• Nie Znaleziono Wyników

Time-domain analysis for predicting ship motions

N/A
N/A
Protected

Academic year: 2021

Share "Time-domain analysis for predicting ship motions"

Copied!
16
0
0

Pełen tekst

(1)

T I M E - D O M A I N A N A L Y S I S FOR P R E D I C T I N G SHIP MOTIONS

Robert F. BECK a n d Allan R. M A G E E

Department of Naval Architecture and Marine Engineering, T h e University of Michigan, A n n Arbor, Michigan

The use of time-domain analysis f o r predicting ship motions is investigated. In the m e t h o d , the h y d r o d y n a m i c problem is solved directly in the time d o m a i n as a n initial value problem starting f r o m rest rather t h a n the m o r e conventional f r e q u e n c y - d o m a i n a p p r o a c h . For linearized problems t h e t i m e - d o m a i n a n d f r e q u e n c y - d o m a m results are Fourier t r a n s f o r m s of o n e a n o t h e r a n d are t h e r e f o r e c o m p l e m e n t a r y . For fully n o n l m e a r simulations the time-domain approach is prefen-ed.

In t h i s p a p e r both linear a n d b o d y - n o n l i n e a r problems will be d i s c u s s e d . T h e b o d y - n o n l i n e a r p r o b l e m r e q u i r e s t h e body b o u n d a r y condition to b e satisfied on t h e i n s t a n t a n e o u s position of t h e b o d y w h i l e maintaining the linearized free surface b o u n d a r y condition. In the linear p r o b l e m , both t h e free surface a n d body boundary conditions are linearized. T h e body boundary condition is linearized about the m e a n position of t h e body. Because the free surface condition is linearized about t h e calm w a t e r level, a time-domain G r e e n function approach is used to solve both p r o b l e m s .

Results of linear t i m e - d o m a i n c a l c u l a t i o n s are presented f o r t h e W i g l e y hull f o r m a n d c o m p a r e d w i t h experiments. Body-nonlinear computations are shown for a s u b m e r g e d ellipsoid. In both cases, t h e influence on t h e time-domain results of the singularity in t h e frequency domain at T = 1/4 is d i s c u s s e d .

1. I N T R O D U C T I O N

T i m e - d o m a i n a n a l y s i s h a s p r o v e n t o b e a useful and e n l i g h t e n i n g t o o l t o a n a l y z e s h i p m o t i o n s . In the m e t h o d , t h e h y d r o d y n a m i c p r o b l e m is s o l v e d directly in t h e t i m e d o m a i n a s a n i n i t i a l - v a l u e Drcblem. Its simplicity a n d applicability t o a w i d e ^/ariety of p r o b l e m s a r e m a j o r a d v a n t a g e s . T h e Domputational a l g o r i t h m s r e m a i n s u b s t a n t i a l l y t h e same r e g a r d l e s s of t h e a m p l i t u d e , d i r e c t i o n or t i m e l i s t o r y of t h e m o t i o n . T h e m a j o r d i s a d v a n t a g e is :hat t h e solution must be t i m e - s t e p p e d w i t h m e m o r y n t h e s y s t e m . T h i s c a n l e a d t o n u m e r i c a l n s t a b i l i t i e s f o r a f u l l y n o n l i n e a r a p p r o a c h , a n d ' e q u i r e s t h e e v a l u a t i o n of c o n v o l u t i o n i n t e g r a l s in :he G r e e n f u n c t i o n a p p r o a c h . T h e c o n v e n t i o n a l a p p r o a c h t o s o l v i n g s e a k e e p i n g p r o b l e m s is t o d e v e l o p a f r e q u e n c y -d o m a i n s o l u t i o n . F o r l i n e a r i z e -d p r o b l e m s a t : o n s t a n t o r zero fonward s p e e d t h e t i m e - d o m a i n a n d r e q u e n c y - d o m a i n s o l u t i o n s a r e F o u r i e r t r a n s f o r m s Df o n e a n o t h e r a n d a r e , t h e r e f o r e , c o m p l e m e n t a r y . Dne m e t h o d o r t h e other m i g h t h a v e a d v a n t a g e s for a particular p r o b l e m .

At t h a present t i m e , fully n o n l i n e a r t i m e - d o m a i n solutions f o r arbitrary t h r e e - d i m e n s i o n a l b o d i e s are j n d e r d e v e l o p m e n t b u t a r e n o t y e t p r a c t i c a l , r h e r e f o r e , a n i n t e r m e d i a t e a p p r o x i m a t i o n , t h e s o -j a l l e d N e u m a n n - K e l v i n a p p r o a c h , h a s b e e n u s e d )y m a n y r e s e a r c h e r s . In t h e N e u m a n n - K e l v i n a p p r o a c h t h e f l u i d is c o n s i d e r e d i n c o m p r e s s i b l e a n d inviscid so that t h e L a p l a c e e q u a t i o n g o v e r n s the flow. T h e body b o u n d a r y condition is applied on the exact b o d y s u r f a c e , but a linearized free surface b o u n d a r y c o n d i t i o n is u s e d . T h e s e a s s u m p t i o n s a l l o w t h e d e v e l o p m e n t of n u m e r i c a l s o l u t i o n t e c h n i q u e s using a G r e e n function a p p r o a c h . T h e s o c a l l e d p a n e l m e t h o d s h a v e b e e n u s e d o n a v a r i e t y of p r o b l e m s . A t z e r o f o r w a r d s p e e d t h e f r e q u e n c y - d o m a i n p a n e l m e t h o d enjoys w i d e s p r e a d popularity in t h e o f f s h o r e industry. T h e c o n f i d e n c e level in t h e results is quite h i g h , (see f o r e x a m p l e K o r s m e y e r et al., 1988). At steady f o r w a r d s p e e d , t h e f r e q u e n c y - d o m a i n p a n e l m e t h o d e n c o u n t e r s d i f f i c u l t i e s b e c a u s e t h e G r e e n f u n c t i o n is c o m p l i c a t e d a n d difficult t o c o m p u t e . N e v e r t h e l e s s ,

results h a v e b e e n o b t a i n e d by several researchers i n c l u d i n g C h a n g ( 1 9 7 7 ) . Inglis a n d Price ( 1 9 8 1 ) , a n d G u e v e l a n d B o u g i s (1982).

T h e u s e of t i m e - d o m a i n methods is not new. T h e s o l u t i o n f o r t h e f u n d a m e n t a l 1 / r s i n g u l a r i t y is credited to Finklestein ( 1 9 5 7 ) . Discussions of direct t i m e - d o m a i n s o l u t i o n s a r e p r e s e n t e d by v a r i o u s a u t h o r s s u c h a s : S t o k e r ( 1 9 5 7 ) , C u m m i n s ( 1 9 6 2 ) . O g i l v i e ( 1 9 6 4 ) , a n d W e h a u s e n ( 1 9 6 7 ) . A s c o m p u t a t i o n a l p o w e r h a s i n c r e a s e d , it h a s b e c o m e p r a c t i c a l t o s t u d y a c t u a l s o l u t i o n s a n d i n v e s t i g a t e t h e c o m p u t a t i o n a l a d v a n t a g e s of t i m e - d o m a i n m e t h o d s . A d a c h i a n d O m a t s u ( 1 9 7 9 ) , Y e u n g ( 1 9 8 2 ) , N e w m a n ( 1 9 8 5 ) , B e c k a n d Liapis ( 1 9 8 7 ) ,

(2)

K o r s m e y e r (1988), Korsmeyer etal. (1988), King et al. (1988), a n d Ferrant (1989) are among those who have successfully obtained results.

For linear problems at zero forward s p e e d , the t i m e - d o m a i n computations are not a s fast as t h e c o n v e n t i o n a l frequency-domain approach because m a n y t i m e steps are n e e d e d (rather t h a n a f e w frequencies) to obtain a n adequate representation of t h e results. H o w e v e r , at f o r w a r d s p e e d t h e f r e q u e n c y - d o m a i n G r e e n function b e c o m e s very difficult t o c o m p u t e a n d the t i m e - d o m a i n method a p p e a r s to be significantly faster. For problems w h e r e the body boundary condition is applied on t h e i n s t a n t a n e o u s exact body surface the time-d o m a i n m e t h o time-d is the only alternative; frequency-d o m a i n solutions are limitefrequency-d to a few simple cases.

In this paper the theoretical development for the t i m e - d o m a i n approach given arbitrary body shape a n d motion will be presented. T h e reduction of the formulation to the case of linear motions at constant f o r w a r d s p e e d will also be outlined. Comparisons with strip theory a n d experiments will be given. The

influence of t h e singularity a r o u n d T = =-7 , 8 4 w h e r e UQ = the body velocity, cog is the encounter f r e q u e n c y a n d g is the acceleration of gravity, will also be discussed.

2. THEORETICAL FORMULATION 2 . 1 . Radiation Forces

The origin of the axis system is fixed on the free surface of an infinitely d e e p , incompressible, ideal fluid, initially at r e s t T h e z-axis is positive upwards a n d the x - y plane corresponds to the calm water l e v e l . T h e direction of m o t i o n of t h e body is generally in the positive x direction. T h e governing e q u a t i o n in t h e fluid f o r t h e velocity perturbation potential is the Laplace equation:

w h e r e V'^<t>ix,y,z,t) = 0 U =

V4>

(1) (2) T h e b o u n d a r y c o n d i t i o n o n t h e free s u r f a c e is linearized to y i e l d : ^ + g ^ = 0 o n z = 0 (3)

T h e body b o u n d a r y c o n d i t i o n is satisfied o n the instantaneous position of the body surface:

dn

n o n S/,(t)- (4)

w h e r e n = i n w a r d unit n o r m a i t o t h e b o d y surface, out of the fluid.

V = instantaneous velocity of a point o n the body surface including a n g u l a r velocity effects.

At infinity the fluid velocities must all go to zero s u c h that:

0 as - > ~ (5) a n d

V ^ - » 0 as r - 4 - 0 0 (6) The initial conditions are that:

0 ^ 0

dt J

as t-*-oo (7)

In the usual manner, a n integral equation t h a t must be solved to determine 0 is found by applying Green's theorem to t h e fluid domain yielding:

'dvUv2G-GV2<&)= [ds[<t>~G^\ (8

J \ 1

i

\ dn dn)

V S

w i t h t h e v o l u m e V b o u n d e d b y S , w h e r e S = Sf,+Sf + S„ a n d Sh= body s u r f a c e , 5 / = free surface, and S«,= surface at infinity.

T h e G r e e n f u n c t i o n f o r t h e t i m e d e p e n d e n t problem is given by \r r J OQ G(P.(2,f,T) = J ^ V ^ s i l l ( V ^ ( f - T ) ) € * ^ ^ - ^ ^ ^ ( « ? ) P = {x{fiy(t\i{t)) Q = (I(T).TI(T).C(T)) r = [ { x - ^ f + ( y - 7 , f - H ( z - C ) ' r ' = [ ( x - 4 f + ( y- 7 7) ^ + ( z + C) r -jll/Z R = \ x - ^ f ^ { y - ^ f \

5 ( 0 = delta function where \5{f)f{t)dt = f{Qi_

1/2

il/2 (9]

H{t)= unit Step function = 0 r < 0

(3)

It is easily shown that t h e G r e e n function has t h e following properties: V^G = ^7iS(P-Q)5{t-x) d^G^ do ^ _ — = r + g - r - = 0 o n z = 0 dr dz G,^ = 0 t-x<0 dt V C -> 0 r - > «

As s h o w n in Magee (1990), substituting the Green function into (8), integrating both sides with respect to X a n d then reducing t h e integrals over the free s u r f a c e u s i n g S t o k e s ' T h e o r e m results in t h e following integral equation for 4>(P,t):

Sh(') ~ h J J ' ^ c { ^ ( Ö . ' f ) ^ G{P,Q,t,x) — Shit) (10) -G{P,Q,t,x) drtQ ^(ö.-r) ~ 1 j'^Q { ^ ( Ö . T ) ^ G{P,Q,t,x) - G ( P . Ö , r , T ) ^ 0 ( Ö . T ) | v ^ ( C , T )

where r ( t ) is the curve d e f i n e d by the instantaneous intersection of t h e m e a n hull position a n d t h e z=0 plane a n d V/^ i s t h e t w o - d i m e n s i o n a l n o r m a l velocity in the z=0 plane of a point on r. It should be n o t e d that in t h e l i n e a r i z e d p r o b l e m t h e line integrals are zero at zero f o r w a r d speed and reduce t o t h o s e given b y King et al. (1988) f o r constant f o r w a r d s p e e d . F o r t h e m a n e u v e r i n g c a s e of unsteady, large amplitude motion in t h e z=0 plane, (10) reduces to t h e equation given by Liapis (1986), A p p e n d i x A . F o r t h e b o d y - n o n l i n e a r p r o b l e m t h e line integrals have n o n z e r o v a l u e s e v e n at zero f o r w a r d s p e e d unless t h e body is wall sided for all points on r for all time.

In m a n y situations a s o u r c e formulation is more convenient because it leads t o easier computations for the tangential velocities o n t h e body surface. In the usual manner of potential theory, it is possible to

derive t h e following integral equation for t h e s o u r c e strength on t h e body s u r f a c e : - o ( P . O 1 2 ^"c/\ dnp\r r ) dnp + T - f ^ ^ 11 ^Q''')T-GiP,Q,t,x) ATC J

.

dnp -<- Shix) (11) I - ^ j d x j diQoiQ.xKiQ.x) r ( r ) VMr)^G{P,Q,t,x) dnp

where V„ is the three-dimensional normal velocity of a point on T(t), a(P,t) is t h e u n k n o w n source s t r e n g t h , a n d the potential on t h e body surface is given by <l>iP,t) = ~ f f dSQoiQj -Shi') - T - f'^^ f f '^Q o{Q,x)G{P,Q,t,x) An J ii ^ — Shi^) (12) \dx ^dtQ a(Ö.T)V„(Ö,T) 47Cg J i ^ r ( r ) Vf^{Q,x)GiP,Q,t,x)

T h e hydrodynamic forces acting o n t h e body due to a prescribed body motion are found by integrating the pressure over the body surface. Neglecting the hydrostatic pressure, t h e u n s t e a d y hydrodynamic pressure is given by Bernoulli's e q u a t i o n :

- = - f — + V - v V - - V ^ p - i - V - V ^ (13)

p Kdt ) 2

T h e g e n e r a l i z e d f o r c e o n t h e b o d y in the y t h direction is then given by:

dSPni (14) Shi') Where nj , r e p r e s e n t i n g t h e g e n e r a l i z e d unit normal, is defined a s («l.'»2'''3) = '' (n4,«5,rt6) = r x n r = ( J , 7 , z )

{x,y,z)= body axis system

a n d y = 1,2,3 corresponds to the directions of t h e xj,z axes, respectively.

(4)

The above formulation is for the body-nonlinear p r o b l e m in. w h i c h the b o d y boundary condition is satisfied on t h e instantaneous position of the body surface. Because of this, the linear system theory normally invoked in seakeeping analysis cannot be u s e d . T h e b o d y - n o n l i n e a r a p p r o a c h is primarily useful for nonlinear simulations.

A linear time-domain analysis may be developed for the c o n s t a n t fon^vard s p e e d case a n d can be c o m p a r e d directly with f r e q u e n c y - d o m a i n analysis. Either impulsive or nonimpulsive input can be u s e d . Liapis a n d Beck (1985) d e v e l o p e d a theory for the i m p u l s i v e radiation p r o b l e m . King etal. (1988) d e v e l o p e d a n o n i m p u l s i v e a p p r o a c h to both t h e r a d i a t i o n a n d e x c i t i n g - f o r c e p r o b l e m s . By a p p r o p r i a t e c h o i c e of t h e n o n i m p u l s i v e i n p u t , numerical errors in the computation can be reduced.

In l i n e a r t i m e - d o m a i n a n a l y s i s it is m o r e convenient to w o r k in a coordinate s y s t e m fixed t o the moving v e s s e l . In this c a s e , the total velocity potential is defined a s :

(15) OJ- {x,y, z,t) = -UQX + OQ{x,y, z) + ^Q{x,y, z,t) + ^{x,y,z,t)

where

-UQX + OO = potential due to steady translation ^0 = incident wave potential

normal given in (14) and , resulting from the steady forward motion, is given by

{mi,m2,mi) = -{n-V)W

(m4,m5,*^) = - ( n - V ) ( r x W )

(.|-W = V{-UQX + ^Q)

W is the fiuid velocity due to t h e s t e a d y fopA/ai motion of the v e s s e l in the ship f i x e d c o o r d i n a f r a m e . T h e linearized free s u r f a c e c o n d i t i o n written a s :

^-UQ4-\ h + 8^<l>k=^ on z = 0 (1< \ot ax J az

The initial conditions for the unsteady potentials an

d<t>k dt 5.0

S as t ^ ' k = l,2 7 (1i

Since the d i s t u r b a n c e s g e n e r a t i n g t h e unsteac p o t e n t i a l s originate in t h e n e i g h b o r h o o d of It origin * ( x , y , z , t ) = S h{^,y,z,t) /fc = 7 is the diffracted w a v e k = l,2,.-,6 are t h e p o t e n t i a l s due t o t h e b o d y m o t i o n s s u r g e , s w a y , h e a v e , roll, pitch a n d y a w , r e s p e c t i v e l y . T o m e e t t h e a p p r o p r i a t e b o d y b o u n d a r y c o n d i t i o n , ^ ^ = 0 o n t h e m e a n b o d y dn

surface SQ , t h e following b o u n d a r y conditions a r e specified for the various potentials:

V<l>k{x,y.z.t)^0 on Seo /k = 1.2,...,7 (2( dn

ih.

dn 0.= Uoni dn (16) ^ L = n,tk^m„^k k = l,2 6

It can be s h o w n that the Green function given by (! also satisfies these conditions if t h e approprial t r a n s f o r m a t i o n is made to t h e m o v i n g coordinai system.

In developing the linear boundary value proble implied by equations (15) t h r o u g h (20), there is £ implicit assumption that the body g e o m e t r y is sue that the s t e a d y disturbance potential 0Q is s m a This is a consequence of the free surface bounda condition that has been linearized a r o u n d the fre s t r e a m velocity UQ- In addition, t h e amplitudes i motion must be small b e c a u s e t h e body b o u n d a c o n d i t i o n has b e e n e x p a n d e d a b o u t t h e mes position of the body surface.

A s with the body-nonlinear p r o b l e m , an integr equation t o determine the u n k n o w n linear potentia is found by applying Green's t h e o r e m a n d using tl" Green function (9). The final result m a y be found King etal. (1988) and is

w h e r e Cjfc(t) is the displacement in the 1^^ mode of m o t i o n , and the overdot represents the derivative with respect to time, njc is the generalized unit

(5)

(21) So ^ t r driQ t f . —00 r - G ( P . e . r - T ) ^ 0 ( ö , T ) -uJ^^[Q,x)j- G{P,Q,t-x) -G{P,Q,t-x)j-ip{Q,x)

where r is the curve defined by the intersection of the m e a n hull position a n d the z = 0 p l a n e .

In t h e l i n e a r c a s e (13) a n d (14) m a y be linearized to y i e l d :

Fjki.') = - P j j + W'- J n , . (22) So

T h e gradient of may be eliminated from (20) by e m p l o y i n g a t h e o r e m d e r i v e d by T u c k (cf. Oqilvie, 1 9 7 7 ) :

^ J dS[mj(pk + nj{W•'V(t>k)] =-jcU (p^njilxn)'.W

SQ r (23)

w h e r e / is the tangent v e c t o r to the wateriine curve r . Substituting (23) into (22) results in

SQ SQ

+pjcU(p,,nj(lxn)-W

(24)

It should be noted that since W is tangential to the ship hull it is almost perpendicular to {Ixn) and the line integral term is of higher order. If W is parallel to the wateriine this is exactly true a n d the line integral is zero. For the results shown in this paper t h e c o n t r i b u t i o n of t h e line i n t e g r a l to t h e h y d r o d y n a m i c forces acting on the body will be neglected.

For the linear problem, the hydrodynamic forces acting on the vessel c a n be related to the more t r a d i t i o n a l f r e q u e n c y - d o m a i n a d d e d m a s s a n d d a m p i n g . T h e radiation force in mode j due to a n imposed motion in mode k may be written in general as (cf. Cummins, 1962):

Pjki') = -fijk^ki') - bjktki^) - CjkCk(t)

'dxKj„it-x)Ux)

(25)

where Kjj^ represents the memory effect due to the free surface a n d the hydrostatic restoring forces have been neglected.

It is shown in King (1987) that bjk is zero, cy^ is a h y d r o d y n a m i c force that is proportional to the body displacement and is given by

cyJt = - P J j < i 5 hcoMj

-pjdl

(pkoonjilxn)

W

(26) So r

where'^j^oo represents the large-time limit of the potential (pf.. (pj^ has a non-zero large-time limit

because - ^ f ^ = mjt w h i c h is nonzero. T h e ' ~* an

integral equation that must be solved to determine ^jtcw is given in King ef al. (1988).

T h e factor represents the infinite frequency a d d e d mass a n d is given by

l^jk=p\\^Wkf'j

So

(27)

where y/^ >s the solution to the integral equation

SQ SQ

For sinusoidal m o t i o n s , the radiation forces are usually g i v e n in tei-ms of t h e a d d e d m a s s a n d damping coefficients. T h e equivalence between the t i m e - d o m a i n force f o r m u l a t i o n a n d the f r e q u e n c y

(6)

domain is f o u n d by substituting ?jfe(f) = e " " into (25) a n d e q u a t i n g it w i t i i t t i e f r e q u e n c y - d o m a i n representation:

icot

= [ca^Ayjt (<u) - icoBjkico)y'"

Equating real and imaginary parts yields o o

Ajki^) = lijk ƒ ^ / t ( O s i n t u r 0

o o

Bji^ico) = dco Kjk{t)co%cot

(28)

(29)

T h e t e r m cji^ is f r e q u e n c y i n d e p e n d e n t . Since it multiplies the motion amplitude, it could be added to the hydrostatic restoring force c o e f f i c i e n t s in . t h e usual frequency-domain equations of motion. In the typical strip theory (cf. Salvesen, T u c k , a n d Faltisen, 1970 ) this term does not appear. W h e n comparing t i m e - d o m a i n p r e d i c t i o n s w i t h s t r i p t h e o r y it, therefore, appears reasonable to retain cyj^with the a d d e d m a s s . In e x p e r i m e n t s , the h y d r o d y n a m i c part of t h e s p r i n g c o n s t a n t t e r m is s o m e t i m e s s u b t r a c t e d off and at other t i m e s it is not. T h u s , w h e n c o m p a r i n g t i m e - d o m a i n p r e d i c t i o n s w i t h experiments one must be careful. T h e influence of this t e r m on the t i m e - d o m a i n p r e d i c t i o n s will be shown in section 4.

2.2. Exciting Forces

Consistent with the radiation force p r o b l e m , the exciting f o r c e s f o r the b o d y n o n l i n e a r N e u m a n n -Kelyin problem are c o m p u t e d assuming the incident w a v e system is linear. T h e boundary condition o n the free surface is still g i v e n by (3) but the normal velocity on t h e body is m o d i f i e d t o i n c l u d e t h e induced velocity of the incident w a v e s y s t e m . A s s h o w n in King etal. (1988) the i n d u c e d velocity o n the body is given by

(30) It i cos /3 sin /? k i where c j = x c o s ^ + ysin;3

Co(0 = arbitrary incident wave amplitude at origin P = wave propagation angle {n = head seas)

The function K m a y be identified as the impulse response function for the velocity field in the fluid resulting from an impulsive wave elevation at the origin. The w a v e s in (30) are long c r e s t e d ; short crested seas could be simulated by adding w a v e s propagating in different directions. T h e required body b o u n d a r y c o n d i t i o n for the b o d y - n o n l i n e a r problem is then given by

dn (31)

The remaining boundary conditions on the velocity potential (5) - (7) are unaltered. T h e r e f o r e , t h e c o m p u t e r c o d e that s o l v e s the radiation p r o b l e m can be easily modified to include the exciting force problem. A simple addition of the s e c o n d t e r m in (31) to the body boundary condition is all that is necessary.

King etal. (1988) give the solution of the exciting force problem in the linear case at both zero a n d non-zero forward s p e e d .

3. N U f ^ E R I C A L lülETHODS

The principal numerical task in the t i m e - d o m a i n m e t h o d is to s o l v e the integral e q u a t i o n for t h e perturbation potential ((10) or (21)) or the s o u r c e strength (11). T h e hydrodynamic forces acting on the body are t h e n f o u n d from the integration ol pressure over the body surface at each time step so t h a t in t h e f u t u r e , w h e n full s i m u l a t i o n s are attempted, these forces will be available to solve the equations of motion. To solve the integral equation a panel method is u s e d in which the instantaneous w e t t e d s u r f a c e of t h e b o d y is d i v i d e d inte quadrilateral panels. O n each panel t h e u n k n o w r potential or source strength is assumed constant. / t i m e m a r c h i n g s c h e m e is u s e d t o s o l v e the governing integral equation in the time d o m a i n . A e a c h t i m e s t e p a n e w v a l u e of t h e u n k n o w n is d e t e r m i n e d on e a c h p a n e l . T h e c o n v o l u t i o r integrals over the time history are evaluated using e simple trapezoidal rule. T h e details of the numerica method may be f o u n d in fvlagee (1990) for the b o d y n o n l i n e a r p r o b l e m o r K i n g (1987) for t h e l i n e a p r o b l e m .

For the linear problem, the calculations of t h e m t e r m s (17) are d o n e using two methods. T h e firs (and most c o m m o n ) is to use simplified m f s in w h i c i they are c o m p u t e d assuming W = - U o I . In this case the simplified mj's are given by:

(7)

m;=(0,0,0,0,C/o"3.-'^0''2) (32) The s e c o n d technique is to calculate the mj's using a finite difference s c h e m e . T h e required t e r m s are d e r i v e d f r o m t h e n o r m a l derivatives of the fluid velocities due to the steady flow on the body surface (cf. Ogilvie, 1977). T h e value of the fluid velocities on the body a n d in the fluid a small distance. A n , away f r o m the body along the normal vector c a n easily be calculated from the known solution to the steady N e u m a n n - K e l v i n problem (cf. Doctors a n d Beck, 1987). O n c e t h e s e velocities are k n o w n , a simple finite difference can be used to determine the r e q u i r e d n o r m a l d e r i v a t i v e s , a n d these c a n be extrapolated to the limit as An->0.

T h e p r o c e d u r e w o r k s quite well for the s e m i -infinite f l u i d p r o b l e m of t h a d o u b l e - b o d y f l o w . However, when the w a v e terms are included in the computations for the gradients of the velocities, the results are highly oscillatory, and do not c o n v e r g e for this finite difference s c h e m e . A s expected, it is the p a n e l s near the free surface that c a u s e the difficulties. T h e r e f o r e , in s e c t i o n 4 results are presented only for simplified and double body mj's.

T h e m a j o r p a r t of t h e c o m p u t e r t i m e is c o n s u m e d e v a l u a t i n g t h e G r e e n f u n c t i o n . In a typical m n of the body-nonlinear program order NP2 X KT2 G r e e n f u n c t i o n e v a l u a t i o n s are r e q u i r e d , w h e r e N P is the n u m b e r of panels and K T is the n u m b e r of t i m e s t e p s . To e v a l u a t e the G r e e n function efficiently, a vectorized technique has been d e v e l o p e d by f ^ a g e e a n d Beck (1989). Integrals involving the 1/r terms are performed using methods similar to Hess a n d Smith (1964). To evaluate the wave terms they are first written in a two-parameter, nondimensional f o r m : o o where (33) P = ix,y.z) X = kr' r ' = [ ( x - | ) 2 + ( y - r , ) 2 + ( z + c f

T h e parameter n relates the vertical to horizontal distance between source a n d field points, and p is time-like a n d relates to the phase of the generated waves. The function is oscillatory for large p and is sharply peaked (though not singular) for fi near 0. A plot of G is given in figure 1 .

A b i c u b i c interpolation t e c h n i q u e has b e e n d e v e l o p e d to compute G quickly using a vector processor. To reduce m e m o r y requirements a n d increase the accuracy of the interpolation, a t w o -step approach is taken. Rrst, (33) is written as

w h e r e

C(/i,)3) = exp G{0,p) + Gi{fi,p)

(34)

is given in Wehausen a n d Laitone (1960) and is the value of the Green function when both the source a n d field points lie on the free surface (i.e., ^ = 0 ) . T h e f u n c t i o n G{0,p) m a y be p r e c o m p u t e d a n d stored for simple one-dimensional interpolation. T h e s e c o n d s t e p is an interpolation of t h e G,(/i,)3) function in / i a n d p space. Figure 1 also s h o w s a plot of Gi{^,p). Note that G,(^,/J) is s m o o t h a n d a small percentage of G{n,p), thus allowing a much c o a r s e r g r i d s p a c i n g for e q u i v a l e n t a c c u r a c y . Gi{^,p) is interpolated using bicubic interpolation o n a nonuniform grid spacing. On a C R A Y Y-I^P the G r e e n function routine runs at approximately 140 M i l l i o n F l o a t i n g Point O p e r a t i o n s p e r S e c o n d ( M F L O P S ) a n d t a k e s a p p r o x i m a t e l y 2 . 7 m i c r o s e c o n d s per call f o r G a n d its derivatives including t h e return to physical space for a vector length of 2 0 0 .

In order to understand the difficulties associated w i t h t i m e - d o m a i n a n a l y s i s , it is i n s t r u c t i v e to examine the form of the potential d u e to an isolated source traveling below the free surface. Figures 2a a n d 2b s h o w the time history of the potential and its t i m e derivative for a field point travelling o n the free surface located a horizontal distance R = 1 behind the source point. The source is travelling at a depth of z = -2 b e l o w the free surface w i t h a Froude number, F„ = U Q / ^ , equal to 0.4. In this case, the

critical w a v e number w h e r e T = 1/4 is kR = .3906. T h e source has unit strength and is created at t = 0; t h e r e a f t e r , its s t r e n g t h r e m a i n s c o n s t a n t . T h e potential has the form of a typical impulse response

(8)

1.5¬ ©

-|\

1.5¬ © -° - % 1 1 i 1 160. T V ( G / R ) 0 . 5 -*< l l l i 150. T V ( G / R )

Figure 2. The potential and Its time derivative

for a unit source. Undamped (a=0.0); Damped (a=0.05).

Figure 3. Greatly expanded view of the large-time tail of (a) the potential and; (b) its time derivative for the source of figure 2.

a=0.0; 0=0.05.

0.0

- 1 , 6

K R

Figure 4. Fourier transform of the time derivative of the potentials of figure 2b.

0=0.0;

0=0.05; Frequency domain Green function by Wu and Eatock Taylor, 19

(9)

function: tiiere is an initial large response followed a decaying oscillation about the large-time limit.

T h e s o l i d lines in f i g u r e s 3 a a n d 3 b a r e e x p a n d e d views of the oscillatory tail at large t i m e . T h e oscillations are at a frequency e q u i v a l e n t to T = 1/4 a n d lead to the singular b e h a v i o r in the frequency domain. Recall that the Fourier transform of a sine wave of frequency COQ in the time domain is a delta function at cog in the frequency d o m a i n . T h u s , the x = 1/4 singularity appears as a decaying sine w a v e at the appropriate frequency in the large-time tail of the large-time-domain results.

Figure 4 shows the real a n d imaginary parts of the F o u r i e r t r a n s f o r m of t h e d e r i v a t i v e of t h e potential (figure 2b). T h e Fourier transform of the time derivative is equivalent to the v a l u e s in the f r e q u e n c y d o m a i n of t h e G r e e n f u n c t i o n f o r a translating, pulsating source. T h e small s q u a r e s in figure 4 are the values of the G r e e n function taken from W u and Eatock Taylor (1987). As can be s e e n , t h e a g r e e m e n t b e t w e e n t h e f r e q u e n c y - d o m a i n computations and the Fourier transform of the t i m e -d o m a i n r e s p o n s e is e x c e l l e n t . T h e s i n g u l a r behavior of the frequency-domain Green function at X = 1/4 is clearly visible.

T o eliminate the a n o m a l o u s behavior in t i m e -d o m a i n simulations -d u e to the T = 1/4 singularity, artificial d a m p i n g c a n be introduced into the large-t i m e large-t a i l of large-the large-t i m e - d o m a i n G r e e n f u n c large-t i o n . In particular, the large t i m e a s y m p o t i c e x p a n s i o n (cf. K i n g , 1 9 8 7 ) that is u s e d in the G r e e n f u n c t i o n subroutines is multiplied by e " " ^ ^ " ^ ^ ) ^ w h e r e a is an arbitrary constant which determines the strength of the d a m p i n g . Typical values of a are in the range 0.0 to 0.1 T h e artificial d a m p i n g has the effect of forcing the large-time tail of the time-domain G r e e n function t o decay exponentially to zero. T h e d a s h e d c u r v e s in f i g u r e s 2 , 3 , a n d 4 are t h e results c o m p u t e d u s i n g t h e d a m p i n g . In f i g u r e 2 t h e d a s h e d curve cannot be s e e n because on the scale of the figure the d a m p e d and u n d a m p e d curves are identical. T h e effects of t h e d a m p i n g are clearly seen, however, in the expanded scale of figure 3. In this figure, the oscillations in the d a m p e d curve are substantially lower than in the u n d a m p e d c a s e a n d they d e c a y much faster.

T h e e f f e c t s of t h e d a m p i n g in the f r e q u e n c y d o m a i n c a n be seen in figure 4 . T h e d a m p e d a n d u n d a m p e d c u r v e s are effectively identica except around x = 1/4. In this region, the damping s m o o t h s out the singularity. A s t h e d a m p i n g coefficient a is r e d u c e d , t h e r e s u l t s b e c o m e m o r e a n d m o r e singular. In section 4 , the effects o f t h e d a m p i n g on motion simulations will be s h o w n .

4. R E S U L T S

A n e x a m p l e of c o m p u t e d results using linear t i m e - d o m a i n analysis is s h o w n in figures 5 a n d 6. T h e s e f i g u r e s s h o w the h e a v e a n d pitch a d d e d

mass and damping as a function of frequency for a modified Wigley mathematical hull form. The Wigley form has a lengthtobeam ratio of 10 a n d a b e a m -to-draft ratio 1.6. T h e half b e a m is g i v e n by t h e e q u a t i o n :

^ = 1 - U l - ( ^ 1 - H 0 . 2 ( — I

\ T ) y \ T ) j\ \ L )^

w h e r e b = the half beam of the model L = model length

T = model draft

For the calculations, 240 panels (30 lengthwise x 8 girthwise) were u s e d on the halfbody. The n o n -dimensional time s t e p , d e f i n e d as At'=At.^j-, w a s 0.088 a n d the total number of time s t e p s was 2 5 6 . Figure 5 presents results for zero forward speed a n d figure 6 is for a Froude number of 0.3. Also s h o w n in the figure are strip theory results c o m p u t e d using a S a l v e s e n , T u c k , Faltinsen (1970) b a s e d s t r i p theory (cf. Beck, 1989). T h e experimental results are d u e to G e r r i t s m a ( 1 9 8 8 ) . No e x p e r i m e n t a l results are available for Fn=0.0.

T h e W i g l e y hull is f o r e - a n d - a f t s y m m e t r i c . C o n s e q u e n t l y , f o r Fn=0.0 (figure 5) t h e c r o s s coupling coefficients are z e r o . A s can be seen in the figure 5, the strip theory a n d time-domain results a g r e e very well for high f r e q u e n c i e s . For low f r e q u e n c i e s , h o w e v e r , t h e r e a r e s i g n i f i c a n t d i f f e r e n c e s . T h i s is p r e s u m a b l y d u e to t h r e e -d i m e n s i o n a l e f f e c t s t h a t are n e g l e c t e -d in s t r i p t h e o r y . Note t h e o s c i l l a t i o n s in t h e d a m p i n g coefficients in the frequency range 6. - 8. which are a result of irregular f r e q u e n c i e s . Inglis and Price (1981) used a box barge with the same dimensions as the ship to estimate the irregular frequencies. By this m e t h o d , the first irregular frequency occurs at 5.7 and the s e c o n d at 7.9. T h e singular nature of the coefficients a r o u n d the irregular frequencies is not properly c a p t u r e d b e c a u s e t h e record length and time step size are insufficient to give adequate resolution to the Fourier t r a n s f o r m . T h i s is both a w e a k n e s s and strength of the t i m e - d o m a i n m e t h o d . As with the x = 1/4 singularity, in the time domain the irregular frequencies a p p e a r as oscillations in t h e large-time tail a n d d o not c a u s e a n y p a r t i c u l a r p r o b l e m s until t h e F o u r i e r t r a n s f o r m is t a k e n . Because of the finite record length a n d t i m e - s t e p size, the irregular frequencies are effectively filtered o u t O n the other h a n d , in the frequency domain t h e results are singular a n d calculations in the region of the irregular frequency are meaningless.

(10)

Figure 6 presents the results at forward s p e e d , it should be noted that the added m a s s coefficients include the Cj^/toS term as presented in (29). This is consistent with strip theory and Gerritsma's (1988) e x p e r i m e n t a l r e s u l t s s i n c e he u s e d o n l y t h e hydrostatic coefficients in reducing t h e m e a s u r e d d a t a t o o b t a i n his a d d e d m a s s a n d d a m p i n g coefficients. T h e solid line was computed using t h e double body mj's a n d the long dash curve results from using the simplified version of the mj's (32). A s c a n be s e e n , f o r this smooth s l e n d e r b o d y t h e different mj's do not change the results very m u c h .

The m o s t prominent feature of figure 6 is t h e singularity at x = 1/4. The strip theory results are not affected by x = 1/4 a n d the experiments w e r e not c o n d u c t e d at such low frequencies. A s previously discussed, t h e x = 1/4 singularity will affect all linear t h r e e - d i m e n s i o n a l theories. It will b e s h o w n in figures 9 - 1 3 that it also affects the body-nonlinear problem a n d random s e a simulations.

In figure 6 the agreement between t h e o r y a n d experiment is m i x e d . For pure h e a v e , t h e s t r i p theory a p p e a r s better while for the cross-couplings a n d for p u r e pitch t h e t h r e e d i m e n s i o n a l t i m e -domain predictions give better agreement. For this s h i p , u s i n g t h e double body mj's is not w o r t h t h e e x t r a e f f o r t . P e r h a p s the c o m p l e t e mj's m i g h t improve the a g r e e m e n t for all modes of motion. It s h o u l d be n o t e d t h a t in t h e b o d y - n o n l i n e a r c o m p u t a t i o n s t h e mj t e r m s a r e a u t o m a t i c a l l y accounted for. T h e agreement between strip theory, linear t i m e - d o m a i n a n a l y s i s , a n d e x p e r i m e n t s shown in figures 5 and 6 is typical cf the results that have b e e n calculated for many different ship t y p e s (see Magee a n d Beck, 1988).

As d i s c u s s e d previously, the c h a r a c t e r of t h e curves s h o w n in figures 5 and 6 around the irregular frequencies a n d at x = 1/4 is the result of the large-time tail in t h e t i m e domain. This is d e m o n s t r a t e d by figure 7 w h i c h s h o w s an e x p a n d e d view of the large-time tail of the pitch moment t i m e - d o m a i n record f o r t h e Wigley hull calculations. At a Froude number of 0.3 the tail is dominated by the x = 1/4 frequency a n d at zero fonA/ard s p e e d the irregular frequencies appear. Note that t l i e zero s p e e d tail has been multiplied by lOOx in order to plot it on t h e s a m e c u r v e as t h e f o r w a r d s p e e d result. T h e apparent beat f r e q u e n c y in the zero s p e e d tail i s ' probably the result of interference between the t w o lowest i r r e g u l a r f r e q u e n c i e s . W e h a v e s e e n no evidence of irregular frequencies in calculations at forward s p e e d . This might be numerical because of the dominance of the x = 1/4 frequency o r it might be the result of f o r w a r d speed effects; at t h i s point w e do not know.

E x a m p l e s of b o d y - n o n l i n e a r c a l c u l a t i o n s a r e s h o w n in figures 8-13. T h e results a r e all f o r a s u b m e r g e d ellipsoid of length-to-diameter ratio of 5. At the p r e s e n t t i m e , the computer c o d e f o r b o d y

(11)

0 . 3

ll 1 1 • ë ; O . « O -= -= M ^ d ^ ^ ^ i r . 1 i 0.0 0 1 1 0 1 1 1 1 1 1 1 9.0 - o . r R 0 . 3

-•

*

1

>

u s -

i

»o 0.0 !2 0-n 0 l l l l l l l CD V ( L / G ) 1 ' " 1 9.0 + 1 1 1 1 - T 1 1 1 1 1 1 1 0.0 © V ( L / G ) 9.0

Figure 6. Added mass and damping for a Wigley hull, Fn=0.3. — double-body mj's; Time domain, approximate mj's; + Experiments, Gerritsma, 1988.

Time domain, — Strip theory;

(12)

Figure 7. Large-time tail of the time-domain

record of the pitch moment for the Wigiey huil.

Fn=0.3; Fn=0.0.

FnsO.O solution has been expanded 100X.

0 . 0 2 0 " > Ü O L

/

A'' - 0 . 0 0 4 " I l l l l

1 1

70. u T V ( G / L )

1 1

70.

Figure 8. Surge and heave force for a

submerged ellipsoid started from rest at two

different depths of submergence.

Time domain, H/L=0.16;

Doctors and Beck, 1987 H/L=0.16;

Time domain, H/L=0.245;

^ Doctors and Beck, H/L=0.245.

48.0

>

O CL < O 4 7 . 4 T - ^ ( G / L )

Figure 9. Greatly expanded view of the

approach to steady state for H/L=0.245.

Time domain;

Doctors and Beck.

(13)

nonlinear calculations in the case of floating bodies is not complete. In order to save computer time, the ellipsoid has b e e n a p p r o x i m a t e d by 36 panels on one-half of the body (12 lengthwise x 3 girthwise). T h i s is the s a m e configuration used by Doctors a n d B e c k (1987) for s o m e of t h e i r steady N e u m a n n -Kelvin calculations. Using more panels will alter t h e absolute value of the forces, but the character of the c u r v e s r e m a i n s t h e s a m e . For n u m e r i c a l investigations of a s u b m e r g e d body, the 36 panel ellipsoid seems sufficient. T h e calculations were all made starting from rest, using a smooth start-up in both forward s p e e d a n d h e a v e motion. T h e time histories of the f o r w a r d s p e e d a n d forced heave motion are given b y :

y ( r ) = [ / o f i - e - ^ ' ^ l (36)

Note that this m o t i o n has z e r o initial velocity a n d acceleration, but contains a jerk at t = 0.0.

F i g u r e 8 s h o w s t h e s u r g e f o r c e ( w a v e resistance) and heave force acting on the ellipsoid as it starts from rest a n d a p p r o a c h e s a c o n s t a n t f o r w a r d s p e e d . The ultimate Froude number is 0.35. T h e t w o depth to length ratios are 0.16 a n d 0.245. T h e straight lines are f r o m t h e steady N e u m a n n -Kelvin code used by Doctors a n d Beck (1987). The s a m e b o d y geometry w a s u s e d for both c o d e s , but t h e t i m e - d o m a i n results w e r e e x t r a p o l a t e d using three values of the time step size. As can be s e e n , t h e t i m e - d o m a i n results quickly approach the steady state v a l u e s . The large-time values for both heave a n d s u r g e a g r e e w i t h t h e s t e a d y N e u m a n n - K e l v i n results to within 0 . 5 % e v e n for the smaller depth of s u b m e r g e n c e . This is a g o o d verification for t w o entirely different c o m p u t e r c o d e s .

If figure 8 is e x a m i n e d very closely, it c a n be s e e n t h a t there are oscillations in the t i m e - d o m a i n r e s u l t s a s they a p p r o a c h s t e a d y state. Figure 9 s h o w s a greatly exaggerated scale of the approach to s t e a d y state for the surge a n d heave forces at the d e e p e r d e p t h . T h e s u r g e force is e x p a n d e d 125x a n d t h e heave force 400x. T h e oscillations are at a f r e q u e n c y e q u i v a l e n t t o T = 1/4 a n d d e c a y approximately a s 1/t. T h e s e results are in complete a g r e e m e n t w i t h W e h a u s e n ( 1 9 6 4 ) in w h i c h he investigated the effects of t h e starting transient of a thin s h i p started from rest. R g u r e 9 shows that even a s m o o t h start-up leads t o s o m e oscillations. T h e m o r e abrupt the start-up, the bigger the oscillations.

T o i n v e s t i g a t e t h e e f f e c t s of x = 1/4 o n s i m u l a t i o n s of sinusoidal m o t i o n s , figure 10 s h o w s t h e h e a v e force on t h e e l l i p s o i d as a function of t i m e . T h e b o d y has f o r w a r d s p e e d ( u l t i m a t e

F n = 0 . 3 5 ) a n d is also heaving sinusoidally at a single f r e q u e n c y c o r r e s p o n d i n g to x = 1/4. T h e amplitude of motion is A/ L = 0.085 a n d the m e a n depth of s u b m e r g e n c e is HQ/L = 0.245. In figure 10a, the total heave force with and without artificial damping a n d t h e contribution to the force from just the (1/r -l/r") ternis is shown. The curves for the total force with a n d without artificial damping are almost coincident. T h e (1/r - 1/r*) terms do not vary from cycle to cycle a n d are responsible for a large part of the force, particulariy on the bottom of the stroke. A s e x p e c t e d , t h e w a v e t e r m s m a k e t h e b i g g e s t contribution near the free surface.

The difference between the total force and the (1/r -l/r") component is shown in figure 10b. As can be s e e n , t h e p e a k s in the force curves are growing slowly for no artificial damping and reach constant amplitude for t h e c a s e with d a m p i n g . A line is drawn through the peaks of the curves to emphasize the growth without artificial damping. Since there is a singularity in t h e frequency domain response at X = 1/4, it is expected that the results without artificial damping will continue to grow and there will be no s t e a d y s t a t e s o l u t i o n . T h e artificial d a m p i n g apparently eliminates this growth. The growth rate for the case without artificial damping is extremely slow. Dagan a n d Ivliloh (1980) show that in three-dimensions the singularity in the frequency domain behaves in the vicinity of x = 1/4 as / /I | Ö J - Ü)C| , w h e r e cOc is the X = 1/4 critical frequency. While we have not yet w o r k e d out t h e asymptotic f o r m for t h e growth, it is probably on the order of in{t).

Figure 11 presents the surge force for the x = .20 case with the s a m e parameters as used for figure 10, e x c e p t that t h e frequency was lowered. No artificial d a m p i n g w a s u s e d in the c o m p u t a t i o n . Several interesting features of this figure should be noted. First, the peaks in the unsteady force do not g r o w as o p p o s e d t o the x = 1/4 case. T h e r e is an initial starting transient and then the peaks exhibit a small oscillatory behavior as they approach steady state. F o r otfier c o m b i n a t i o n s of frequency a n d forward s p e e d t h e oscillatory behavior can be much more p r o n o u n c e d . It is easily calculated that this oscillation is t h e beat frequency b e t w e e n x = 1/4 and X = . 2 0 . T h e starting transient must induce s o m e X » 1/4 response a n d this forms a beat with the X = .20 force. Also s h o w n in the figure is the a p p r o a c h to s t e a d y f o r w a r d s p e e d if t h e r e is no forced h e a v e (a replot of the curve in figure 8 as long d a s h e s at s m a l l times) and the m e a n of the total surge force n e a r the end of the record (small d a s h e s at large t i m e s ) . T h e vertical d i f f e r e n c e between t h e s e t w o lines is the mean a d d e d drag d u e to h e a v e . T h i s is another a d v a n t a g e of t h e body nonlinear time-domain method: the mean shift a n d s l o w l y v a r y i n g f o r c e s are a u t o m a t i c a l l y c o m p u t e d , no special calculations are necessary.

(14)

Ü Q . T V ( G / L )

>

O Q . T V ( G / L )

Figure 10. (a) Heave force on a heaving ellipsoid at Fn=0.35, t=1/4, amplitude A/L=0.085, mean depth Ho/L=0.245.

0=0.0; — 0=0.05; (1/r - 1/r') force.

(b) Expanded view of total force minus (1/r - 1/r') force.

> O

Q .

T V ( G / L )

Figure 12. (a) Surge force on a heaving ellipsoid at Fn=0.35, with a sum of five sine waves In heave, (b) Surge force due to 4 sine

waves In heave. o=0.0;

0=0.05; DIfferenc between these two.

> O Q . - o . o i »•

A A A

T V ( G / L )

Figure 11. Surge force on a heaving ellipsoid at Fn=0.35, x=0.20, A/L=0.085, H o / L = 0 . 2 4 5 ;

Total;

Forward speed only; Mean.

Figure 13. Greatly expanded view of the difference forces from Figure 12.

With T=1/4; Without t=1/4.

(15)

T h e e f f e c t s of x = 1/4 o n m o r e g e n e r a l simulations are s h o w n in figures 12 and 13. T h e ' a n d o m s e a simulations were m a d e using a s u m of l i v e sine w a v e s in h e a v e a s in (37) w i t h f o r w a r d s p e e d . Figure 12a has o n e c o m p o n e n t p l a c e d at C a 1/4 a n d in 12b t h i s c o m p o n e n t h a s b e e n sliminated. E a c h of the simulations were run with a n d without t h e artificial d a m p i n g . T h e d a s h e d line hear the axis is the difference between the two runs. Without t h e x = 1/4 c o m p o n e n t (figure 12b) t h e difference is so small it cannot be seen in the figure. For the x = 1/4 c a s e , t h e difference c o n t i n u e s to g r o w . Initially, t h e d i f f e r e n c e is e x a c t l y z e r o because t h e artificial d a m p i n g affects only the large t i m e a s y m p o t i c f o r m of t h e t i m e - d o m a i n G r e e n function. A greatly expanded view of the differences s s h o w n in figure 13. A s can be s e e n , there are some d i f f e r e n c e s b e t w e e n the artificially d a m p e d a n d u n d a m p e d c a l c u l a t i o n s e v e n f o r t h e c a s e A/ithout t h e x = 1/4 c o m p o n e n t ; h o w e v e r , t h e y remain very s m a l l . W i t h the x = 1/4 c o m p o n e n t Dresent, t h e differences are m u c h larger a n d m o r e mportantly, they continue to g r o w . It appears t h a t a n y long-time simulation which uses the linear free surface b o u n d a r y c o n d i t i o n a n d i n c l u d e s x = 1/4 forcing is d o o m e d to failure because this c o m p o n e n t will eventually dominate the solution. Our p r o p o s e d artificial d a m p i n g f i x - u p is s i m p l e but e f f e c t i v e . Undoubtedly, improved methods can be d e v e l o p e d . 5. C O N C L U S I O N S

T h e primary conclusion from t h e work to d a t e on t i m e - d o m a i n analysis is that it is a viable alternative to t h e traditional f r e q u e n c y - d o m a i n a n a l y s i s . For

i n e a r i z e d p r o b l e m s w i t h f o r w a r d s p e e d , : o m p u t a t i o n s in the time d o m a i n appear to be m u c h a a s i e r t h a n t h e e q u i v a l e n t f r e q u e n c y - d o m a i n Dalculations. T h e W i g l e y m o d e l six d e g r e e s of f r e e d o m c a l c u l a t i o n s f o r l i n e a r r a d i a t i o n a n d sxciting force c o e f f i c i e n t s u s i n g 240 p a n e l s o n a l a l f - b o d y a n d 2 5 6 t i m e s t e p s r e q u i r e d 2 5 C P U •ninutes for Fp = 0.3 on a C R A Y Y-fvlP. For radiation 'orces only, at zero forward s p e e d the required t i m e ivas 9 C P U m i n u t e s . I n c o m p a r i s o n w i t h a x p e r i m e n t s a n d s t r i p t h e o r y , l i n e a r i z e d t i m e -domain analysis g i v e s m i x e d results. At t i m e s t h e t i m e - d o m a i n c a l c u l a t i o n s c o m p a r e b e t t e r w i t h axperiments and at other t i m e s t h e predictions are worse. For the mathematical W i g l e y hull f o r m , t h e j s e of d o u b l e body or simplified m^s does not s e e m to m a k e m u c h of a difference in t h e a d d e d m a s s a n d damping predictions.

T i m e - d o m a i n analysis is easily extended to t h e D O d y - n o n l i n e a r p r o b l e m i n w h i c h t h e b o d y soundary condition is always satisfied on t h e e x a c t n s t a n t a n e o u s w e t t e d s u r f a c e of body. R e s e a r c h nto t h e body-nonlinear problem is continuing at T h e J n i v e r s i t y of Michigan. T o date computations h a v e seen p e r f o r m e d only o n s u b m e r g e d bodies.

Calculations w i t h a s u b m e r g e d ellipsoid have s h o w n e x c e l l e n t a g r e e m e n t w i t h a s t e a d y Neumann-Kelvin c o d e . In addition, the calculations h a v e indicated t h e i m p o r t a n c e of t h e f r e q u e n c y d o m a i n singularity at x = 1/4. Because of the linear f r e e s u r f a c e b o u n d a r y c o n d i t i o n , s i n g u l a r i t i e s a p p e a r in the frequency d o m a i n results at x = 1/4 a n d the results g r o w slowly without bound in time-d o m a i n simulations. A simple fix-up using artificial d a m p i n g on the large-time tail of the time-domain G r e e n f u n c t i o n is p r o p o s e d . In t i m e - d o m a i n s i m u l a t i o n s , the fix-up p r e v e n t e d t h e u n b o u n d e d g r o w t h a n d othenwise d i d not alter the solution significantly. Much more research needs to be done on t h e large-time asymptotics and rates of decay in order to obtain the exact solutions in both the time a n d frequency domains.

A C K N O W L E D G E M E N T S

This research was funded by The Office cf Naval R e s e a r c h , C o n t r a c t N o . N 0 0 0 1 4 - 8 8 - K - 0 6 2 8 . C o m p u t a t i o n s w e r e m a d e in part using a C R A Y G r a n t , U n i v e r s i t y R e s e a r c h a n d D e v e l o p m e n t Program at the San Diego Supercomputer Center. R E F E R E N C E S

(1) Adachi, H. a n d O h m a t s u , S., "On the Influence of I r r e g u l a r F r e q u e n c i e s in t h e I n t e g r a l E q u a t i o n S o l u t i o n s of t h e T i m e - D e p e n d e n t F r e e S u r f a c e P r o b l e m s , " J o u r n a l of Engineering Mathematics. V o l . 16, No. 2, 1979, pp. 97-119.

(2) Beck, R.F.. "Motions in W a v e s , " Section 3 of Principles of N a v a l Architecture. Chapter 8, edited by E. Lewis, Society of Naval Architects and Marine Engineers, Jersey City, N.J., Vol. Ill, 1989.

(3) Beck, R.F. and Liapis, S.J., "Transient Motions of Floating Bodies at Z e r o F o r w a r d S p e e d , " J o u m a l of Ship Research. V o l . 3 1 , No, 3, 1987, pp. 164-176,

(4) C h a n g , M , S . , " C o m p u t a t i o n of T h r e e -D i m e n s i o n a l S h i p M o t i o n s w i t h F o r w a r d S p e e d , " P r o c e e d i n g s of t h e S e c o n d International C o n f e r e n c e on Numerical Ship H y d r o d y n a m i c s , U n i v e r s i t y of C a l i f o r n i a , Beri<eley, CA, 1977. pp. 124-135.

(5) C u m m i n s . W . E . . " T h e I m p u l s e R e s p o n s e Function a n d Ship M o t i o n s . " S c h i f f s t e c h n i k . Vol. 9, 1962, pp. 101-109.

(6) D a g a n , G , and Milch, T., "Flow Past Oscillating Bodies at Resonant Frequency," P r o c e e d i n g s 13th S y m p o s i u m on N a v a l H y d r o d y n a m i c s , Tokyo. J a p a n . October, 1980, pp. 355-373. (7) D o c t o r s , L.J. a n d Beck, R.F,, " C o n v e r g e n c e

Properties of the Neumann-Kelvin Problem for a S u b m e r g e d B o d y , " J o u r n a l of S h i p R e s e a r c h . V o l u m e 3 1 , N u m b e r 4 , 1987, pp. 2 2 7 - 2 3 4 .

(16)

(8) Ferrant, P., "Radiation d'Ondes de Gravite par Ies M o u v e m e n t s de G r a n d e Annplitude d'Un Corps Immerge," P h . D . Thesis, Université d e Nantes, 1989.

(9) Finklestein, A., "The Initial Value Problem for Transient W a t e r W a v e s , " C o m m u n i c a t i o n s on Pure a n d A p p l i e d Mathematics. No. 10, 1957, pp. 5 1 1 - 5 2 2 .

(10) G e r r i t s m a , J . , " M o t i o n s , W a v e L o a d s a n d Added Resistance in Waves of T w o Wigley Hull Forms," Report N o . 804, Technical University of Delft, Netherlands, November, 1988.

(11) G u e v e l a n d B o u g i s , " S h i p M o t i o n s w i t h Fonward S p e e d in Infinite Depth," International Shipbuilding P r o g r e s s . No. 2 9 , 1982, pp. 103¬ 117.

(12) Hess, J . L., and Smith, A . M . O . , "Calculation of Nonlifting Potential Flow About Arbitrary Three-D i m e n s i o n a l B o d i e s , " J o u r n a l of S h i o Research. Vol. 8, No. 2 , 1 9 6 4 , pp. 22-44.

(13) Inglis, R.B., a n d P r i c e , W . G . , "A T h r e e -D i m e n s i o n a l S h i p M o t i o n T h e o r y — C o m p a r i s o n B e t w e e n T h e o r e t i c a l Prediction and E x p e r i m e n t a l D a t a of the H y d r o d y n a m i c C o e f f i c i e n t s w i t h F o r w a r d S p e e d , " T r a n s a c t i o n s of the Royal Institution of Naval Architects, V o l . 124, 1 9 8 1 , pp. 141-157.

(14) Inglis, R.B., a n d P r i c e , W . G . . " I r r e g u l a r F r e q u e n c i e s in T h r e e D i m e n s i o n a l S o u r c e D i s t r i b u t i o n T e c h n i q u e s , " I n t e r n a t i o n a l Shipbuilding P r o g r e s s . Vol. 28, No. 319, 1 9 8 1 , pp. 57-62.

(15) King, B.K., B e c k , R.F., a n d M a g e e , A . R . , "Seakeeping Calculations with Forward Speed Using T i m e - D o m a i n Analysis," Proceedings of the E i g h t e e n t h S y m p o s i u m o n N a v a l Hydrodynamics, Delft, Netherlands, 1988.

(16) King, B.K., " T i m e - D o m a i n A n a l y s i s of W a v e Exciting Forces on Ships a n d Bodies," Report No. 3 0 6 , Department of Naval Architecture a n d M a r i n e E n g i n e e r i n g , T h e U n i v e r s i t y of Michigan, 1987.

(17) Korsmeyer, F.T., "The First a n d S e c o n d Order T r a n s i e n t F r e e - S u r f a c e W a v e R a d i a t i o n Problems," Ph.D. T h e s i s , Department of O c e a n E n g i n e e r i n g , M a s s a c h u s e t t s I n s t i t u t e of Technology, January, 1988. (18) Korsmeyer, F.T., Lee, C.-H., N e w m a n , J.N., a n d S c l a v o u n o s , P . D . , " T h e A n a l y s i s of W a v e E f f e c t s o n T e n s i o n L e g P l a t f o r m s , " P r o c e e d i n g s of the International Conference on Offshore Mechanics and Arctic Engineering, '88, H o u s t o n , 1988.

(19) Liapis, S . J . , " T i m e - D o m a i n A n a l y s i s of Ship Motions," Report No. 3 0 2 , Department of Naval A r c h i t e c t u r e a n d M a r i n e E n g i n e e r i n g , University of Michigan, April, 1986.

(20) Liapis, S . J . , a n d B e c k , R.F., " S e a k e e p i n g C o m p u t a t i o n s Using T i m e - D o m a i n A n a l y s i s , " P r o c e e d i n g s of t h e F o u r t h I n t e r n a t i o n a l S y m p o s i u m o n N u m e r i c a l H y d r o d y n a m i c s National A c a d e m y of S c i e n c e s , W a s h i n g t o n D . C , 1985, pp. 34-54. (21) M a g e e , A . R . , " N o n l i n e a r T i m e - D o m a i n Shif Motions," Ph.D Thesis, University of Michigan Department of Naval Architecture and Marine Engineering, 1990.

(22) M a g e e , A . R . , a n d B e c k , R.F.,"Vectorizec C o m p u t a t i o n of t h e T i m e - D o m a i n G r e e r Function," T h e Fourth International Workshop on Water W a v e s and Floating Bodies, Oystese Norway, 1989, pp. 139-144.

(23) M a g e e , A . R . a n d Beck, R.F., "Compendium o Ship Motion Calculations Using Linear T i m e Domain Analysis," The University of Michigan Department of Naval Architecture and Marine Engineering, Report Number 310, 1988. (24) N e w m a n , J . N . , "Transient Axisymmetric Motior

of a F l o a t i n g C y l i n d e r , " J o u r n a l of Fluic Mechanics. V o l . 157, 1985, pp. 17-33.

(25) Ogilvie, T . F . , "Singular-Perturbation Problems in Ship Hydrodynamics," A d v a n c e s in Appliec Mechanics. V o l . 17, 1977, pp. 91-188.

(26) O g i l v i e , T . F . , " R e c e n t P r o g r e s s T o w a r d th( U n d e r s t a n d i n g a n d P r e d i c t i o n of S h i | Motions," P r o c e e d i n g s of t h e Fifth Symposiun o n N a v a l H y d r o d y n a m i c s , O f f i c e of Nava Research, Washington D C , 1964, pp. 3-128. (27) S a l v e s e n , N., T u c k , E.O., a n d Faltinsen, O.

"Ship Motions a n d S e a Loads," T r a n s a c t i o n ! of t h e Society of Naval Architects & Marinf Engineers, V o l . 7 8 , 1 9 7 0 , pp. 250-287.

(28) W e h a u s e n , J . V . , " E f f e c t of t h e I n i t i a A c c e l e r a t i o n U p o n t h e W a v e Resistance o Ship Models," J o u r n a l of Ship Research. Vol 7, No. 3, January, 1964, pp. 38-50.

(29) W e h a u s e n , J.V., "Initial Value Problem for th( Motion in a n U n d u l a t i n g S e a of a Body w i l l F i x e d E q u i l i b r i u m P o s i t i o n , " J o u r n a l o Engineering M a t h e m a t i c s . VoL 1 , 1967, pp. 1 19.

(30) W e h a u s e n , J.V. a n d Laitone, E.V., "Surfaci W a v e s . " in H a n d b u c h der Phvsik. edited by S F l u g g e , S p r i n g e r - V e r l a g . N e w Y o r k . V o l . 9 1960, pp. 4 4 6 - 7 7 8 .

(31) W u , G.X. a n d Eatock T a y l o r , R., "A Green'! F u n c t i o n F o r m f o r S h i p Motions at F o r w a n S p e e d , " International S h i p b u i l d i n g Progress VoL 3 4 , N u m b e r 3 9 8 . 1 9 8 7 , pp. 189-196. (32) Y e u n g . R.W., "The Transient Heaving Motion o

F l o a t i n g C y l i n d e r s , " J o u r n a l of Enaineerinc

Cytaty

Powiązane dokumenty

P rzy ją łe m dla określenia tego obrazu robocze określenie «trzecia

Odwiedziliśmy: Blists Hill Victorian Town, które jak nazwa wskazuje, opo- wiada o czasach, kiedy panowała w Wielkiej Brytanii królowa Wiktoria; Coalbrookdale Museum of Iron,

Społeczno-kulturowa wartość wykorzystania gier i zabaw w edukacji, integracji międzypokoleniowej i międzykulturowej według. koncepcji Edmunda Bojanowskiego (Socio-cultural value

Celem powo- łania ICCEES było zbudowanie międzynarodowej wspólnoty badaczy zajmujących się sprawami ZSRS i krajów Europy Środkowo-Wschodniej m.in.. w celu przeka-

It is formed through dehydra- tion of an Fe·peroxo complex (step f in Scheme 3), which itself has been generated by a sequence of single-electron transfer steps and oxygen

Autorka zamieściła w niej wyniki przeprowadzonych przez siebie badań oraz wnioski wypływające z pozyskanych danych na temat stosowa- nia nagród i kar w

К исполнению Верховным Судом УССР также относились следующие функциональные обязанности, которые ранее были прерогативой отдела

od inwalida się różnił; blizna na policzku i brak lew ego ram ienia dały mu prawo liczenia się do rzędu wysłużonych synów ojczyzny... Czynu tego dokonał