• Nie Znaleziono Wyników

by G. Dimkov (Sofia), J. Stankiewicz and Z. Stankiewicz (Rzesz´ow)

N/A
N/A
Protected

Academic year: 2021

Share "by G. Dimkov (Sofia), J. Stankiewicz and Z. Stankiewicz (Rzesz´ow)"

Copied!
6
0
0

Pełen tekst

(1)

POLONICI MATHEMATICI 55 (1991)

On a class of starlike functions defined in a halfplane

by G. Dimkov (Sofia), J. Stankiewicz and Z. Stankiewicz (Rzesz´ow)

Abstract. Let D = {z : Re z > 0} and let S (D) be the class of univalent functions normalized by the conditions lim D3z→∞ (f (z) − z) = a, a a finite complex number, 0 / ∈ f (D), and mapping D onto a domain f (D) starlike with respect to the exterior point w = 0. Some estimates for |f (z)| in the class S (D) are derived. An integral formula for f is also given.

Introduction. The theory of functions regular and univalent in the unit disc is well developed, and various results concerning different subclasses of univalent functions have been obtained. A natural problem is to obtain spe- cific properties for univalent functions defined in other domains, for example in a halfplane. The present paper is dedicated to such type of problems.

We start with the definition of some specific classes of functions which play the role of the well known classes of functions defined in the unit disc.

Let e H = e H(D) be the class of all functions that are regular in the right halfplane D = {z ∈ C : Re z > 0}. Since the point at infinity lies on the boundary of D we can distinguish different subclasses of e H using the asymptotic behavior of the functions.

By H = H(D) we shall denote the subclass consisting of all functions f (z) in e H with the normalization

D3z→∞ lim (f (z) − z) = a, where a is an arbitrary finite complex number.

By S = S (D) we shall denote the subclass of those nowhere vanishing functions f (z) in H for which

Re f 0 (z)

f (z) > 0, z ∈ D.

1991 Mathematics Subject Classification: 30C45, 30C80, 30C55, 30C75.

(2)

We also need the following two classes of functions with positive real part in D:

P = {p ∈ H : Re p(z) > 0, z ∈ D}, Q = {q ∈ e H : Re q(z) > 0, z ∈ D, lim

D3z→∞ z(q(z) − 1/z) = 0}.

Preliminary results Lemma 1 [1]. If p ∈ P then

Re p(z) ≥ Re z, z ∈ D, where equality is attained only for the functions

p(z) = z + it, t ∈ R.

It was proved [1] that functions in S map the halfplane D onto a domain which is starlike with respect to the exterior point w = 0, i.e. if w ∈ f (D), then tw ∈ f (D) for every t ≥ 1.

Further, we have [2]:

— if p ∈ P then q(z) = 1/p(z) belongs to Q;

— if f ∈ S then q(z) = f 0 (z)/f (z) belongs to Q.

Lemma 2 [2]. If q ∈ Q then

q(z) − 1 2 Re z

≤ 1

2 Re z , z ∈ D, and in particular

0 ≤ Re q(z) ≤ |q(z)| ≤ 1

Re z , z ∈ D,

| Im q(z)| ≤ 1

2 Re z , z ∈ D.

The results are sharp for the functions q t (z) = 1

z + it , t real .

Lemma 3 [2]. A function f ∈ H, with f (z) 6= 0 for z ∈ D, belongs to S if and only if it may be represented in the form

(1) f (z) = z exp

z

R

(q(ζ) − 1/ζ) dζ for some q ∈ Q.

If we fix z 0 ∈ D we obtain another representation of functions in S .

(3)

Theorem 1. Let z 0 be fixed , Re z 0 > 0. For every f ∈ S there exists q ∈ Q such that

(2) f (z) = f (z 0 ) exp

z

R

z

0

q(ζ) dζ.

P r o o f. From (1) we have (3) f (z 0 ) = z 0 exp

z

0

R

(q(ζ) − 1/ζ) dζ, q ∈ Q.

Dividing (1) by (3) we obtain f (z)

f (z 0 ) = z z 0

exp  R z

z

0

(q(ζ) − 1/ζ) dζ −

z

0

R

(q(ζ) − 1/ζ) dζ 

= z z 0

exp

z

R

z

0

(q(ζ) − 1/ζ) dζ = z z 0

exp

 z

R

z

0

q(ζ) d(ζ) − log z z 0



= exp

z

R

z

0

q(ζ) dζ.

This proves the theorem.

Estimates in S . It is clear that the integrals in (1) and (2) do not depend on the curves joining ∞ to z and z 0 to z respectively. Unfortunately, the estimates we shall obtain depend essentially on the path of integration.

It remains an open problem to choose the best one.

Fix z 0 ∈ D. We start with some estimates obtained by integration along the straight-line segment joining z 0 and a variable point z.

Lemma 4. Let q ∈ Q. For z, z 0 , ζ ∈ D Re(z − z 0 ) − |z − z 0 |

2 Re ζ ≤ Re{(z − z 0 )q(ζ)} ≤ Re(z − z 0 ) + |z − z 0 |

2 Re ζ ,

Im(z − z 0 ) − |z − z 0 |

2 Re ζ ≤ Im{(z − z 0 )q(ζ)} ≤ Im(z − z 0 ) + |z − z 0 |

2 Re ζ .

P r o o f. The assertion is an immediate consequence of Lemma 2.

Theorem 2. Let z 0 ∈ D be fixed and let f ∈ S (D). Then (4)  Re z

Re z 0

 (1−|z−z

0

|/ Re(z−z

0

))/2

f (z) f (z 0 )

≤  Re z Re z 0

 (1+|z−z

0

|/ Re(z−z

0

))/2

if Re(z − z 0 ) 6= 0,

(4)

(5) exp −| Im(z − z 0 )|

2 Re z 0

f (z) f (z 0 )

≤ exp | Im(z − z 0 )|

2 Re z 0

if Re(z − z 0 ) = 0.

P r o o f. We use (2) integrating along the straight-line segment [z 0 , z], i.e. ζ = z 0 + (z − z 0 )t, 0 ≤ t ≤ 1. By Lemma 4 we obtain

f (z) f (z 0 )

= exp Re

z

R

z

0

q(ζ) dζ = exp Re

1

R

0

(z − z 0 )q(ζ) dt

≤ exp

1

R

0

Re(z − z 0 ) + |z − z 0 | 2(Re z 0 + t Re(z − z 0 )) dt

=

 

 

 

 

 Re z Re z 0

 (1+|z−z

0

|/ Re(z−z

0

))/2

if Re(z − z 0 ) 6= 0, exp | Im(z − z 0 )|

2 Re z 0

if Re(z − z 0 ) = 0.

The left-hand inequalities in (4) and (5) are analogously obtained.

R e m a r k . If Im z = Im z 0 and Re z > Re z 0 , then |z − z 0 | = Re(z − z 0 ).

Hence for f ∈ S and for such z we have 1 ≤

f (z) f (z 0 )

≤ Re z Re z 0

.

This estimate is sharp for f (z) ≡ z and Im z = Im z 0 = 0.

Theorem 3. Let z 0 ∈ D be fixed and let f ∈ S (D). Then for every z ∈ D we have

(6) arg f (z) f (z 0 ) ≥

 

 

Im(z − z 0 ) − |z − z 0 |

2 Re(z − z 0 ) log Re z Re z 0

if Re(z − z 0 ) 6= 0, Im(z − z 0 ) − |z − z 0 |

2 Re z 0

if Re(z − z 0 ) = 0, and

(7) arg f (z) f (z 0 ) ≤

 

 

Im(z − z 0 ) + |z − z 0 |

2 Re(z − z 0 ) log Re z Re z 0

if Re(z − z 0 ) 6= 0, Im(z − z 0 ) + |z − z 0 |

2 Re z 0

if Re(z − z 0 ) = 0, where we choose the branch of log(f (z)/f (z 0 )) which is zero for z = z 0 .

P r o o f. We use (2) integrating along the straight-line segment [z 0 , z].

(5)

By Lemma 4 we obtain arg f (z)

f (z 0 ) = Im

z

R

z

0

q(ζ) dζ =

1

R

0

Im{(z − z 0 )q(z 0 + t(z − z 0 ))}

1

R

0

Im(z − z 0 ) − |z − z 0 | 2(Re z 0 + t Re(z − z 0 )) dt.

Thus for Re(z − z 0 ) 6= 0 we have arg f (z)

f (z 0 ) ≥ Im(z − z 0 ) − |z − z 0 |

2 Re(z − z 0 ) log Re z Re z 0

, and for Re(z − z 0 ) = 0 we have

arg f (z)

f (z 0 ) ≥ Im(z − z 0 ) − |z − z 0 | 2 Re z 0

=

0 if Im(z − z 0 ) ≥ 0,

− Im(z − z 0 ) Re z 0

if Im(z − z 0 ) < 0.

This proves (6).

On the other hand, arg f (z)

f (z 0 ) =

1

R

0

Im{(z − z 0 )q(z 0 + t(z − z 0 ))} dt

1

R

0

Im(z − z 0 ) + |z − z 0 | 2(Re z 0 + t Re(z − z 0 )) dt.

Thus for Re(z − z 0 ) 6= 0 we have arg f (z)

f (z 0 ) ≤ Im(z − z 0 ) + |z − z 0 |

2 Re(z − z 0 ) log Re z Re z 0

, and for Re(z − z 0 ) = 0 we have

arg f (z)

f (z 0 ) ≥ Im(z − z 0 ) + |z − z 0 | 2 Re z 0

=

− Im(z − z 0 ) Re z 0

if Im(z − z 0 ) > 0, 0 if Im(z − z 0 ) ≤ 0.

This proves (7). The proof of Theorem 3 is complete.

R e m a r k. For Re(z − z 0 ) = 0, Im z > Im z 0 we have arg f (z)

f (z 0 ) = arg f (z) − arg f (z 0 ) > 0,

which means that arg f (z 0 + it) is increasing with t. This agrees with the

definition of a starlike function in the halfplane D.

(6)

References

[1] I. A. A l e k s a n d r o v and V. V. S o b o l e v, Extremal problems for some classes of univalent functions in the halfplane, Ukrain. Mat. Zh. 22 (3) (1970), 291–307 (in Russian).

[2] V. G. M o s k v i n, T. N. S e l a k h o v a and V. V. S o b o l e v, Extremal properties of some classes of conformal self-mappings of the halfplane with fixed coefficients, Sibirsk.

Mat. Zh. 21 (2) (1980), 139–154 (in Russian).

[3] J. S t a n k i e w i c z and Z. S t a n k i e w i c z, On the classes of functions regular in a halfplane I, Bull. Polish Acad. Sci. Math., to appear.

[4] —, —, On the classes of functions regular in a halfplane II , Folia Sci. Univ. Techn.

Resoviensis Mat. Fiz. 60 (9) (1989), 111-123.

INSTITUTE OF MATHEMATICS DEPARTMENT OF MATHEMATICS BULGARIAN ACADEMY OF SCIENCES TECHNICAL UNIVERSITY OF RZESZ ´ OW 1090 SOFIA, BULGARIA W. POLA 2, 35-959 RZESZ ´ OW, POLAND

Re¸ cu par la R´ edaction le 20.7.1990

Cytaty

Powiązane dokumenty

The results of this paper were presented and the Conference on Complex Analysis in Halle, GDR, in September, 1980, cf. Estimates of A^n&gt; and bj^.. They are very ccmraent

We now examine problems about the growth of |#'(z) | where g is analytic and bounded in A (and not necessarily univalent) and for simplicity take the bound to be 1.!. The

formly convex and uniformly starlike, and some related classes of univalent functions. We also introduce a class of functions ST«) which is given by the property that the image of

This latter information, together with a criterion of Bshouty and Hengartner [1], which concerns the form of continuous linear functionals over A that are maximized by the

O sumach częściowych pewnej klasy funkcji jednolistnych Об отрезках ряда Тейлора одного класса однолистных функций.. Subsequently the

Functions feUp corresponding to the non-singular boundary points of A we shall call extremal functions.. In order to determine the set of non-singular boundary points we shall

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions