• Nie Znaleziono Wyników

Modele topologiczne danych przstrzennych

N/A
N/A
Protected

Academic year: 2021

Share "Modele topologiczne danych przstrzennych"

Copied!
11
0
0

Pełen tekst

(1)

MODELE TOPOLOGICZNE DANYCH

PRZESTRZENNYCH

TOPOLOGY MODELS OF SPATIAL DATA

El¿bieta Lewandowicz

Katedra Geodezji Szczegó³owej, Uniwersytet Warmiñsko-Mazurski w Olsztynie

S³owa kluczowe: grafy jako modele topologiczne, modele analityczne SIP Keywords: graph topology models, GIS analytical model

Wprowadzenie, cel pracy

W naukach matematycznych topologiê przedstawia siê wykorzystuj¹c teoriê grafów, która jest dzia³em topologii algebraicznej zwi¹zanej z relacjami w zbiorach, systemami algebraicz-nymi i strukturami. W systemach informacji przestrzennej (SIP) topologie zapisuje siê w odpowiednich strukturach, sk³adaj¹cych siê z powi¹zanych tabel. Sposób ich zapisu zosta³ szczegó³owo okreœlony w normach (PKN, 2002; ISO, 19107) oraz w pracach (Bielecka, 2006; Eckes, 2006; GaŸdzicki, 1990; Molenaar, 1998; Sullivan, Unwin, 2003; Urbañski, 1997). Ten tabelaryczny zapis mo¿na przekszta³ciæ w matematyczn¹ formê grafu. W efekcie topologiê przestrzeni geograficznej oddajemy w postaci grafu geometrycznego, którego ele-menty: wêz³y, krawêdzie i obszary opisuj¹ punkty, linie i powierzchnie. Model ten ujêty w formie macierzy zawiera relacje (topologie) miêdzy punktami, liniami i powierzchniami (Le-wandowicz, 2004, 2005, 2006; Le(Le-wandowicz, Ba³andynowicz, 2005).

W niniejszym artykule, pos³uguj¹c siê prostym przyk³adem, zaprezentujê ró¿ne modele topologiczne danych przestrzennych, zbudowane w oparciu o jedne dane geometryczne. Wykorzystuj¹c teoriê grafów (Wilson, 2000; Kulikowski, 1986; Cormen i in., 2007), przed-stawiane modele poka¿ê w formie graficznej i macierzowej. Ró¿norodnoœæ modeli wskazuje na liczne sposoby interpretacji przestrzeni geograficznej, która znajduje zastosowanie w za-daniach analitycznych.

Jedn¹ z wielu funkcji analitycznych jest poszukiwanie najkrótszej drogi miêdzy dwoma punktami w sieci, np. drogowej (Kulikowski, 1986). Takie analizy powszechnie wykonuje siê w oparciu o topologiê sieciow¹ (ESRI, 2003; Autodesk, 2000; Bentley, 2000; Systherm Info, 2006). Czasami istnieje potrzeba opisania drogi (mo¿liwoœci przejœcia) miêdzy obiekta-mi niebêd¹cyobiekta-mi elementaobiekta-mi uk³adu sieciowego, np. obiekta-miêdzy obiektaobiekta-mi powierzchniowyobiekta-mi lub punktowymi, które nie s¹ zwi¹zane z sieci¹ drogow¹, do których nie dochodzi ¿adna droga. Zak³adam, ¿e jest to mo¿liwe. Tego zadania podjê³am siê i takie modele analityczne przedstawiam w tej publikacji.

(2)

Zapis danych przestrzennych za pomoc¹ grafów

W pracy K. Eckesa (2006) przedstawiono wycinek mapy (rys. 1a) i zapis jej treœci w for-mie modeli topologicznych: modelu elementarnego (rys. 1b) i ³añcuchowego (rys. 1c). Omó-wiona struktura zapisu danych jest dobrym wprowadzeniem do treœci mojego opracowania. Prezentowany przyk³ad w formie fragmentu mapy (rys. 1a) wykorzystam do budowania modeli topologicznych, opisuj¹cych relacje miêdzy obiektami geograficznymi.

Przedstawione dane graficzne (rys.1a, b, c) zapisa³am w formie uproszczonego grafu (rys. 1d). Zapisy grafowe 1c i d s¹ topologicznie to¿same, obrazuj¹ relacje miêdzy elementa-mi geometrycznyelementa-mi (Chrobak, 2000; Engelking, Sieklucki, 1986). Przyjelementa-mijmy, ¿e model 1d) stanowi podstawê do budowania narzêdzi analitycznych SIP. Za³o¿y³am, ¿e mam zadanie, które wi¹¿e siê z poszukiwaniem najkrótszej drogi od si³owni wiatrowej do jeziora. Poszuki-wanie najkrótszej drogi w sieciowej strukturze jest typowym zadaniem analitycznym, po-wszechnie stosowanym w dostêpnych narzêdziach SIP. Poszukiwanie drogi miêdzy obiekta-mi niezwi¹zanyobiekta-mi ze struktur¹ sieciow¹ jest ju¿ bardziej skomplikowanym zadaniem. Po-wszechnie w takich przypadkach stosuje siê analizy na danych rastrowych (ESRI, 2003; Cichociñski, 2006). W oparciu o dane wektorowe mo¿na rozwi¹zaæ to zadanie. Wymaga to zbudowania modelu analitycznego, który wi¹za³by obiekty punktowe, liniowe i powierzch-niowe w jedn¹ sieæ. W tym celu muszê wykorzystaæ wyjœciowe dane i wykonaæ konwersje ich do nowych form.

Rys. 1. Zapisy przestrzeni geograficznej: a – w formie graficznej na mapie, b – za pomoc¹ modelu topologicznego elementarnego, c – za pomoc¹ modelu topologicznego ³añcuchowego, d – za pomoc¹

uproszczonej formy modelu topologicznego (na podstawie: Eckes, 2006)

a b

c

(3)

Zapiszmy model 1d) (rys. 1d) w formie grafu geometrycznego, etykietowanego, G (rys. 2) z zadanymi identyfikatorami wêz³ów, krawêdzi i obszarów. W przedstawionym grafie G wêz³y opisuj¹ trójstyki granic, punkty za³amania drogi i si³ownie wiatrowe. Krawêdzie G odpowiadaj¹ granicom u¿ytków i osiom dróg, a piêæ obszarów opisuje kolejno las, jezioro i trzy obszary rolne.

Przedstawione dane (rys. 2) mo¿na zapisaæ w formach macierzowych (tab. 1): macierzy s¹siedztwa wêz³ów SW, macierzy s¹siedztwa wêz³ów z krawêdziami SW-K (w literaturze okreœlanej jako macierz incydencji I) i macierzy oczek-obszarów SO-K przypisuj¹cej ka¿de-mu obszarowi graniczne krawêdzie. S¹ to podstawowe macierze opisuj¹ce graf geometrycz-ny G. One odpowiadaj¹ dageometrycz-nym zawartym w tabelaryczgeometrycz-nych zapisach topologii w przyjêtych strukturach narzêdziowych (Bielecka, 2006; Eckes, 2006; GaŸdzicki, 1990; Molenaar, 1998; Sullivan, Unwin, 2003; Urbañski, 1997).

