• Nie Znaleziono Wyników

On the upper bound oî the functional |/(n,(s)| (w =2,3,...) in some classes of univalent functions

N/A
N/A
Protected

Academic year: 2021

Share "On the upper bound oî the functional |/(n,(s)| (w =2,3,...) in some classes of univalent functions"

Copied!
5
0
0

Pełen tekst

(1)

R O C Z N I K I P O L S K I E G O T O W A R Z Y S T W A M A T E M A T Y C Z N E G O S é r i a I : P R A C E M A T E M A T Y C Z N E X V I I ( 1 9 7 3 )

Zbig n iew Jerzy Jakubow ski (Lodz) (

O n the upper bound oî the functional |/(n,(s)| (w =2,3,...) in some classes of univalent functions

1. Denote by 8 the class of regular and univalent functions of the form

(1) ' f{z) = z + a2z2 + ... + anzn + ...

defined in the circle \z\ < 1.

Let z, z Ф 0 be an arbitrary fixed point of the unit circle.

The function

9 ( 0 = JL± 1

1 +z£

maps conformly the circle \C\ < 1 on to itself and

(2) * 9 ' ( 0 l - и 2

( l + z £ ) 2 '

Let / be an arbitrary function of the class 8. Consider the function

(3) Щ ) = /(g(f))-/w

/'(*)( 1 - И 2) '

Since it is regular and univalent in the circle ICI < 1 and since Л{0) = 0, h'(0) = J, /te S. Tims li"(0)| ■< 2 -2! [1], hence we obtain the estimate [2]:

(4) \ f ’(z)\< 7 7-Ц г > \ г \ = г . (1 - r )

The upper bound is attained for the Koebe function (5)

at the point z = re~lt

/*(*) = z

( 1 - A ) 2

5 — R o c z n i k i P T M — P r a c e M a t e m a t y c z n e X V I I

(2)

66 Z. J . J a k u b o w s k i

Making use of the known estimates |Л"(0)| < 2 - 2 !, |&"'(0)| <3*3! [7],

|V4>(0)[ < 4 - 4 ! [4] and of formula (4) Walczak [8] has obtained the fol­

lowing acute estimate for n = 2 ,3 , 4

7Ь ~ I 7*

(6) ( l . n „ . , - И = г .

The extremal function is given by (5).

In this paper we shall prove that if Bieberbach hypothesis is true w l for l = 2 ,...., n, then estimation (6) holds for every natural n. We shall also find the upper bound of the functional |/ (и)(г)| (n = 2 , 3 , . . . ) in some subclasses of the family 8.

2. Put w — g(Ç). We shall prove that for every function f e S and an arbitrary n (n = 1 , 2 , . . . ) the following formula

(7) f * ( w )

n —1

( i - и 2r 4 Z l »» /' i l / ---(1 +z£)2n~mzm (n — m)l

holds.

In fact from formulas (2) and (3) we obtain f'(w) = f ( z ) h ' (0 (1+zC)2.

Hence differentiating both sides in relation to £ and taking into account formula (2) we obtain

f"(w) = - lf V f 1] - ---- — (1 +2£)4~mzm.

J v 7 1 — \z\2 Zj W 2 - m ) ! V ' m= 0

Thus formula (7) holds for n = 1 , 2 . Assume that it is true for n ^ 2. Then

(n —m) ! / * - 4

\m + 1/

+ + h{n~m)(0

(n — m — 1) !

—1\ *'(£)

(1 - f z£)2№_m_1 zm+l - f . . . - f

+ (n + 1( ( l - Î) ~ j r (1 Since

(2 » - m ) ("“ M---- — + ( * - ; )

\ m ! (n — m)\ W + 1 /

n -f 1 (n — m)\ \m + 1l (n — m —1)1 (n — m) formula (7) holds for every natural n.

J n )

I \ m + l /

(3)

Putting £ = 0 and respectively w = z we obtain from (7) the following relationship

(8) »!/'(* ) у /«-1\ A«"— >(Q) ^

( l - l s l 2) " " 1 Z j \ ) (n - m ) \ Z ' 1 ' m=0

3. Let z Ф 0 be an arbitrary fixed point of the unit circle and / an arbitrary function of the class 8. Then function (3) belongs to the family $, thus there exists such a constant Тсг [1] that |Л(г)(0)| < Тсг-1\ (I = 1 , 2 , . . . ).

Hence by formula (8) we have

\fin)m < »!/'!(*)!

( 1 - 1 * 1 7

.1*1* (n = 2 , 3 , ...)•

, Taking into account estimate (4) we obtain

l/w (*)l < » ! ( l - » - ) - ”- s( l + r) - " + 2 I” ,,,1) h . . mrm,

m= 0 '

1*1 - r {n = 2 , 3 , ...)•

Thus if the Bierberbach hypothesis is true, i.e. if Tct = l (l = 2, 3, ... , n), then

Z ( " « ‘K — ^ ( w + r H i + r ) - » .

m= 0 ' '

Hence the following theorem holds:

I f the function f ( z ) e8 and Тсг = l (l = 1 , 2 , ..., n), then for every natural n and an arbitrary z, \z\ = r, 0 < r < 1 the acute estimate (6) holds.

Moreover, we have

(9) ! f n](z) _ _ _ _ _ /fy ! ---n + r

I / #(*) " ’ ( l - r r - ^ l + r) (n = 2 , 3 , . . . ) .

4. Let Ê denote a subclass of the family 8 of functions of form (1) which map the circle \z\ < 1 onto convex regions. l i f e 8, then he В (comp.

(3)) thus |й/г,(0)| (I = 1 , 2 , . . . ) [6]. We also have estimation [6]

\ f ( z )I < (1 - r ) 2, \z\ = r the upper bound being attained for the function

f ( z ) = z { l - e itz)~1

t the point z = re~%t. Thus formula (8) implies the following theorem:

(4)

68 Z. J . J a k u b o w s k i

I f a function f(z) e j§, then for every natural n and an arbitrary z, \z\

= r, 0 < r < 1 the acute estimate

(10) \f(n){ z) \ < п\ {1- г )~п~1 holds. Moreover, we have

/ (n,(*)

/'(*) < nl ( l — r) n+I,

Besult (10) has also been obtained by Walczak [9] in another way.

5. Let 8* denote a subclass of the family 8 of functions which map the circle |^| < 1 onto star-like regions in relation to the origin.

It is known ([5], p. 204) that if /e §, then the function F(z) = zf(z)

belongs to the class 8*. The converse is also true. Hence we obtain the formula

F {n) (z) = nf{n) (z) -f 0/ (n+1> (z).

Thus the following theorem follows from estimate (10) [9]:

I f a function F(z)e 8*, then for every natural n and an arbitrary z,\z\

= r, 0 < r < 1 the acute estimate (6) holds.

6. Let 8R denote a subclass of the family 8 of functions f(z) of form (1) with real coefficients. Let z = r, 0 < r < 1. Then the function h e S R (comp. (3)) thus \h(l){0)\ ^ l - l \ (I = 1 , 2 , . . . ) [3].

By formula (8) the following theorem follows:

I f a function f(z) e 8R, then for every natural n and an arbitrary r, 0 < r < 1 the following acute estimate holds

}/(n)(r)| < n\ n-\-r ( l - r ) n+2’

f (n){r) n + r

--- --- ^ T _____

f { r ) ' ( l - r f - ^ l - f r ) ' The upper bound is attained for the function

at the point z = r.

/*(*> = z (1 - z ?

References

[1] L. B ieb erb a ch , Über die Koeffizienten derjenigen Potenzreihen, welehe eine schlichte Abbildung des Einheitskreises vermittelen, Sitzgsber. PreuB. Akad. Wise., Phys.-math. Kl. (1916), p. 940-945.

(5)

[21 — Über einiqe Extrem alproblem e im Gebiete der konform en A bbildunq, Math. Ann.

77 (1916), p. 153-172.

[3] J. D ie u d o n n é , S u r les fonctions univalentes, С. E . Acad. Soi. Paris 192 (1931), p. 1148-1150.

[4] P . E . G a r a b e d ia n and M. S c h if f e r , A p ro o f o f the Bieberbach conjecture fo r the coefficient, J. Eation. Mech. Anal. 3 (1955), p. 4 2 7 -4 6 5 .

[5] Г. M. Г олузин, Геометрическая теория функций комплексного переменного, Москва 1966.

[6] К . L ô w n e r , U ntersuchungen über die Verzerrung bei konform en Abbildungen des E inheitskreises \z\ < 1, die durch E u n ktio n en m it nicht verschwindender A bleitung geliefert werden, Leipzig Ber. 69 (1917), p. 89-106.

[7] — U ntersuchungen über schlichte konform e Abbildungen des Einheitskreises, Math.

Ann. 89 (1923), p. 103-121.

[8] S. W a lc z a k , Oszacowanie \f"{z)\, \ f"' {e)\, \ f ^ ( z ) \ fu n k c ji klasy 8 , Zesz. N auk.

ILL. Ser. II, 39 (1970), p. 6 9 -7 3 .

[9] — E xtrem al problems in the class o f close-to convex functions, Ann. Polon. Math.

25 (1971), p. 2 3 -3 9 .

Cytaty

Powiązane dokumenty

Because of many applications of functions of Carathéodory family and its subclases especially in the study of some metric properties of classes of functions generated

In Sections 2 and 3 we were using Lemma A or Lemma B, respectively, with the well-known estimate of the modulus of the coefficient A 2 in the classes S (M) being taken into

Therefore the function dcp (x, t) is continuous in A, which was to be proved.. Choc zew ski and

Sobolev, Extremal properties of some classes of conformal self-mappings of the half plane with fixed coefficients, (Russian), Sibirsk. Stankiewicz, On a class of

O sumach częściowych pewnej klasy funkcji jednolistnych Об отрезках ряда Тейлора одного класса однолистных функций.. Subsequently the

It follows at onoe from relation (2.1) that inequality (1.2) holds, then So C So- In particular, the class So contains known subclasses ctf the class of univalent

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions