• Nie Znaleziono Wyników

1. Let X = {a, b, c, d, e, f}.Determinewhether(or)noteachofthefollowingcollectionofsubsetsofXisatopologyonXτ 1 = {X, ∅, {a}, {a, f }, {b, f }, {a, b, f }}N otethat{a, f } T{b, f } = {f } / ∈ τ 1 .Hence,τ 1 isnotatopology.τ 2 =

N/A
N/A
Protected

Academic year: 2021

Share "1. Let X = {a, b, c, d, e, f}.Determinewhether(or)noteachofthefollowingcollectionofsubsetsofXisatopologyonXτ 1 = {X, ∅, {a}, {a, f }, {b, f }, {a, b, f }}N otethat{a, f } T{b, f } = {f } / ∈ τ 1 .Hence,τ 1 isnotatopology.τ 2 ="

Copied!
3
0
0

Pełen tekst

(1)

1. Let X = {a, b, c, d, e, f}.Determinewhether(or)noteachofthefollowingcollectionofsubsetsofXisatopologyonXτ 1 = {X, ∅, {a}, {a, f }, {b, f }, {a, b, f }}N otethat{a, f } T{b, f } = {f } / ∈ τ 1 .Hence,τ 1 isnotatopology.τ 2 =

{X, ∅, {a, b, f }, {a, b, d}, {a, b, d, f }}Again, notethat{a, b, f } T{a, b, d} =

{a, b} / ∈ τ 2 .Hence,τ 2 isnotatopology.τ 3 = {X, ∅, {f }, {e, f }, {a, f }}N otethat{e, f } S{a, f } =

{a, e, f } / ∈ τ 3 }.Hence,τ 3 isnotatopology.LetX = {a, b, c, d, e, f }.W hichof thef ollowingcollectionsof subsetsof XisatopologyonX?(J ustif yyouranswers)τ 1 = {X, ∅, {c}, {b, d, e}, {b, c, d, e}, {b}}N otatopologysince{c} S{b} = {b, c} / ∈

τ 1 τ 2 = {X, ∅, {a}, {b, d, e}, {a, b, d}, {a, b, d, e}} Not a topology since

{b, d, e} S{a, b, d} = {b, d} / ∈ τ 2 τ 3 = {X, ∅, {b}, {a, b, c}, {d, e, f }, {b, d, e, f }}ItisatopologysinceItcontainsXand∅.Anyunionof setsinτ 3 isinτ 3 Anyintersectionof setsinτ 3 isinτ 3 2.

2. Let X = {a, b, c, d, e, f}andτisthediscretetopologyonX.W hichofthefollowingstatementsaretrue?

X ∈ τ T rue {X} ∈ τ F alse {∅} ∈ τ F alse

∅ ∈ τ T rue

∅ ∈ XF alse {∅} ∈ XF alse {a} ∈ τ T rue a ∈ τ F alse

∅ ⊆ XT rue {a} ∈ XF alse {∅} ⊆ XF alse a ∈ XT rue X ⊆ τ F alse {a} ⊆ τ F alse {X} ⊆ τ T rue a ⊆ τ F alse

Let(X, τ )beanytopologicalspace.V erif ythattheintersectionof anyf initenumberof membersof τ isamemberof τ . LetP n bethestatementthat”If {A i } n i=1 ∈ τ T n

i=1 A i ∈ τ ”.LetS = {n ∈ N :

P n isatruestatement}.F romthedef initionof atopology, wehave1 ∈ N.Assumethatk ∈ Si.e.P k isatruestatementi.e.whenever{A i } k i=1 ∈ τ T k

i=1 A i ∈ τ .Consider{A i } k+1 i=1 ∈ τ . T k+1 i=1 A i = 

T k i=1 A i 

T A k+1 .Byassumption, wehaveB =  T k

i=1 A i 

∈ τ .N owf romthedef initionof atopology, wegetB T A k+1 ∈ τ sinceB, A k+1 ∈ τ .Hence, weget T k+1

i=1 A i ∈ τ whenever{A i } k+1 i=1 ∈ τ .Hence,P k+1 isatruestatement.Hence,k+

1 ∈ S.Sobyprincipleof mathematicalinductionwehave1 ∈ S, andk + 1 ∈

Swheneverk ∈ S.Hence,S = N.Hence, theintersectionof anyf initenumberof membersof τ isamemberof τ . 3.

3. Let Rbethesetofallrealnumbers.P rovethateachofthefollowingcollectionsofsubsetsofRisatopology 4. τ 1 consistsof R, ∅andeveryinterval(−n, n), f oranypositiveinteger

Clearly,R, ∅ ∈ τ 1 F irstnotethatτ 1 isacountablesetandhenceallweareinterestedinisinf inite(or)countablyinf initeunions.LetA k = (−k, k).N otethatA k 'saremonotoneincreasingsequenceofsets.Hence, anyfiniteunionoftheformS m l=1 A k

l

=

1

(2)

A p wherep = max(k 1 , k 2 , . . . , k m ).AndA p ∈ τ 1 andhenceanyf initeunionagainbelongstoτ 1 .Anyinf initeunion S ∞

l=1 A k

l

wherek l ∈ Ncanberewritteneitherasaf initeunionof thef orm S m

l=1 A k

l

(or)aninf initeunion S ∞

l=1 A k

l

wherek i 6=

k j .T heclaimnowisthatanyinf initeunionwherek i 6= k j isRi.e. S ∞

l=1 A k

l

= Rwherek i 6= k j .T oprovethis, weprovethetwowayinclusion.N otethatA k

l

∈ R.Hence, S ∞

l=1 A k

l

⊆ R.F urthergivenanyx ∈ R, byarchimedianproperty∃n ∈ Nsuchthatx ∈ A n .F urthersinceitisaninf initeunion,∃k l suchthatx ∈

A n ⊆ A k

l

.Hence, S ∞

l=1 A k

l

⊇ R.F urther,A n

S R = R ∈ τ 1 andA n S ∅ =

A n ∈ τ 1 .Hence, anyunionisalsoinτ 1 .N owweneedtoprovethelastclaimthatintersectionof anytwoelementsof τ 1 givesanelementinτ 1 .ConsiderA m , A n ∈ τ 1 .Bywell−orderingprinciple, wegetmn (or) m = n(or)mn.Ifm =

n, thenA m T A n = A n ∈ τ 1 .If mn, thenA m T A n = A m ∈ τ 1 .If mn, thenA m T A n = A n ∈ τ 1 .F urther,A n T

R = A n ∈ τ 1 andA n T ∅ = ∅ ∈ τ 1 .Hence, intersectionof anytwoelementsof τ 1 givesanelementinτ 12 consistsof R, ∅andeveryinterval[−n, n], f oranypositiveintegerClearly,R, ∅ ∈ τ 2

F irstnotethatτ 2 isacountablesetandhenceallweareinterestedinisinf inite(or)countablyinf initeunions.LetA k = [−k, k].N otethatA k 'saremonotoneincreasingsequenceofsets.Hence, anyfiniteunionoftheformS m l=1 A k

l

= A p wherep = max(k 1 , k 2 , . . . , k m ).AndA p ∈ τ 2 andhenceanyf initeunionagainbelongstoτ 2 .Anyinf initeunion S ∞

l=1 A k

l

wherek l ∈ Ncanberewritteneitherasaf initeunionof thef orm S m

l=1 A k

l

(or)aninf initeunion S ∞

l=1 A k

l

wherek i 6=

k j .T heclaimnowisthatanyinf initeunionwherek i 6= k j isRi.e. S ∞

l=1 A k

l

= Rwherek i 6= k j .T oprovethis, weprovethetwowayinclusion.N otethatA k

l

∈ R.Hence, S ∞

l=1 A k

l

⊆ R.F urthergivenanyx ∈ R, byarchimedianproperty∃n ∈ Nsuchthatx ∈ A n .F urthersinceitisaninf initeunion,∃k l suchthatx ∈

A n ⊆ A k

l

.Hence, S ∞

l=1 A k

l

⊇ R.F urther,A n

S R = R ∈ τ 2 andA n S ∅ =

A n ∈ τ 2 .Hence, anyunionisalsoinτ 2 .N owweneedtoprovethelastclaimthatintersectionof anytwoelementsof τ 2 givesanelementinτ 2 .ConsiderA m , A n ∈ τ 2 .Bywell−orderingprinciple, wegetmn(or)m = n(or)mn.If m =

n, thenA m T A n = A n ∈ τ 2 .If mn, thenA m T A n = A m ∈ τ 2 .If mn, thenA m T A n = A n ∈ τ 2 .F urther,A n T

R = A n ∈ τ 2 andA n T ∅ = ∅ ∈ τ 2 .Hence, intersectionof anytwoelementsof τ 2 givesanelementinτ 2 . 5.

5. τ 3 consistsof R, ∅andeveryinterval[n, ∞), f oranypositiveintegerClearly,R, ∅ ∈

τ 3 F irstnotethatτ 3 isacountablesetandhenceallweareinterestedinisinf inite(or)countablyinf initeunions.LetA k = [k, ∞).N otethatA k 'saremonotonedecreasingsequenceofsets.Hence, anyfiniteunionoftheformS m l=1 A k

l

=

A p wherep = min(k 1 , k 2 , . . . , k m ).AndA p ∈ τ 3 andhenceanyf initeunionagainbelongstoτ 3 .Anyinf initeunion S ∞

l=1 A k

l

wherek l ∈ NequalsA p wherep = min(k 1 , k 2 , . . .).F urther,A n S

R = R ∈ τ 3 andA n S ∅ =

A n ∈ τ 3 .Hence, anyunionisalsoinτ 3 .N owweneedtoprovethelastclaimthatintersectionof anytwoelementsof τ 3 givesanelementinτ 3 .ConsiderA m , A n ∈ τ 3 .Bywell−orderingprinciple, wegetmn(or)m = n(or)mn.If m = n, thenA m T A n =

A n ∈ τ 3 .If mn, thenA m T A n = A n ∈ τ 3 .If mn, thenA m T A n = A m ∈ τ 3 .F urther,A n T

R = A n ∈ τ 3 andA n T ∅ = ∅ ∈ τ 3 .Hence, intersectionof anytwoelementsof τ 3 givesanelementinτ 3 . Let Nbethesetofallpositiveintegers.P rovethateachofthefollowingcollectionsofsubsetsofNisatopology.

1. τ 1 consistsof N, ∅andeverysetof thef orm{1, 2, . . . , n}f oranypositiveintegern.T hisiscalledtheinitialsegmenttopology.Argumentsimilartotheabovequestionτ 2 consistsof N, ∅andeverysetof thef orm{n, n+

1, . . .}f oranypositiveintegern.T hisiscalledthef inalsegmenttopology.Argumentsimilartotheabovequestion

2

(3)

2. Let XbeaninfinitesetandτbeatopologyonX.IfeveryinfinitesubsetofXisinτ, provethatτisthediscretetopology.

T heideaistoprovethateverysingletonsetisinthetopology.Byapropositionprovedearlier, itf ollowsthatτ isthediscretetopology.T oprovethis, f irstobservethatgivenaninf initeset,X, wecanchooseaninf initesetAsuchthatX\Aisalsoinf inite.F orinstance, if thegivensetXiscountablyinf inite, thenwecansetabijectionf romNtothesetXi.e.wecanwritethesetXas{x k :

k ∈ N}.LetA = {x k : k ∈ Z + odd }.Clearly, bothAandX\Aarecountablyinf initesubsetsof X.If thegivensetXisuncountablyinf inite, thenbyaxiomof choice, itispossibletochooseacountablyinf initesubset, sayAof X.Hence,X\Aisalsoaninf initeset, inf actitisuncountablyinf inite.(Iwasinitiallyunsureif thiscouldbedone.Butthankstomath.stackexchange, ArturoM agidintoldmethatthiswaspossiblewiththe ¨ Axiomof choice”.)N owwehaveAandX\Atobeinf initesets.F oranyx ∈ X, considerA∪{x}andX\A∪{x}.T hesetwoareinf initesetsandhenceboththesetsareinthetopologyτ andhencetheintersectionof thetwosetsmustalsobeinthetopologyτ .T heintersectionof theabovetwosetsisnothingbut{x}.T hisistruef oreveryset{x}.Hence, everysingletonsetbelongstothetopologyandhencethetopologyisdiscrete.

Let Rbethesetofallrealnumbers.P reciselythreeofthefollowingcollectionsofsubsetsofRaretopologies?IdentifytheseandjustifyyouranswerτconsistsofR, ∅andeveryinterval(a, b), foraandbanyrealnumberswithabNotatopologysinceforinstance(1, 2), (3, 4) ∈ τ but(1, 2) S(3, 4) / ∈ τ τ consistsof R, ∅andeveryinterval(−r, r) for r ∈ RIsatopologybyargumentsimilartoquestion6τ consistsofR, ∅andeveryinterval(−r, r)forr ∈

Q + N otatopologysinceif wetakerationals{x n } n=1 suchthatx n+1 = 2x 2x

2n

n

+1 withx 1 =

1

2 andletA n = (−x n , x n )andconsider S ∞

k=1 A k .N otethat{x k } k=1 isanincreasingsequenceboundedaboveandconvergesto 1 2 .T hismeansthatthesetsA k aremonotoneincreasingsequenceof sets, andA k ∈ τ . S k=1 A k = 

1

2 , 1

2



∈ τ τ consistsof R, ∅andeveryinterval[−r, r]forr ∈ /

Q + N otatopologysinceif weconsider{x n } n=1 wherex n = 1− n 1 .LetA n = [−x n , x n ].Clearly,A k ∈ τ andA k f ormamonotoneincreasingsequenceof sets. S ∞

k=1 A k = (−1, 1) / ∈ τ

τ consistsof R, ∅andeveryinterval(−r, r)f orr ∈ R + \QNotatopologysinceifweconsider{x n } n=1 wherex n = 1 −

√ 2

2n .Clearly,x n ∈ R + \Q, ∀n ∈ N.LetA n = (−x n , x n ).Clearly,A k ∈ τ andA k f ormamonotoneincreasingsequenceof sets. S ∞

k=1 A k = (−1, 1) / ∈ τ τ consistsof R, ∅andeveryinterval[−r, r]forr ∈ R + \QNotatopologysinceifweconsider{x n } n=1 where x n = √

2− n 1 .Clearly,x n

R + \Q,∀n ∈ N.LetA n = [−x n , x n ].Clearly,A k ∈ τ andA k f ormamonotoneincreasingsequenceof sets. S ∞

k=1 A k =

− √ 2, √

2 / ∈ τ τ consistsof R, ∅andeveryinterval[−r, r) for r ∈ R + N otatopologysinceif weconsider{x n } n=1 wherex n = 1− n 1 .Clearly,x n ∈ R + , ∀n ∈ N.LetA n = [−x n , x n ).Clearly,A k ∈ τ andA k f ormamonotoneincreasingsequenceof sets. S ∞

k=1 A k = (−1, 1) / ∈ τ τ consistsof R, ∅andeveryinterval(−r, r]forr ∈ R + N otatopologysinceif weconsider{x n } n=1 wherex n =

1− n 1 .Clearly,x n ∈ R + ,∀n ∈ N.LetA n = (−x n , x n ].Clearly,A k ∈ τ andA k f ormamonotoneincreasingsequenceof sets. S ∞

k=1 A k = (−1, 1) / ∈ τ τ consistsof R, ∅andeveryinterval[−r, r]andeveryinterval(−r, r)forr ∈

R + IsatopologyClearly,X, ∅ ∈ τ LetA (0) r = (−r, r)andA (1) r = [−r, r].ConsiderA =

 S

x∈Γ

0

A (0) x

 S  S

y∈Γ

1

A (1) y



.T henA = A (0) x f orsomex ∈ R + (or)A = A (1) y f orsomey ∈ R + (or)A = R.Intersectionof anytwosetsisclosedinτ τ consistsof R, ∅, every

interval [−n, n], and every interval (−r, r), forn ∈ Z + andr ∈ R + Isatopology.Againcheckthedef initions.

3

Cytaty