7 -172 3.8 -i 64: 6.2 -i 65 4.0 180 3.6 180I

;

I

' i ; 129!17.4 -170: 7.4 -i 55: 5. 1 -156, 3.2 -171 3.2 180: 4.7 180

1

i

I

!

82: 12.1 -i7~ 6.8 -I57! 4.0 -i64: 2.5-156 '.2.4 180

i

5.0-i74 î

6511 3.3 -i2~ 3.7 -i42:

I

'

3.9 -144113.1-i60: 3.1 -i60 4.1-165!

I

I

-i421

I

::

i

,:::

-:j :::

~95

i

:::

:::

1

~:::::

I ::: :::

I

::: :::

I

23120.7 01"01 55.0 1516.5

9

:

1.8 -5014•3-154 18133.2327.30123.3

I!

17.6 0:5.1 -141 3.6-i49 1 15141.6 3 37.4 030.7 223.7 0f11.2 -4 1.8-153

1

11141 .9 1 140.4 0 33.9 0 26.8 0 r15.4 -4 2.3 -90

i

714 1• 4 38. 8 0 36. 2 0 30. 1 0 \18.9 0 6 • 4 0 \ 5 40.3 0 38.4 0 34.5 0 26.0 0 :18.5 0 7..8 0

I

147 22.9 -i 77 2. 3 -160 41.6 180 2.6 180 I 3.7 180

I

5.2 1801,1 I

107 19.8 -i69 10.8 -i69 6.0 -i79 4.1 173; 2.4 180 4.5 180

I

i

f

1

8 15.9-i76 6.8 -i47 5.5 -i69 3.0-i7013.1 -i60 6.1-i721

! I 60 8.0 180 7.3 -154 3.2 -i66 1.6-i80 f 2.6 180 5.5 180! !

I

571.616215.4 -i25 4.5 -1693.7 -i68: 1.6 -1494.21801 I I

I

41 9.7 19! 3.6 -90 1.6 18 2.1-i66' 1.5 159 4.5-i73 I I I i, 13

i

9.4 0 1.3 0 0.5 90.,i,1.9 -i 641 5.5 -178 I

i

I

!

10

i

15.4 0 10.9 11 5.6 8 : 0.7 0I 4.8 -i 54 2235.2 81276 323.0 21,16.6 315.5 0' 3.5-i52

I

.

:

I

1841.7 5:37 ..2 030.1 128.9 0112.0 02.0-i57

I

i

I

3 39.3 0 34.1 2 26.2 01,15.6 -31 1.9 -33 I '

I

2140.7 0 36.9 0 29.9 0 !I8.9 0j 6.8 0 1j , j 0118.2 018.9 Ol I 3.4 180

j

5.2 1801 35,16.3 28124.1 11142.1 I

I

7141.1 1 3140.0 1 i !

o

26.2 1 38.4

o

33.3

I

I

I

I

i 1

-

_

.

.

'

.

J

(31)

H - 3.6 3.3 - l" 2 i 13.3 I

I

13.1 - 2' - 3 i 13•0 I

b

.7

13.2 I

I

13•8 13•3 13•3 - 3' - 4 - 5 - 6 - 7 - 8 3.0 - 9 - 10 3.2 I-I' 3.6 2' 3.1 - 3 3.1 - 3' 3.3 4 2.9 - 5 2.3 - 6 2.8 - 7 2.3 - 8 2.3 - 9 2.6 - 10 2.6 "i'"

o

V;

0

v

I

0

V 1

0

V I I _~._.'._.• _ : _ '_"."eo: _.~._..•.~ ..~._._ • . ".. .·4_..

o

8.5 1 0: 7.4

o

1

8.

6

o

l 9.9 i I

,

o

110.5 i

o

i12.8

I

o

113.3 I

o

114.6

!

I 0115•0

!

0116.1

o

'

V 024.1 -i77,6.9 -i56, 1.6 -i80

I 1118.5 -i74:19.7 -1681 I , I I73114.9 -i 59 ! I I

169

1

9. S

-154

1

48 4.9 -i 221

I

27 5.7 -191 23 18.7 19 16.4 -10,! ; 18115.9 i 151 4.3 1 251 7.7 25111.6 I 20 28.0 17 36.0

o

16.2 13 37.8 15 39.1

o

18.3 9 37.4 18.1 3 38.0

o

12.3

01

14•6

o

12.9

o

13.4

o

12.5

o

13.2

o

12.9 0'12.6

o

12.4

o

13.1

o

12.7 180. 3. I -i75 1.8 153,0.8 3.3 6.4 I 6.7 -i 73! 2.7 -i69 : 2.7 15 29.1 17 19.2 -2 13.0 1 22.8 11 36.6 30.0 36.7 1 32.4 3.3

i

i 161i 1.6 153 :4.2 I 4.1 -i40

!

I

141

o

l

i

0.0 I .0 180 : 3.3 2.1 3.8 164, 2.6 ! 5.2

O

l

7.6 5 16.1 3

o

;

, 0.0 , 6 1.6

6

.

8

4 22.7 3 ;12.7 1 2 26.0 2 p6.6 , 2 29. I 0 !20. 3 ! 027.9 0!19.5

o

8.8 18 21 .5 -i 77 14.0 -i 65 5.6 -i 68

!

2. I 4 10.I 14 22.1 12 27.0 17 29.1 17 29.3 9 29. I 15 29.5 7 29.1

o

26.5 39.0 2 35.9 38.4 0 34.3 3.6 180~4.3

I

2.6 -i51

!

3.6

,

7 6.8 156 5.9 -i52 3 20.9 4.9 48 4.2 -90 4 16.9 2 25.0 I 2~ 32.7 1~ 38.0 38.8 39.6 36.4 14 9.1 -31 10 6.2 -15 1.9 -34 i 0.0

I

6.4 191 2.9 15 17.7 13 22.3 9 28.6 10 32.7 6 35.3 3 33.8

f

I

5 10.0

01

15•7

o

20.6 25.2 1 28.1

ol

26.5 I I i

I

I

!

I

i

I I I ! 7

I

2.1 6

I

5.9 0012.5 2115.6

i

1,19.3

o

116. I

I

!

V i (1 V ~j i 180

I

0.5 160

I

,

3.2 171 169 4.2 180' i 180 ,

!

180 : 180 5.2 169 6.0 180 I 1 180 6.0 180 ; I

o

I

5.8 170 1

!

:

o

I 4.1 163 i

I

!

3 2.4 180: I 4 0.0 0

I

3 2.9

o

i

I

Oi

!

O

!

Ol !

o

5.4

o

9.6 180 1.9 I 166 5.9 -i60

i

i 180 4.6 -i 56

i

i

o

3.6-i72i 45 5.0 0

I

I

03.41581

I

15 1.5 1351

:

:

::

:

I

o

3 9.9 0'10.4

(32)

l,S ; "" (11111' i ; ~(l" ~~-~V "-

11

~

'

!

.,

0

:

v

2"I'-

0

V

'

;

j

0

'V('rLi_ca~ l .

j

-

;

:

-

=

-

;

,

-:

..

: -

-

D

j

15.

4

-

-

~;

ï

-;;:~

~

;;_;

.

13~:-1-~~~- --2'11.9 0.,iI7.8-2iI7.5 2'10.3 4SjS.S 1271 i j

I

I

0!13.7 -2117.7 5120.2 28'10.2 2416.3

I

~

o

12.6 -7 18.5 4126.5 25 18.6 1,15.8 6 28.7 24 22.5

l'

15.6 14!17.5 I 1~ 24.4 , 27.2 28.6 - 3' - 4 - 5 - 6 - 7 - 8 - 9 - 10 K - l'

,

i

2.3 t

:

12.1 12•1

i

2.1 2.1 2.1 2.1 1.6 1.6 - 3' - 2' 1.9 1.6 - 4 - 5 - 6 - 7 - 8 - 9 - 10 L - I' 1.0 1.3 1.8 1 • 1 1.3 1.0 1.0 1.0 - 2' 0.8 - 3' 0.8 - 4 0.9 - 6 - 5 0.9 0.8 ,1.0

j

- 8 10.8

L

-

-

-_

~

_

~

:

.I

1.0 - 10 1.0 - 7

o

11.5 -5

o

10.1

o

10.1 -12

o

8.9 -8

o

8.3

o

8.3

o

9.5 -6 -5

o

21.0 -3 29.2 18.3 6 30.2 23 28.2 18.3 18.2 3 28.8 17 29.4 3 27.7 17 32.5 17.5 4 28.8 17 34.5

o

15.1

o

17.1

o

27.1 12 31.2 -4 12.2 3.I -10 11.2 2 3.1 110 5.2 143 8.6 172 174 12.6 171

o

11.1 -17

o

11.4-11 17.9 -5 17.5 14.I

o

11.1 -16 011.2-14

o

12.3 -\8

o

12.3 -14

o

13.3 -11 18.6 -6 24.3 29.8 18.3 -5 25.5 2 30.8 17.9 -5 26.5 -1 30.8 i" . V' 0' V 5')

o

V

i

i

I , I

I

i

.

i

-

'

I

V I

0

:

I I . l_.._.. _~ 14.0--168

1

10.9--162 I

O

!

21.3 0120•3 170115.5 8.8

o

11.1 -11 16.7 -4 18.8 -5 24.2 15 26.9 10 22.0

o

12.5 -5

o

8.5 0 16.1 -4 9.7 -16 13.3 7.5

o

, 178:15.3 -165:13.4 -166 6.3-172;11.9 -153

I

-24i 4.3 -76 3.2-135

I

-4: I I -5,

I

-21 7.6 -12 3.3 -18 0110.5 -7 6.3 -181 1 0[15.8 -9 8.3 -13 26.5 12.9 5.6 -34 1.4 -671 8.4 -33 3.9 -66 22 4.0 -23 1.8 164 231 8.6 20 3.7 45

!

18

1

9•6 19 16•3 10 6.9 20 t 15120.0 12 9.6 17 12!19.S 211.2 19

o

22.9 4 22.4 5.6 45' 2.9

o

10.9 16.6 -3,17.8 -3 16.4 14.9 19.1

o

o

11.4

o

17 25.3 16 27.5 16 28.4 11 4 3.6 7 8 11.7 13 3 10.1 12

o

8.8 4 15.6 -3 17.2 -2 16.5 4 11.4 24 6.6 71 3.5 117 45 5.6 158

o

8.9 8 15.6 0 19.2 2 23.0 10 19.4 25 11.3 49 4.9 54

o

9.2 6 16.4 0 17.1 0 22.7 10 20.1 20 13.9 27 7.4 39

o

11.9

o

11.0 8 16.8 0 20.0 0·27.8 9 21.2 18 16.0 32 9.6 38 18.2 2 6 23.0 16 17.1 41 17.1 0 20.8 -I. 25.6 11 23.4 _18

i

17.3 2! 18.2 -2 20.5 -8 20.7 6122•2 13117•2

o

I

I7•I 0 I6.8 -9 8.2 I8I 14.8 lOf I7•6 .... __.1 . . __ _._ _ _ •__. .. .__ ._ ! .__:.-.- ---.,..-.'-~~ 22112.6 27 t 22110.4 38 i ! 17; 6.8 32 i 14. 6.5 29

o

10.4

o

14.4

o

13.5

o

12.0

o

16.6 0 12.5 -5 5.5 148 4.3 -13 3.0 31 4.7 180

(33)

y =

0.4 m ~ 0.03 0.2 0.4 0.63 0.9 1.15 1.65 2.65 ) 10 2.0 1.4 20 2.1 2.4 3.4 30 1.4 1.4 5.4 1.3 5.0 40 1.6 1.9 4.1 9.3 6.8 6.0 3.0 2.0 50 1.3 1.9 2.8 4.9 9.1 5.9 2.6 60 1.2 1.4 3.1 4.4 4.4 7.5 5.0 1.7 70 0.8 1.4 2.5 2.7 2.6 2.5 4.3 1.3 80 1.4 2.0 2.0 1.2

Table 3. Langth of r.circulation ragian,

Ls)

estimatad from me••ur...nts and ca.putations

case comput.tion L,,<m) no. ti.e (5) 15 25 35 45 55 65 measurement 0.7 1.4 1.9 2.3 2.4 2.6 5 0.67 1.27 1.85 2.22 2.50 2.57 comput.ticn 4 0.71 1.33 1.72 1.92 2.10 2.12

(34)

case Computation ~ no. 15 25 35 45 55 65 Co ot. measurement lst Itddy')Cc 0.33 0.58 0.96 1.38 1.88 1.90

'/c.

0.58 0.58 0.58 0.58 0.58 0.56 2nd eddy Xc. 0.53 0.68 0.75 Yc 0.50 0.48 0.45 computation 5 1st eddy X, 0.36 0.72 0.91 1.17 1.17 1.27

y,

0.59 0.61 0.59 0.57 0.54 0.49 2nd eddy X, 0.15 0.17

y,

0.47 0.47 4 lst Midy Xc 0.36 0.66 0.96 1.15 1.25 1.47

'I,

0.59 0.67 0.61 0.58 0.56 0.54 2nd eddy

X,

0.50

--

0.60

Ye

0.45

--

0.50

(35)

computation~ (s) no.

I

V(m~~5 case measurement 45 55 65 25 35

v~*)

0.17 0.24 0.22 0.15 0.15 0.16 Vlt\atpoint A8 (X=2.5 cm. 0.29 0.39 0.37 0.33 0.26 0.12 Y-27.5 cm) computation 0.11 0.24 0.25 0.28 0.26 0.24 VtM at

{_x

-1. 2~ cm

t

y

-28.7'5cm 0.3 0.39 0.37 0.35 0.25 0.17 4 0.11 0.23 0.25 0.25 0.2'5 0.24 V"'" at { X -1.25 c. 0.3

Y

-28. 75c. 0.4 0.37 0.35 0.2'5 0.17

*) rhe measured value. of Vecllisted here ilre not the actual

maximum veloeities in the recirculation region, because the

(36)

I

1

Q

--

'

'

.

,

!

tr

m

IO.mm

t

Q1

O

.

4m

t., .

111

glued bottom

wetr

/

//

1/

I

I

I

I

Q

I

C)'l

side view ///7/ ////

Fig 2.1 Ex~erimental set-up

////

(37)

det

-

-~.

I"" measuring point

!.. ftume

J

l

photo

I

tracker ectors . ( 1077 I

2 M )

1

illuminating beam filter

1

amplifier In

DAS

1

HP recoder ( 7402A)

(38)

~----

o

... x

~

/'/

/ / / / / /

®-/1

Fig 2.3 Direct beam configuration, 1,2--reference beams; 3--illuminating beam; o--measuring point

UCt)

ti

lcm =10.39cm/s

~t~~~~~~~~~~~-r--~~~~

(5)

,

I

I

75

65

55

I

,I'

I

I

'

I

45

35

25

J5

I

I

5

.

,

flOw starting

(39)

meosuring points olong 0 verticol

G

:J-

2:

tor profiles 1,2 for depth -overoging

r

~:

+ + + + + + + + + + + 2 + + + + + + + Z ~+L() + + + + + + + + + + + 3 ~+ + + + + + + + + 3' ti) + + + + + + + + + + + + I. w+ + + + + + + + + + + + 5 r-- + + + + + + + + + + + + ~ f;r) + + + + + + + + + + + + + E-+ + + + + + + + + + + + 8 L() + I--- + + + + + + + + + + + + 10 ~ + 9 ~+ + + + + + + + + + + + + 10 !2_+ + + + + + + + + + + + 0 ~ o ~

~

L

5

o

2.5 12.5 22.532542.5 52.562.5 825 112.5 162.5 212.5 262.5

Fig. 2.5 Scheme of meosuring points for depth -overoged velocity

(40)

(cm) ~

t2

I

te

I-=-

I

t,

ï

I

10 ~ ~ \

I

I

I

I

/

I

I

I

I"fl

I

i

a

/0

I

I

/

I

I

/

• I

f

/..

/6

1//

/

5

I-

I

I

/

/

.

I

,"

/

i .

/

+

/

01'

-.-t,7s

__~_t3475

/

/

/

/

/

'I

-e-

t217s

--+--

t6575

/

/

/ •~ ~ +/ ___,._t

327s

--e--

t

7675

/ /' // -)(- t437s --9--

te

775 ../ ,../

--S~

i=

.

---

.--- ia i I I I I I 5 10 15 20 25 30 35 40 U ( crn/s

(41)

\

!I

I

\

1

\

1

,

I1

1 ~

,

.-

,\ \

\ I \ \

\ \

1\

\

_._t,

75 - ...-

t5

475 '\.~\ \ -&-

t2

175

--+-

-

t 6

57s

I ~

...,_

t3

27s - ...- t7

67s

\

\\

.. -It

-tt-t4

375

-+- te

175 \ 1 '\ 1 \\

1\ \,

Ie ,.

4-'.

- / \ I I ___»> J I

.

/'

-M'

\

'...

\"

\'\. ...

-

e_

-

'

~

-_

.

'+ ~

~

'\.

-

:-... I-

-=="t!!!l

I I I I I I I

-15

-10

-5

0

5

u (cm/s

)

(42)

o

t,

,

t9 ,

ï

I

I-

10

I

I ~

I'

I'

1

~

~

t,

7s -~-

ts

415

-e-

t2

175 -(3 -

tg

ffl5 ---.ar- t3 275 ~- tz, 375 5 10 uf crn zs )

(43)

5

--.-t,

75 - ...

-t

5 47s

~t217s

--+--t

6

57s

..._t

J27s -

-t

767s

~t4

37s -

-t

g

87s

5

10 - V(ern/s)

o

(44)

I I I I I I I I I • I II I I I I I j I I I I 1 I I I I I I I I 1 I • r r r r i v r r t : 1 I 1111\1\\\\1 \ I 111\\\\\1\1 IJ 111\\\\\\\\ \

I

.11\'''',\\\\\

II

... \ ....,'\\\\

\ I

...

,\\\\

I1

VI

---

Eo 1 j

//1111

J /

1

!

111l/1

11

I \\\\\\\\

\

J ...

_----

..

VI

---

E

~ ;~

11 11

.

N ..0 1 0\

(45)

j

1111111

ij

J

/1\\\\1

I,

11

\1\\\111

1

,J\\\\\ \ \

"I

\\\",Jdll

~

,\"._i1

I

"'

.,\\,,~I

,,\,,_.J

.

.

.

,,...

,

~.. '" _ r"__ tf

...

In '<,

~ =j

1111

~ 0

(46)

~ \

\\\\\\

\

\

\ ,_//\11111

~

,,,,,,,1\\\

\

1

E

'11""

I

I

• .. , " , , ., J • ft .. .. ... i

·

. .

.. ..

....

"

·

. .

. ..

~

..

Vl

~ =j

11 11

... 0

, ".\1\11

\

1

r

CT\ N

..

"

...

1\\111

E

,

1 _. \\\\\\

\ \

\ \ /11111

11

• 1 , • , • • L

1

, , , '\ \ '\ .. \ 1 • •••••• 1

I

, .. "",,_JJ

.. "

..

"

...

,

· . , .. .. .. .. ·

1

·

....

..

(47)

-<,

-

-:

-

../

-

../

-

-

.---

--._ ._

---Fig. 2.9-g

.:»:

-

<, t

=

75 s

,

/' _.. /'

-

--

-

-

.>

--.

\ I __.. /'

--

-

-

-

__.. ~

-C 10 20 1 / ~ /'"."--

-

_. /' ./ I _j cm/s

,

/ /' / ...

-

--

-

,

~ ~ -... \

-,

,

I / //,/"

»:

-

...

-

/"

/ / I / /' ./'

,..

.> "." ./' ./'

,

/

..

..

.

<, .>

-:

/' I r r

,

I

..

~

-

--

--

./ /' \

-

---

-

~

---

-

-

-

.---Fig. 2.9-h Depth -averaged velocity Distri bution.

(48)

11

-c: "ii

'"

...

11

a

-o

(49)

-~I~

c: 0ii\ \D

....

11 C ..J

0. 0. o :::.! o

-11

05

..J E

i

J:; 111

-

c:

i

~ o ..J LL.

(50)

35 45 .115 r-

....

~ --25--~

---

--- r--- __r---- __

1---

r-- ___

....

'

~---

r---

--

2~-

---11.0 r

---

---

...

15

_

...

105 r

---- --- 1---

1"--- ____

...

...

~---

~---

---

65

---10.0 r 5

1---

75

---- ---

f---- __

---

----

r---

---"f;Ö(s)

y(cm) 72.5 62.5 52.5 425 37.5 27.5 17.5 10.0 SECTION C

x =

22.5 (cm) h l'

2

'

3' 5 6

8

9

10 (cm) 35 11.5

-

----

-

45

-

----25

-

--

-

-

---~

1'-:.:::-55

---

---

1---

r---

~---

--- ----

r

----11.0

-

15 10.5 r-

----

---

---

~---

1'---

~---

---

---

65 ---10.0

-

5

75

---

---

---

---

""'-_

___---1-____

-t;-O(~)

---

_-y

(cm) 72.5 62.5 52.5 42.5 37.5 27.5 115 10.0 SECTION H

x

=

82.5 (cm)

Fig 2.12 Water lever ~n two cross sections at different time

o

z

(51)

Ul

-

El o 00 o o ~ Ul -e ~ o p.. Ul al I-< I-< o U al ~ Ul .. 00 ("I) ..c: 00 ;:l o I-< ..c:~ Ul

·

.

i

r

i i i

i

i

i

i

i

i i

i

i i

i

i i i i

i

i

i

i i

r

i

i i i

i

Î

i i

i

i i

i i

i i

i i

r

i

i

Î Î

i

r

i

i

i

i

i

r

i

i i

i

i i

i

i

i

i

i

Î Î

i i i i i i

i

i

i

Î

i i i

i

i

i i

i

i

i

i

i i i

i

i i i

i

i

i i

r

i

i i

i

r

r r

i

i

Î

i

i

r

r

i

i

r

i

r

i i

Î

i

r

i

r

i

i

Î

r

i

i

i

r r

r

i i i

Î

i

i

i

r

i

Î

i

i

I

i

i

T

i

i

r

i i

i

i

i

i i

i

Î .

r r

Î

i i

i i

i

i

i

r

i i

i

i

i i i

Î

i i

i

i

i

i i i

i i

Î

i i i i i

i

i i

i

i

i i

i

i i

i i i i i i i i

i

i

i

i i i

i

i

i

i

i

i

i i i

i

i i

i

i i i

i i i i i i i i

i

i i i

i i

i

i i i i i i i i

i

i i

i i i

i

i i

i

i

i i Î i

Î

Î

Î Î

i

i

i

i

i i i i i i i

Î

Î Î Î

i

i

Î

i i i i

i

i i

i

Î Î

Î Î Î

i

Î

i i

i i

i

i

i

i Î Î Î Î

i

i i

i i

i

i

r

Î

i

Î Î Î

i

Î

i i

i

Î

i

Î

i

i i

Î

i i

Î

Î

Î

i i i

i

Î

i

i i i i i

i

ii

i

Î Î

i

i

i

i

i

Î

i

i

i

i

i

i i

Î

1

1

î

Î Î

i \\\

\\\

i i

i

1 1

t iÎ

i

i \\\\\

i i i

Î

r

t , \ \ \ \ \ \ \ \ \ \

ii

1

.,,

\\\\\\\\\\'1

.

~

~,~

\\

\~~~

~ J

,

~

'

~\~~

\

~

\

~

L.\

J~(k'\\r\

~t~,~rI

~'.<

-

:

'

ti

~

'::!,t,~~~JIf"'\

, .

·

.

·

.

· ..

,

.

·

.

I , • , ••••••••• , •• I ••• , , ••• , ••• t , , t t •• , •• t , • , t • t • , t • t • t t t ••••• t • t t t t t t t • t t t ft. t • t , t t t t t t t t , t t t t t t t t t t t t t t t t t t • t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t , t t t t t t t t t t t t t t t t t t t t .. t • t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t tttttttttttttttt tttttttttttttttt tttttttttttttttt tttttttttttttttt LI'\ •••• ", ••••••• tt ••• "" ••••••• tt •••••••••• t.tttt ~ ....•• ._'\'\\"'tt

.

.

..

.

..

._\Îiitt

t

Î iÎ Î Î

t

t Î Î Î

t t t t

Î Î Î t

t t t

ÎÎÎÎîÎÎ ÎÎÎÎÎÎÎ Î Î t Î Î Î Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎ Î i :'Î iÎ Î 'I ttttttt~ Ul ..0 I ..;t ("I)

t

(52)

~

t

ft

H

t t ;

I/~' ~ \ >"%j

.

..-t-'. JIV'~''\. , ()Q

!H

H

HHi~~::

~

j

Vol

.

~

v-::'

: \

J

j/

",~\\

I n

lJl' '

1

1

f

~

lm

mm

:

:i

:;ti

\\

~

'

Îr

~ ::l

~\\,.,r

-w

~p" , I

n-1 ~ .

t

i

11

V,

.

~

r

~

~

IIIIII

IH~:::l

tvVI

\\\",1

[/l

~H\W=~:

s.

ElI'

'.~

ti

t

r

m~~

\

\~~~:

~~~

~'..

~~~\~S:~:

(1\\\\\\\\1\

1 1 \ \ \ \ \ \ \ ~

t

~~~~

\

\\

"

i~

t t ~

~

~~~~

1

1

1 1

t

t t t til

1

1

1

il~~

\\\\\

\~

'

111

111

1 i 1 1 1

1

1

I

ll\

\\\\\

\\~

1 1 111

1 1 1

1

1 1 1 1 1

1

iil

\\\\\

\~t

1 1 111

1 1 1 1

1

1 1 1 1

1

r ~

1

\ ~\ ~~

t

t

t

1

1 1 1 1 1 1

1

1 1 1 1 1 1

1

I~

t

t ~ ~1 1

1

1

t

1 1 1 1 1 1

1

1 1 1 1 1 1 1

1

!

1 1 1

1 1

1

1

1

I

I

J

1 1 1 1 1

1

1 1 1

1

1 1 1 1 1

1 1

1 1 1 1 1 1 1

1

1

1 1

1

1 1 1 1

1 1 1

1 1 1 1 1

111

1

1 1

1 1

11

1

1

1

1 1 1 1 1 1

1

1

1 1

1 1

!

1

1

1 1 1 1

1

1 1

1 1 1 1 1

!

1

1

1

111

1

1

111

1

11

1 1

1

11

111

1 1

1

1 1

1 1

!

1

1

1 1 1

!

1 1

11

1

1

!

1 1 1

1

1

111

1

1 1 1 1

1 1 1 1 1

1

1

1

!

1 1 1 1 1 1

1

1

!

1

!

1

11

1

1

1

1

1

1 1 111

1

11

1

1 1 1 1 1

1 1

11

1

1 1

!

1

1

1

1

1

1 1 1

1

1

1 1 1 1

1

1

1

1 1 1

1

1

1

1

1

!

1

!!

1 1

1 1 1

1

1

1

1 1 1 1 1 1

111

!

1 111

1 1

1 1

1 1 1

1

!

1

11

1

11

1

!

1

1 1 1 1 1 1 1

1

!!

1 1 1 1

1

1 1 1

1 1

1

!

11

111

1 1 1 1 1 1 1 1

1

1

1 1 1 1

!

1

1 1

1 1

1 1

!!

1

1

1

!

1

1 1 1 111

1 1

!

1

1

1 1 1

1 1 1 1

!

111

1

1 1 1

1

!

1 1

1

!

1

1

1 1

1

1

111

1

1 1

1

!!!

1 1 1 1

!

1 1

1

1

1

11

1

1

1

1 1 1 1 1 1

1 1

1 1 111

111

1

1

1 1

11

1

l

1 1 1

1

1 11

1

1

1

1 1

1 1 1

1 1 111

1 1 1 1 1 1

1

111

l

1

1

1

1

1 1 1

1 1

1 1 1 111

1 1 1

1

1

1

1 1 1

1 1

1 1

1 1

I

11111

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

1,

1

,

JI 1

1

1 1111111

1

1

11111

1 1 1 1 1 1 1 1

1111111111111111111

1 1

1

1

1

Cytaty

Powiązane dokumenty

Poszukiwanie polskich rycerzy na różnych frontach i w różnych krajach w w ie­ kach średnich ma na celu nie tylko odgrzebywanie jeszcze jednej

Nietrudno tedy wyciągnąć wniosek, że i Hugo z Folieto, i Petrarka, i Lelewel byliby wskazali jako oczywistego laureata Lednickiego Orła Piastowskiego Pro- fesora

У наведеному тексті кілька разів вжито іменник верба (Додряпались по вербі; Повертаю до верби! / А верба й пропала), що імпліцитно репрезентує смисл

Haseł odno­ szących się do kobiet i feminizmu jest bardzo dużo, osobne ha­ sła poświęcone mężczyznom dadzą się wyliczyć, tworzą je Men’s.. studies/Masculinity studies,

grecki. Zamówił go założyciel aleksandryjskiego muzeum Demetriusz z Faleronu, były namiestnik Aten i uczeń Arystotelesa. Prowadzone przez niego muzeum nie miało wiele wspólnego

formami sakralnymi, Kasprowicz rozprawiał się z dręczącymi go pytaniami etycznymi, relacją człowieka z Bogiem i Boga z człowiekiem, problemami winy, grzechu, kary i

14 Jak wyżej pokazano, liberalizm niemiecki odbiegł w swym rozwoju znacznie od pierwotnych koncepcji liberalnych, jednak nigdy, mimo polityki kulturkampfu nasta­ wionej