Tabela 1. Podstawowe macierze opisuj¹ce graf geometryczny G: macierz s¹siedztwa SW przedstawia relacje miêdzy wêz³ami grafu G; macierz SW-K przedstawia relacje miêdzy wêz³ami i krawêdziami grafu G;

macierz SO-K przedstawia relacje miêdzy obszarami i krawêdziami grafu G

Rys. 2. Zapis topologii danych przestrzennych w postaci grafu etykietowanego G

(4)

Macierze SW, SW-K, SO-K opisuj¹ wybrane relacje miêdzy wêz³ami, krawêdziami i obsza-rami grafu. Macierz S informuje, które wêz³y s¹ po³¹czone krawêdzi¹. Jeœli element macie-rzy (sW)ij przyjmuje wartoœæ 1, to znaczy, ¿e wêz³y opisane identyfikatorami i, j s¹ po³¹czone krawêdzi¹. Macierz SW-K przypisuje wêz³om krawêdzie, czyli element macierzy (sW-K)ij przyj-muje wartoœæ 1, jeœli wêze³ i stanowi wierzcho³ek krawêdzi j. Kolejna macierz SO-K przypisu-je obszarom krawêdzie ograniczaj¹ce przypisu-je. Element macierzy (sO-K)ij przyjmuje wartoœæ 1, jeœli krawêdŸ j stanowi granicê obszaru i.

Zauwa¿my, ¿e graf G (rys. 2) jest niespójny, wêz³y identyfikowane numerami 9 i 10 nie s¹ powi¹zane z ¿adn¹ krawêdzi¹. Nazywa siê je wêz³ami swobodnymi. Widaæ to tak¿e w zapisach macierzowych w SW, SW-K, wiersze macierzy identyfikowane wêz³ami o nume-rach 9 i 10 zawieraj¹ same zera.

Kowersja wyjœciowych danych do nowych form

Przedstawiony graf G (rys. 2) oraz jego zapisy macierzowe SW, SW-K, SO-K wykorzy-stam do tworzenia nowych struktur zapisu topologii danych przestrzennych (Lewandowicz, 2007).

Zauwa¿my, ¿e w oparciu o macierz SW-K mo¿na okreœliæ graf s¹siedztwa krawêdzi GK (rys. 3) opisany macierz¹ SK. Mo¿na go uzyskaæ przez przemno¿enie macierzy SW-K i wyze-rowanie wartoœci diagonalnych uzyskanego iloczynu:

SK= ((SW-K)T S

W-K )-Diag((SW-K)T SW-K),

gdzie Diag((SW-K)TS

W-K)jest macierz¹ diagonaln¹ o wyrazach równych 2. Elementy

macie-rzy SK przyjmuj¹ wartoœci 1 lub 0: (sK)ij równy 1 okreœla, ¿e krawêdzie grafu G identyfiko-wane przez i, j bezpoœrednio s¹siaduj¹, maj¹ wspólny wêze³ domykaj¹cy te krawêdzie.

Macierz SO-K zawiera dane, które pozwalaj¹ na wygenerowanie informacji o s¹siedztwie obszarów. Zapiszmy j¹ w macierzy SO i przedstawmy graficznie za pomoc¹ GO:

:

SO= SO-K ( SO-K )T-Diag(S

O-K ( SO-K )T),

gdzie Diag(SO-K(SO-K )T) jest macierz¹ diagonalna o wartoœciach (s

O)ii równych liczbie

kra-wêdzi opisuj¹cych obszar i. Na rysunku 4 przedstawiono graf GO w zapisie graficznym i macierzowym.

(5)

Graf GO zawiera krawêdzie, które mo¿na identyfikowaæ z liniami granicznymi rozdziela-j¹cymi dwa obszary. Przyrównuj¹c dane SO z SO-K, mo¿na okreœliæ identyfikatory krawêdzi grafu GO:

(I)-(II)=(Las)-(Jez) = 8, (II)-(III)+ (Jez)-(Rol-1) = 9, (I)-III)=(Las)-(Rol-1) = 7, (III)-(V)= (Rol-1)-(Rol-3) = 11, (III)-(IV)=(Rol-1)-(Rol-2)= 10, (IV)-(V)= (Rol-2)-(Rol-3) = 12.

Taka interpretacja upowa¿nia do przedstawienia grafów G, G(rys. 5) jako pochod-nych form GO .

Rys. 4. Graf s¹siedztwa obszarów GO przedstawiony graficznie i w formie macierzy SO

Rys. 5. Przedstawienie graficzne s¹siedztwa obszarów z liniami granicznymi rozgraniczaj¹cymi te obszary za pomoc¹ modeli Gi G opisanych macierzami So oraz S0-K . Model Go zawiera obszary i linie rozgraniczaj¹ce dwa obszary. Model Go” zawiera dodatkowo granice zewnêtrzne kompleksu obszarów

W oparciu o modele G, GK, GO opisa³am w macierzach s¹siedztwo wêz³ów SW, krawêdzi SK, obszarów SO oraz s¹siedztwo wêz³ów z krawêdziami SW-K, obszarów z krawêdzi SO-K. Brakuje opisu s¹siedztwa obszarów z wêz³ami, czyli przypisanie ka¿demu obszarowi wê-z³ów stanowi¹cych punkty graniczne. Uzyskamy te dane poprzez dzia³anie na wyjœciowych macierzach SO-K , SW-K, otrzymuj¹c SO-W:

SO-W = (SO-K (S W-K )T) / 2.

Otrzyman¹ macierz SO-W przedstawiono na rysunku 6.

G

O

S

O

=

¢

(6)

Macierze wyjœciowe (bazowe) SW, SW-K, SO-K oraz pochodne SK, SO, SO-W mo¿na uzupe³niæ transpozami macierzy:

(SW-K)T ® (S K-W), (SO-K)T ® (S K-O), (SO-W)T ® (S W-O).

Jest to uzasadnione tym, ¿e relacje s¹ zwrotne (W-K)-(K-W). Przyjmijmy, ¿e jeœli

(W-K)=(K-W) to mo¿emy je zapisaæ jako (W«K). Wszystkie przedstawione wy¿ej

macie-rze zawieraj¹ podstawowe dane topologiczne danych pmacie-rzestmacie-rzennych. Okreœlono je na pod-stawie uporz¹dkowanego rysunku mapy (rys. 1).

Model topologiczny S danych przestrzennych

Proponujê macierze bazowe i pochodne, okreœlone wy¿ej, zapisaæ w jednym modelu w formie macierzy blokowej S (rys. 7).

Rys. 6. Macierz SO-W przypisuj¹ca obszarom

wêz³y rozgraniczaj¹ce » » » ¼ º « « « ¬ ª ˜ ˜ ˜ ˜ ˜ ˜ 2 . 2 : 2 2 . . : . 2 : . : : 6 6 6 6 6 6 6 6 6 6

Macierz S jest macierz¹ symetryczn¹ o wymiarach (n ´ n), gdzie n jest sum¹ liczby wêz³ów, krawêdzi i obszarów; w naszym przyk³adzie n=10+12+5=27. W modelu S wiersze i kolumny s¹ etykietowane identyfikatorami wêz³ów, krawêdzi i obszarów grafu G. Model topologiczny danych przestrzennych, opisany macierz¹ S mo¿na przedstawiæ graficznie w postaci grafu GS; GS=f(G). Wêz³y grafu GS obrazuj¹ wêz³y, krawêdzie lub obszary grafu

wyjœciowego G. Nie poka¿ê GS w formie graficznej, gdy¿ rysunek by³by ma³o czytelny,

zawiera³by 27 wêz³ów i 168 krawêdzi. Przedstawiê tylko przyk³adowe podgrafy grafu GS,

gdzie (X jest kombinacj¹ mo¿liwych indeksów {W, K, O, (W-K), (K-W), (W-O), (O-W), (K-O),

(O-K)}, lub{ }), np. i  

opisane odpowiednimi wybranymi blokami macierzy S (rys. 8).

6 ; * 6 6 ; * *  6 6 2 . . * *  l      . 2 : . : 2 . 2 : l l l * 6:l2  :l.  .l2 *6

»

»

»

¼

º

«

«

«

¬

ª

˜ ˜ l 



6



6

6









6

. 2 2 . N 2 . . 

»

»

»

¼

º

«

«

«

¬

ª

˜ ˜ ˜ ˜ ˜ ˜ l  l  l



6

6

6



6

6

6



6

2 . : 2 2 . : . 2 : . : 2 . . : 2 :



(7)

Rys. 7. Macierz blokowa S jako model topologiczny danych przestrzennych zobrazowanych na rysunkach 1, 2

Rys. 8. Wybrane relacje s¹siedztwa miêdzy obiektami punktowymi, liniowymi i powierzchniowymi danych przestrzennych: a – graf opisuj¹cy s¹siedztwo krawêdzi i krawêdzi z obszarami, b – graf opisuj¹cy s¹siedztwa wêz³ów z obszarami, wêz³ów z krawêdziami

i krawêdzi z obszarami 6 2 . . : 2 : * l  l  l 6 2 . . *  l

(8)

Przedstawione modele, ³¹cz¹ w sieci obiekty punktowe, liniowe i powierzchniowe danych przestrzennych. W oparciu o te struktury sieciowe (rys. 8 b) mo¿na okreœliæ drogê (w grafie) miêdzy np. jeziorem (II) a skrzy¿owaniem dróg (8), ale jest za ma³o danych, aby wskazaæ drogê miêdzy si³owni¹ wiatrow¹ a jeziorem.

Wêz³y opisuj¹ce si³ownie wiatrowe – jak zauwa¿ono powy¿ej – s¹ elementami niespójny-mi w grafie G. Tak¿e w modelu S nie s¹ powi¹zane z ¿adnyniespójny-mi innyniespójny-mi obiektaniespójny-mi. Chc¹c je wprowadziæ do przedstawianych modeli, musimy mieæ dodatkowe dane wygenerowane z danych przestrzennych (geometrycznych, rys. 1a).

Wi¹zanie niespójnych danych (si³owni wiatrowych)

z modelami bazowymi

Si³ownie wiatrowe w grafie G s¹ opisane za pomoc¹ wêz³ów swobodnych. Chc¹c je uwzglêdniæ w przedstawianych modelach, nale¿y je zwi¹zaæ mostami z elementami spój-nymi grafu G (wêz³ami, krawêdziami lub obszarami). Mo¿na to zrobiæ na ró¿ne sposoby:

G ® Gx – w, : G x – w = f(G), x ={W, K, O}. Przyjmijmy, ¿e nasze mosty bêd¹ wi¹zaæ wêz³y

swobodne z:

m najbli¿szym wêz³em sk³adowej spójnej grafu G, m najbli¿sz¹ krawêdzi¹ sk³adowej spójnej grafu G,

m obszarem (oczkiem grafu), wewn¹trz którego s¹ po³o¿one.

Takie dane mo¿na otrzymaæ, wykonuj¹c dzia³ania na danych geometrycznych. W tym celu w SIP wykorzystuje siê typowe algorytmy: poszukiwania najbli¿szego punktu, krawêdzi i przeciêcia (zawierania punktu na powierzchni). W oparciu o wyniki tych dzia³añ mo¿emy zmodyfikowaæ wy¿ej przedstawione modele do nowych postaci:

zobrazowanych na rysunku 9. 6 2 . . *  l * 6:l2  :l.  .l2  P Z : * *o  *. o*.PZ*2o*2PZ

Rys. 9. Trzy sposoby wi¹zania wêz³ów swobodnych z elementami spójnego grafu: a – z najbli¿szymi wêz³ami , b – z najbli¿szymi krawêdziami , c – z obszarami,

na których s¹ po³o¿one P Z : * *o  P Z 2 2 * * o  P Z . . * * o 

(9)

Przedstawione modele zawieraj¹ relacje topologiczne miêdzy si³owniami wiatrowymi i innymi s¹siednimi obiektami oznaczonymi na mapie. Jedno z rozwi¹zañ wprowadzê do mo-deli z rysunku 8.

Przyjê³am, ¿e wêz³y swobodne najlepiej powi¹zaæ z obszarami. Modyfikuj¹c modele (rys. 8) uzyska³am nowe grafy (rys. 10), które mogê wyko-rzystaæ do rozwi¹zania za³o¿onego zadania: okreœlenia najkrótszych dróg (przejœæ) miêdzy si³owni¹ wiatrow¹ (9) a jeziorem (II). Przedstawione grafy (rys. 10) przyjmujê jako modele sieciowe wi¹¿¹ce obiekty geograficzne o ró¿nej geometrii.

6 ; * 6 2 . . *  l * 6:l2  :l.  .l2

Rys. 10. Zmodyfikowane modele (patrz rys. 8) uwzglêdniaj¹ce powi¹zanie wêz³ów swobodnych z obszarami

P 6 2 . . *  l L P 6 2 . . : 2 : * l  l  l 

Poszukiwanie najlepszej, najekonomiczniejszej drogi wymaga przypisania odpowiednich wag krawêdziom grafów, uwzglêdniaj¹c cechy drogi i przyjête œrodki komunikacji (Kuli-kowski, 1986; ESRI, 2003; Lewandowicz, 2005; Cichociñski, 2006). W zale¿noœci od wa-gowania krawêdzi grafu mo¿emy uzyskaæ w rozwi¹zaniu ró¿ne mo¿liwe przejœcia uwzglêd-niaj¹ce lub nie np. drogê na skróty przez grunty orne. W oparciu o przyjête modele (rys. 10) mo¿emy zapisaæ drogi w grafie w formie digrafów (rys. 11)

np.: (9-IV-10-III-9-II), (9-IV-10-11-3- 9-II), (9-IV-10-6-7-8-II), (9-IV-10-6-1-8-II),. Algorytmy zwi¹zane z poszukiwaniem najkrótszej drogi w grafie s¹ powszechnie dostêp-ne w literaturze (Cormen i in., 2007) i serwisach interdostêp-netowych. Najpopularniejsze z nich to algorytm Dijkstry oraz Forda Bellmana.

Wnioski koñcowe

Umiejêtnoœæ czytania mapy pozwala na okreœlenie relacji przestrzennych miêdzy obiekta-mi geograficznyobiekta-mi. Dysponuj¹c systemem informacji przestrzennej, powinniœmy obiekta-mieæ mo¿-liwoœæ uzyskiwania takich informacji automatycznie w wyniku procedur systemowych. Upo-rz¹dkowane dane geometryczne opisuj¹ce obiekty geograficzne stanowi¹ bazê wyjœciow¹ do takich dzia³añ. Zbudowana topologia danych przestrzennych umo¿liwia opis topologiczny obiektów geograficznych w formach przyjaznych wyszukanym analizom.

Powszechnie stosowany zapis danych topologicznych w strukturach tabelarycznych mo¿na przekszta³ciæ w macierzowe zapisy grafów. Numeryczne przetwarzanie otrzymanych

(10)

ma-cierzy pozwala na uzyskanie nowych form topologii danych przestrzennych. Przyk³ady ta-kich modeli przedstawiono wy¿ej. Model wyjœciowy G opisany macierzami SW, SW-K, SO-K wynika z uporz¹dkowanych danych graficznych. Przeprowadzone konwersje modelu wyj-œciowego G do zaprezentowanych form Gk, Go, G, Go, GS,

i przedstawionych zapisów macierzowych S, SX, nie wyczerpuj¹ mo¿liwoœci modelowania danych przestrzennych. Ta ró¿norodnoœæ zapisów topologii danych przestrzennych powin-na wi¹zaæ siê z konkretnymi zadaniami apowin-nalitycznymi.

Rys. 11. Mo¿liwe drogi z si³owni wiatrowej (9) do jeziora (II) okreœlone z modeli przedstawionych na rysunku 10: a – rozwi¹zania preferuj¹ce drogi i granice u¿ytków, b – rozwi¹zania uwzglêdniaj¹ce

mo¿liwoœci przejœcie (na skróty) przez grunty orne

W niniejszej pracy za³o¿ono zbudowanie modelu sieciowego, ³¹cz¹cego elementy punkto-we, liniowe i powierzchniopunkto-we, w celu poszukiwania drogi miêdzy si³owni¹ wiatrow¹ a jezio-rem. Przedstawiono kilka modeli spe³niaj¹cych za³o¿ony cel, okreœlono mo¿liwe drogi miê-dzy tymi obiektami.

Literatura

Autodesk, 2000: User’s Manual for AutoCad Map@-2000, Release 4. Bentley, 2000: MicroStation Geographics v.07. Podrêcznik u¿ytkownika.

Bielecka E., 2006: System informacji geograficznej. Wydawnictwo PJWSTK, Warszawa.

Chrobak T., 2000: Modelowanie danych przestrzennych przy u¿yciu struktury FDS Molenaara. Materia³y II Ogólnopolskiego Seminarium „Modelowanie danych przestrzennych”, Warszawa, s. 17-28.

Cichociñski P., 2006: Modelowanie dostêpnoœci komunikacyjnej nieruchomoœci jako atrybutu w procesie wyceny. Roczniki Geomatyki. Tom IV, Zeszyt 3, PTIP, Warszawa, s. 71-80.

Cormen T.H., Leiserson Ch.E., Rivest R.L., Stein C., 2007: Wprowadzenie do algorytmów. WNW, Warsza-wa.

Eckes K., 2006: Modelowanie rzeczywistoœci geograficznej w systemach informacji przestrzennej. Roczniki

Geomatyki. Tom IV, Zeszyt 2 , PTIP, Warszawa, s. 43-73.

Engelking R., Sieklucki K., 1986: Wstêp do topologii. Biblioteka matematyczna, Tom 62, Pañstwowe Wy-dawnictwo Naukowe PWN, Warszawa.

ESRI, 2003: ArcGIS: Working With Geodetabase Topology, An ESRI White Paper.

Mo¿liwoœci dojœcia z si³owni wiatrowej (9) do jeziora (II):

ü Rozwi¹zania preferuj¹ce drogi i granice u¿ytków 1) 9-IV-12-11-3-9-II 2) 9-IV-10-11-3- 9-II 3) 9-IV-10-6-1-8-II 4) 9-IV-10-6-7-8-II 5) 9-IV-5-6-1-8-II 6) 9-IV-5-6-7-8-II 7) ……

ü Rozwi¹zania uwzglêdniaj¹ce przejœcie na skróty przez grunty orne

1) 9-IV-10-III-9-II 2) 9-IV-10-III-7-II 3) 9-IV-8-III-7-II 4) 9-IV-8-III-9-II 6 6 ; * *  P Z Z *  *NPZ*RPZ

(11)

GaŸdzicki J., 1990: Systemy Informacji Przestrzennej, Pañstwowe Przedsiêbiorstwo Wydawnictw Karto-graficznych, Warszawa.

ISO 19107: Geographic information spatial schema ttp://www.isotc211.org/

Kulikowski J.L., 1986: Zarys teorii grafów. Pañstwowe Wydawnictwo Naukowe PWN, Warszawa. Lewandowicz E., 2004: Grafy jako narzêdzie do definiowania relacji przestrzennych pomiêdzy danymi

geograficznymi. Roczniki Geomatyki, Tom II, Zeszyt 2, PTIP, Warszawa, s. 160-171.

Lewandowicz E., 2005: Analizy s¹siedztwa mikroregionów w regionie w oparciu o dane przestrzenne zapi-sane w formie grafu geometrycznego. Roczniki Geomatyki, Tom III, Zeszyt 1, PTIP, Warszawa, s. 73-82. Lewandowicz E., Ba³andynowicz J., 2005: Some Ways of Formulation of Objective Functions for Chosen Space Analysis. The 6th International Conference Faculty of Environmental Engineering, Vilnius

Gedimi-nas Technical University, Volume 2, pp. 927-930.

Lewandowicz E., 2006: Area Neighbourhood Models. Polish Academy of Sciences, Geodezja i Kartografia, Vol. 55, No. 3, pp. 147-167.

Lewandowicz E., 2007: Przestrzeñ geograficzna jako przestrzeñ topologiczna. Seminarium „Modelowanie informacji geograficznej wed³ug norm europejskich i potrzeb infrastruktury informacji przestrzennej”. Warszawa (w druku).

Molenaar M., 1998: An introduction to the theory of spatial object modeling for GIS. Taylor & Francis, London.

PKN, 2002: Informacja geograficzna. Opis danych. Schemat przestrzenny. Polski Komitet Normalizacyjny. Polska Norma PZPN-N-12160.

Sullivan D.O., Unwin D.J., 2003: Geographic Information Analysis. Jon Wiley &Sons, INC. Systherm Info, 2006: System Informacji Terenowej Geo-Info – podrêcznik u¿ytkownika. Poznañ. Urbañski J., 1997: Zrozumieæ GIS. Analiza informacji przestrzennej. Wydawnictwo Naukowe PWN,

War-szawa.

Wilson R., 2000: Wprowadzenie do teorii grafów. Wydawnictwo Naukowe PWN, Warszawa.

Summary

Spatial Information System (SIP) is a tool for conducting spatial analyses. Geometric data play an important role in the tasks of this type, allowing to visualize space and to become the basis for determining relations between geographical objects. These relations form spatial data typologies. The spatial data typology in SIP is generally assumed as the structure of geometric data recordings (Bielecka, 2006; Eckes, 2006; GaŸdzicki, 1990; Molennar, 1998; Urbañski, 1997). Assuming specific typological models, recordings of geometric data are arranged in the structures of relation base. Arrangement of the data allows for their processing. Relations between geometric data constitute a typology, providing the basis for construction of analytical tools in SIP (Eckes, 2006).

In this paper, examples are presented concerning conversion into new forms of typological data created on the basis of arranged geometric data. In effect, relations between geographical objects are obtained. Recoding of these relations in the form of a graph constitutes a mathematical model of spatial data typology. In this paper, a graphic model from the Eckes’s work (Eckes, 2006) was used, where the foundations for spatial data recording in generally accepted typological models are expla-ined. Recordings presented in the forms of a table and a graph (Eckes, 2006) were transformed into new forms. Graphic examples contained in the work illustrate in a simple way the issues discussed.

El¿bieta Lewandowicz leela@uwm.edu.pl www.ela.mapa.net.pl

Cytaty

Powiązane dokumenty

Istnieje również różnica pomiędzy „tekstem ”, którym zajmuje się języko­ znawstwo, a „tekstem ”, który stanowi przedmiot analizy tekstologicznej. Teksto-

Przeciw nie: zwłaszcza w środkow ej części poem atu i jego dalszej połowie sam dochodzi do głosu, operując całą skalą satyrycznego i patriotycznego patosu.

Ale kiedy literatura ta ukaże się przyszłym pokoleniom rów nie odległa, jak odle­ gły jest dziś dla nas okres od starożytności do średniowiecza — k iedy

Along a similar line, traces in antiphase with the gap modulation can be related to molecules that are pre- compressed in the starting con figuration (blue panel in Figure 6 c and

(Słownik języka Adama M ickiewicza. Słownik w spółczesnych pisarzy pol­ skich. Opracował Zespół pod redak­ cją E. Szw eykow ski).. Słownik w spółczesnych pisarzy

Chodzi w ięc o zagadnie­ nie, kiedy ataki na rom ans przeradzają się w ataki na powieść i dlaczego, kiedy zm ieniają się kryteria doboru pozycji tłum

In this case the radius of the plot is wave length In the 20 to 30 knot operating speed range of the present ship, errors can be expected which correspond to the very significant

In this industry the p-y curve method, which was once developed for modelling large lateral displacements of long flexible piles [10] - [12], is still used for modelling