• Nie Znaleziono Wyników

Journal of the Institute of Petroleum, Vol. 31, Abstracts, October

N/A
N/A
Protected

Academic year: 2022

Share "Journal of the Institute of Petroleum, Vol. 31, Abstracts, October"

Copied!
52
0
0

Pełen tekst

(1)

O c t o b e r 1 9 4 5 . 3 2 9 a

A B ST R A C T S.

PA G E Oi l f i e l d Ex p l o r a t i o na n d Ex­

p l o i t a t i o n.

G e o l o g y ... 3 2 9 a G eophysical a n d G eochem ical

P ro s p ec tin g 330 a

D r i l l i n g 3 3 1 a

P ro d u c tio n ... ... ... 333 a Oilfield D e v elo p m en t ... ... 336 a T r a n s p o r t a n d S t o r a g e . . . 338 a Re f i n e r y Op e r a t i o n s.

R efineries a n d A u x ilia ry R e ­ finery P la n t ... ... 338 a D istilla tio n ... ... ... 340 a A b so rp tio n a n d A d so rp tio n ... 340 a Solvent R efining a n d D e w a x ­

in g ... ... ... ... 341 a

PA G E

C racking ... ... ... 341 a

A lk y la tio n ... ... ... 343 a

C hem ical a n d P h y sic a l R efin in g 343 A M etering a n d C ontrol ... ... 344 a

S a fe ty P re c a u tio n s ... ... 344 a Pr o d u c t s.

C h em istry a n d P h y sic s ... 345 a A naly sis a n d T estin g ... ... 345 a

G as 348 a

E n g in e F u els ... ... ... 348 a

L u b ric a n ts ... ... ... 348 a

S pecial H y d ro c a rb o n P r o ­

d u c ts ... ... ... 350 A

D e riv ed C hem ical P ro d u c ts ... 352 a

Coal, S hale a n d P e a t ... ... 353 a

M iscellaneous P ro d u c ts ... 353 a

355 a Mi s c e l l a n e o u s

A U T H O R IN D E X .

T he n u m b e rs re fe r to th e A b s tra c t N u m b er.

Abere, J ., 1145 , E . 0 ., 1109 Barnes, K . B., 1105, 1114 BeH, F. W ., 1159 Blaylock, P . W ., 1126 Bowden, F . P ., 1163 Bowles, V. 0 ., 1136 Brown, B. K ., 1179 Brunner, E ., 1103 Buchdakl, B ., 1188 Busvine, J . R ., 1171 Cardwell, W . T ., 1104 Olinedinst, 1097 Cremer, H . W ., 1190 Dansby, R . E ., 1093-

1095 D ittrich , E ., 1157 D unham , G. S., 1137 Exline, P . G., 1152 F agin, K . M., 1106 Fearon, B . E ., 1092 Firfch, F. G., 1158 F itt, B. L., 1190 Flesher, S. A., 1152 Foster, A. L., 1127, 1186

G anguly, P . B ., 1144 Goldfinger, G., 1145 Golyer, E. de, 1113 Gregory, J . N ., 1163 G yani, B. P ., 1144 H anson, G. H ., 1147 H ard im an , E . W ., 1165 H assler, G. L ., 1103 H ew lett, P . S., 1170 H eym ann, E ., 1146 H ickel, A. E ., 1187 H ill, W ., 1090 H o rto n , C. W ., 1102 H o w at, D. D ., 1180-1182

Jones, J . H ., 1109 K arpiński, Z., 1162 K atz, D. L ., 1111 K nipling, E . F ., 1168 K ooistra, L. F ., 1124 K unkel, J . H ., 1139 L ah iri, A ., 1162 Law rence, A. S. C., 1166

Lem m en, W. E ., 1128 Lim ar, V. K ., 1151 L in d q u ist, A. W ., 1168 Logan, L . J ., 1091

Luger, K . E ., 1125 M cCutchin, J . A ., 1110 M apstone, G. E ., 1177 M ardles, E . W. J ., 1162 M ark, H ., 1145 M endius, W ., 1140 Moore, P . H ., 1161 Mougey, H . C., 1156 N aidus, H ., 1145 N ason, PT. K ., 1154 Nelson, W. L., 1130,1131,

1148, 1155 N ew ton, R . H ., 1137 N ielsen, B. F ., 1108 N issan, A. H ., 1165 P ark in , E. A., 1170 Parsons, R. L ., 1104 P etk rick , S. R ., 1153 P etro v , A. D ., 1167 P inkevitch, Y u A ., 1150 P o tts , W . H ., 1169 ■ Power, H . H ., 1112 B endel, T. B., 1160 R eu ter, R ., 1175 Rogers, F . T ., 1102

R zasa, M. J ., 1111 Sawdon, W . A ., 1096 Schoessow, G. J ., 1124 Schroeder, H . O., 1168 S hchukin, V. I., 1167

^drS herbom e, J . E ., 1109 S hort, E . H ., 1099 Sidorov, V. G., 1151 Simpson, T. P ., 1137,

1138

Sm ith, M. L., 1147 Smoley, E . R ., 1136 i " ' , F . R ., 1142 Tabor, D ., 1163, 1164 T kim m , J . E ., 1188 T ruesdell, P ., 1128 T u ttle , R . B ., 1127 V an D riest, E . R ., 1121 V anderplank, F . L ., 1169 W alden, J . L ., 1191 W arner, A. J ., 1178 W ells, N . C., 1098 W endeln, O. B., 1189 W ilham s, N ., ,1100 Yoffe, A ., 1146 Y u ster, S. T ., 1108

Oi l f i e l d Ex p l o r a t i o n a n d Ex p l o i t a t i o n. G e o lo g y .

1088. Cretaceous Producer in Old Venezuelan Field Reported. A non. Oil W k ly , 28.5.45, 117 (13), 62.— A C retaceous p ro d u c er is re p o rte d to h av e been c o m p leted in th e old N e tic k field, w est o f M aracaibo. T h is fo rm a tio n w as en co u n tere d a t 6470 ft.

in d eepening a n old shallow well. 12 km . n o rth of N etick , th e C a le n tu ra 2 w ild ca t is to be d rilled to th e C retaceous, follow ing Shell’s d iscovery o f a m a jo r C retaceous lim e­

sto n e p a y in th e M ara d is tric t in Shell DM 2. G-. D . H . A A

(2)

a

1089. Shell’s Chafurray Test in Llanos may be Abandoned. A no n . Oil W k ly , 28.5.45, 117 (13), 62.— T h e C h a fu rra y te s t in th e llan o s o f s o u th e rn M eta, C olom bia, has reco v ered a g ra n ite core a t 1732 f t., a n d is e x p e c te d to b e a b a n d o n e d . G. D . H . 1090. New Field in France being Developed. W . H ill. Oil W k ly , 28.5.45, 117 (13), 46.— A n oil a n d gas a re a is b ein g d e v elo p ed in th e S a in t M arcet field o f H a u te G aronne, F ra n c e . T h e field w as o p e n ed in J u l y 1939 as a gas a rea . O il a n d gas a re o b tain e d fro m C retaceo u s lim esto n e a t a d e p th o f 5000—6000 ft. T h e re a re 10 p ro d u c in g wells, th e d a ily p ro d u c tio n n o w b ein g e s tim a te d a t 20 b rl. o f 31-g ra v ity oil a n d 8,000,000 cu. ft. o f gas. T h e gas gives 0-8 gal. o f d is tilla te /1 000 cu. ft. A 6-in. gas line ru n s to T oulouse, a n d a 5-in. line is b e in g la id to T arb es.

T h e S a in t M arcet field is a n a n tic lin e re v e a le d b y o u tcro p s. G eology a n d geophysics h a v e in d ic a te d tw elv e s tru c tu re s in th is a rea. T h e G a b ia n p ool, H e r a u lt province, gives 4—5 b rl./d a y . I t s c u m u la tiv e p ro d u c tio n since 1924 is 150,000 b rl. T h e Pechel- b ro n n p ool h a s a n a n n u a l o u tp u t o f a b o u t 70,000 to n s, fro m a d e p th o f 2000 ft.

G. D . H . 1091. Exploration Falling Short of P.A.W. 1945 Programme. L . J. L ogan. Oil

W k ly , 28.5.45, 117 (13).— 1349 e x p lo ra to ry w ells w ere c o m p le te d in U .S .A . d u rin g th e first fo u r m o n th s o f 1945, 81 m o re t h a n in th e co rre sp o n d in g p e rio d o f 1944. T hus e x p lo ra to ry drillin g is 6-4% ab o v e la s t y e a r ’s levels, w hile all d rillin g show s a 9%

increase.

T h e d e te rre n ts to w ild c a ttin g a re p rim a rily econom ic r a th e r t h a n p h y sic al. 20%

o f th is y e a r ’s e x p lo ra to ry w ells h a v e b e en successful a g a in s t 81-1% fo r th e corresponding p e rio d o f 1944. R e la tiv e ly good re s u lts h a v e b e en o b ta in e d in fin d in g n ew gas and d is tilla te as w ell as oil reserv es ; a n d fo r eac h o f th e s e th r e e ty p e s o f p ro d u c tio n th ere h a v e b e en re la tiv e ly b e tte r re s u lts in fin d in g e n tire ly n e w fields t h a n in fin d in g new p a y ho rizo n s w ith in k n o w n 'fields o r in e x te n d in g th e p ro d u c tiv e lim its o f existing fields.

A m ong 66 te s ts t h a t opened new fields o r p a y s or e x te n d e d fields in A pril, v ery few if a n y w ere o f in d ic a te d m aj or im p o rta n ce . T h e R a n g e ly field o f C olorado w as extended, as w as th e E lk B a sin field o f W yo m in g . N ew p a y h o rizo n s w ere p ro v e d in th e E gan, W e s t T e p e ta te , V e lA e, a n d S t. M a rtin v ille fields o f S o u th L o u isia n a . K a n s a s yielded new oil a n d gas reserv es in 10 area s. O k la h o m a h a d se v e ra l fa irly p ro m isin g strikes, in clu d in g a g a s-d istillate w ell in G ra d y C o u n ty , a t a d e p th o f 10,879-10,882 ft. Cali­

fo rn ia h a d a n ew p a y a t N e w h a ll-P o tre ro , a n d e x te n sio n s in tw o o th e r fields.

T ab les su m m arize th e e x p lo ra to ry d rillin g re s u lts in J a n u a r y - A p r il 1945, and a n aly se th e re su lts b y S ta te s a n d d is tric ts fo r A p ril a n d th e first fo u r m o n th s o f 1945.

T h e n ew oil- a n d gas-fields, a n d n e w p a y h o rizo n s d isco v ered in U .S .A . in A p ril 1945

a re lis te d w ith d e ta ils. G. D . H .

Geophysical and Geochem ical Prospecting.

1092. Radio-activity Well-logging. R . E . F e a ro n . O il W k ly , 4.6.45, 118 (1), 33;

11.6.45, 118 (2), 38 .— G am m a-ray M ea su rem en ts.— R a d io a c tiv ity is e ssen tially a p ro p e rty o f th e a to m ic n u cleu s, w h ich e x h ib its in s ta b ility a n d e je c ts a n ele ctro n or a h eliu m n u cleu s, th e re b y beco m in g a d ifferen t elem en t. T h e h e liu m n u clei give the so-called a lp h a ra y s, a n d th e electro n s th e b e ta ra y s . T h ird ly , th e r e a re gam m a ra y s, w h ich a re o f th e X -ra y ty p e , b u t m o re p e n e tra tiv e .

T h ere a re n u m ero u s ra d io a c tiv e e lem en ts in th e e a rth , a n d differences in th e gam m a r a y s a re to b e e x p ec te d , so p ro d u c in g a g a m m a -ra y sp e c tru m .

U ra n iu m , th o riu m , a n d p o ta s siu m a re th e o n ly ra d io a c tiv e e le m en ts sufficiently s ta b le to e x is t in q u a n titie s th ro u g h geological tim e , a n d eac h is effectiv ely a group o f e lem en ts w h ich a re d e riv e d successively fro m th e first m em b e r. P o ta s s iu m em its a single k in d o f g a m m a ra d ia tio n , w hich is o f a b o u t th e sam e p e n e tra tiv e po w er as th e m ix tu re o f ra d ia tio n s fro m th e u ra n iu m g ro u p . T h e th o riu m -g a m m a ra d ia tio n s h a v e m o re p e n e tra tiv e co m p o n en ts.

G a m m a ra d ia tio n s m a k e m a n y gaseous su b s ta n c e s ele ctrica lly c o n d u c tin g , a n d th is p ro p e rty is u sed in th e ir d e te ctio n . A n io n iz a tio n c h am b er is u se d w h ic h co n tain s a n in e rt gas u n d e r p ressu re. T h e c u rre n t fro m th is c h am b er is am plified. I n som e cases tw o d e te c to rs a re u se d w h ich a re se n sitiv e to d ifferen t p a r ts o f th e g a m m a -ra y s p e c tru m .

(3)

ABSTRACTS. 3 3 1 a

I n w ell-logging, th e g a m m a -ra y in te n s ity is p lo tte d a g a in st th e d e p th . B ecause o f th e flu c tu a t ions in th e ra d ia tio n i t is n ecessary t o sm o o th th e o u tp u t o f th e m ea su rin g sy stem , oth erw ise th e c u rv e re co rd e d a t th e su rface w ould be to o e rra tic . T his sm o o th in g p ro cess red u ces th e p e a k s o f th e log fo r som e o f th e th in n e r ra d io a ctiv e s tr a ta if th e logging sp eed (ra te o f raisin g th e io n isatio n c h am b er) is to o h igh. H ig h speed also d isp laces th e p eak s, d u e to lag in tro d u c e d in th e sm o o th in g .

Som e ra d io a c tiv e m a te ria l m a y b e tr a n s p o rte d in c irc u la tin g fluid. T h e effective zone o f in v e s tig a tio n is in th e n e ig h b o u rh o o d o f th e Well, a n d im m e d ia tely b e h in d a n y casin g w h ich m a y b e p re s e n t .

P re se n t in d ic a tio n s a re t h a t th e re is no d irec t re la tio n s h ip b e tw ee n th e v a ria tio n s in ra d io a c tiv ity a n d th e p resen ce o f liq u id p e tro leu m . T he ra d ia tio n s are, how ever, useful in s tu d y in g th e ro c k c o m p o n e n ts o f th e fo rm atio n , a n d so a id in geological co rrelatio n .

N eu tro n Bom bardm ent o f F o rm ations.— I n th is m e th o d th e ro c k fo rm atio n s are exposed to a source o f p rim a ry ra d ia tio n , a n d th e se c o n d ary ra d ia tio n s g e n e ra te d a re m easured. T h is m e th o d is especially v a lu a b le in lim esto n e formations, a n d in all eases m a y co m p lem en t th e g a m m a -ra y log.

N e u tro n s fo r w ell logging a re o b ta in e d b y b o m b a rd in g b e ry lliu m w ith a lp h a ra y s from ra d io a c tiv e elem en ts. T h e fa s t n e u tro n s strik e h y d ro g e n a to m s or u n d erg o in elastic collisions w ith o th e r a to m s giv in g se c o n d ary or slow n e u tro n s . T h e slow n e u tro n s a re c a p tu re d b y th e n u clei o f elem en ts in th e rocks, a n d g am m a ra y s are p ro d u ced , th e s e bein g d e te c te d as w ith g a m m a -ra y logging.

I n m a n y w a y s the^ n e u tro n log is a log o f th e c o n te n t o f th e elem en t h y d ro g en , w h e th er i t b e in oil, m b rin e, in w a te r a d so rb ed in shale, or ch em ically co m b in ed in

som e m in e ral. G. D . H .

Drilling.

1093. Mud Programmes Aid in Economical and Efficient Drilling. R . E . D a n sb y . Oil Oas J 9.6.45, 44 (5), SO.— H u d p ro g ram m es c a n b e d iv id ed in to tw o g e n era l classifications : first, th o se fo r d e v elo p m en t a n d w o rk o v er w ells, a n d , second, th o se fo r w ild ca t wells. I n p re p a rin g a m u d p ro g ram m e fo r a d ev elo p m en t w ell o r fo r a w ild cat w ell it is ad v isab le to in clu d e m u d c h a ra c te ris tic s b a se d on a s tu d y o f th e av ailab le d a ta fo r v a rio u s d e p th s or, p re fe ra b ly , fo r v a rio u s geological sections e x p ected , in o rd er t h a t th e p la n b e slig h tly flexible. I t is n ecessary to allow fo r a slig h t flu c tu a ­ tio n in th e m u d c h ara cte ris tics se t u p fo r v a rio u s sections o f th e hole. A s a n exam ple, it is u su a lly im possible to keep th e d e n sity o f th e m u d th e sam e a t a ll tim es, a lth o u g h th is w ou ld b e n ecessary fo r m ax im u m efficiency. I t is u su a lly possible to k e ep m u d d e n sity w ith in a ra n g e o f 0-4 lb. gal.— i.e., 0-2 above or 0-2 below th e d esired d e n sity — b u t in m a n y eases it is possible w ith v e ry little effort to keep th is w ith in +0-1 lb ./g al.

range. I n m ak in g m u d p ro g ram m es, a b r u p t changes in m u d c h ara cte ris tics should n ev er b e p r o p o s e d ; fo r e x am p le, if 12-lb. /gal. m u d is desired a t 7000 ft. th e m u d p ro ­ gram m e sh o u ld call fo r a g ra d u a l in crease fro m n a tu r a l m u d o f a p p ro x im a te ly 10—11 lb. gal. b etw een 6000 a n d 6500 f t., a n d in cre ased g ra d u a lly fro m 11 to 12 lb ./g a l.

b etw een 6500 a n d 7000 f t. B asin g m u d d e n s ity on d e p th is o ften m islead in g , b ecau se th e well m a y b e ru n n in g m u c h h ig h er or low er th a n e x p e c te d fro m basic in fo rm a tio n . T herefore i t is n ecessary in m a n y cases to o b ta in p ro m p t p alaeo n to lo g ica l in fo rm a tio n as th e w ell is d r illing in o rd e r to c o rre late th e tw o wells.

I n areas w here ab n o rm a l or su b n o rm a l p ressu re s a re in d ic a te d b y som e p rev io u s drilling experience, m u ch m a te ria l a n d tim e c an b e sa v e d if th e m u d p ro g ram m e calls for a m u d t h a t w ill co n tro l th is a b n o rm a l c h a ra c te ris tic befo re th e fo rm a tio n is e n ­ co u n tered . T h is is especially tru e w here a b n o rm a l-p re ssu re s a lt-w a te r san d s a re en co u n tered . S a lt w a te r h e ld in th e fo rm atio n does n o t affect th e m u d w h e n th ese fo rm atio n s a re p e n e tra te d . M ud h a v in g a d e n sity o f 1—11 lb. /gal. m o re t h a n is r e ­ q u ired to b a la n ce th e fo rm atio n p ressu re u su a lly keep s th e w a te r in th e fo rm atio n , a n d th e m u d is n o t flo ccu lated . T y p ical p ro b lem s a re fu lly w o rk ed o u t. A. H . N.

1094. Drilling-Mad Problems, with Suggested Solutions for Several Types. R . E . D an sb y . Oil Gas J ., 16.6.45, 44 (6), 135.— I n p re p arin g a m u d for surface drilling it is im p o rta n t to h a v e a m u d w ith good p ro p e rtie s i f a good surface-casing cem en t jo b is t o b e o b tain e d . T h e surface c em en t jo b is im p o rta n t fo r sev e ral reaso n s, b u t especially b ecau se all th e flo w -o u t-p rev en tin g eq u ip m e n t w ill h a v e to d ep en d on th e

(4)

3 3 2 a

su rface p ip e if th e well trie s to blow o u t. To p ro v id e a good su rfa ce -d rillin g m u d i t is first n ecessary to o b ta in a n a b u n d a n t s u p p ly o f p u re w a te r, a n d seco n d , t o u se a good b e n to n ite -ty p e cla y w h ic h w ill p ro v id e th e low est po ssib le d e n s ity a n d a g o o d w all- b u ild in g m u d . I t is v e ry im p o r ta n t t o h y d r a te th e c la y a s m u c h a s p ossible. I f s te a m is a v ailab le m o re co m p lete a n d q u ick e r h y d r a tio n c a n b e effected b y stirrin g a n d h e a tin g th e c la y su sp en sio n w ith liv e ste a m , b u t c are m u s t b e ta k e n n o t t o g e t th e m u d to o h o t if ru b b e r p isto n s a re b e in g u se d in th e m u d p u m p s . In c re a s e d te m p e ra ­ tu r e a p p a re n tly d isperses c la y m o re c o m p le te ly t h a n c a n b e d o n e in co ld w a te r. I t sh o u ld b e re m e m b e re d t h a t in d rillin g su rfa ce fo rm a tio n th e m u d w ill n o t b e s u b je c te d to th e a g ita tio n a n d te m p e ra tu re s t h a t i t is in d eep er d rillin g , w h ic h a ssists in disp ersin g th e clay . 9 lb ./g al. m u d is g en erally acc ep ta b le , b u t th e d e n sity sh o u ld n e v e r exceed 9-5 lb ./g a l., unless surface fo rm atio n s h a v e b e e n ch arg e d b y p re v io u s blow -outs.

Since su rface fo rm a tio n s fre q u e n tly c o n sist o f fre s h -w a te r sa n d s, a m u d h a v in g a d e n s ity o f o n ly 10 lb ./g al. is o ften sufficient to p ro d u c e lo s t circ u la tio n .

Specific p ro b lem s o f su rfa ce sa n d s a re d iscussed, follow ed b y th o s e c o n n e c te d w ith d rillin g fro m th e su rfa ce p ip e to th e p ro d u c in g se c tio n . T h e p a p e r e n d s w ith a d e ta ile d in s tr u c tio n fo r p re p a rin g a low v isc o sity , lo w w a ter-lo ss m u d , fo r d rillin g th e

p ro d u c in g se c tio n . - A . H . N .

1095. Drilling-Mud Problems, with Suggested Solutions for Several Types. R. E.

D a n s b y . O il Gas J ., 23.6.45, 44 (7), 115.W h e n th e p ro b le m o f g a s-c u t m u d is e n c o u n te re d i t is a d v isa b le t o m a in ta in a lo w -v isc o sity a n d lo w -g e l-s tre n g th m u d a n d to ra is e th e m u d w e ig h t su fficien tly to p r e v e n t e n tra n c e o f g as in to th e ho le, a g ita ting t h e m u d a n d tr e a tin g i t to re d u ce th e gel s tr e n g th to p e rm it th e g a s t o b re a k o u t of t h e m u d . . Signs o f th is c o n d itio n a re u s u a lly a s follow s : (1) In c re a s e o f th e flow fro m th e w ell, o r in th e v o lu m e o f m u d in t h e p it. ( I f v e ry la rg e v o lu m e s o f m u d or g as a re com ing o u t, i t m a y n o t b e n o tic e d u n til th e m u d b e g in s t o k ic k o v e r th e b lo w -o u t p re v e n te r, b u t th is s h o u ld n e v e r h a p p e n , b e ca u se i t sh o u ld h a v e b e e n n o ted b y a n in crease o f th e flu id in th e p i t ; (2) O n close e x a m in a tio n m in u te g as b u b b les w h ich do n o t b r e a k o u t re a d ily show u p in th e m u d ; (3) A n o d o u r o f g as a t th e flow l i n e ; (4) U n e v e n flow o f m u d fro m w ell (gas p o c k e ts cau se m u d t o flow b y h e a d s ) ; (5) D is tilla te fo rm s e m u lsio n w ith t h e m u d , a n d w ill b e sh o w n b y ineffectiveness of ch em ical tr e a tm e n t. M eth o d s o f tr e a tm e n t a re fu lly d e ta ile d . C o n ta m in a tio n w ith s a lt, h e a v in g sh ale, c em en t, e tc ., a re sim ila rly d escrib ed , b o th fro m th e v iew p o in t of

d iagnose a n d tr e a tm e n t. ,A . H . N.

1096. Mud Pump Manifold Facilitates Drilling. W . A . S aw d o n . P etrol. Engr, J u n e 1945, 16 (9), 89.— T h e sa v in g s g a in e d th r o u g h th e u se o f s ta n d a rd is e d m anifolds fo r m u d p u m p s a re d is c u s s e d ; one su c h m a n ifo ld u n it is d e sc rib e d in d e ta il. F ro m t h e o p e ra tin g s ta n d p o in t m a n y a d v a n ta g e s h a v e b e e n o b se rv ed b y u se o f th e s ta n d a r d ­ ised m an ifo ld . W h en a w ell is b e in g rig g e d u p , th e n e c e ssa ry lin e s t o a n d fro m th e p u m p s w ill b e laid . T h e n o th e r lin es w ill b e fo u n d n ecessary , a n d a s tim e goes on c o n d itio n s m a y re q u ire a c o m p le x ity o f lin es t h a t w ill re s u lt in p o ss ib ly o n ly one m an k n o w in g ju s t w h ich lines go w h e re a n d w h a t v a lv e s c o n tro l c e r ta in flow s o f fluid.

I n c o n tra s t t o th is , th e m a n ifo ld h ere sh o w n h a s b e e n s ta n d a rd is e d a n d th e sam e design u se d on all rigs. R o u g h n e ck s, once th e y le a rn i ts o p e ra tio n , c a n go to a n y rig an d k n o w e x a c tly w h a t t o do. T h e o rig in al m a n ifo ld w a s ste n cille d w ith flow directio n s, b u t th es e w ere fo u n d to b e u n n e c e ssa ry a f te r th e m e n b e ca m e fa m ilia r w ith th e

m an ifo ld . «

P h o to g ra p h s illu s tra te t h e u n it. A . H . N .

1097. Collapse Safety Factors for Tapered Casing Strings. W . O. C lin ed in st. Oil W k ly , 25.6.45, 116 (3), 50.— T a p e re d s trin g s a re defin ed a s th o s e co n sistin g o f tw o or m o re w e ig h ts o r g ra d e s. S a fe ty fa c to rs ra n g in g fro m 1 J t o 1J b a s e d on m in im u m c ollapse re sistan c e o f casing, o r 14—2 o n a verage, h a v e been u se d w ith a p p a r e n t success fo r s tr a ig h t strin g s b y c asin g desig n ers o v er a p e rio d o f y e ars. W ith th e a d v e n t o f th e t a p e r e d strin g , c o n sid e ra tio n h a s b e e n g iv en t o re d u c tio n o f collap se re sistan c e u n d e r b ia x ia l lo ad in g e n co u n te re d a t ch an g e-o v er p o in ts . B ia x ia l lo a d in g h a s b een allo w ed fo r b y v a rio u s m ea n s, m u c h a s t h e s tr a in - e n e r g y th e o rie s o f y ield in g . C on­

s id e ra tio n sh o u ld also b e g iv e n to th e f a c t t h a t a ta p e r e d s trin g h a s m o re m a te ria l s u b je c te d to t h e lo ad in g p e r m itte d b y th e d esig n s a fe ty f a c to r t h a n a s tr a ig h t strin g .

(5)

ABSTRACTS. 3 3 3 a

I t seem s a p p a re n t t h a t th e likelihood o f failu re in a th ree -se ctio n ta p e re d strin g could b e th e sam e as th re e s tr a ig h t strin g s h a v in g th e sam e sa fe ty fa cto rs. I f th is is th e case, it w ou ld a p p e a r t h a t ta p e re d strin g s should be designed w ith so m ew h at h ig h er sa fe ty fa cto rs th a n s tra ig h t strin g s. N o rm al law o f p ro b a b ility is assu m ed for th e d is trib u tio n fu n c tio n o f casing collapse, a n d calcu la tio n s show t h a t th e fa c to r of s a fe ty fo r ta p e re d strin g s sh o u ld be a b o u t 10 % h igher th a n for a corresponding stra ig h t

strin g . . A. H . N .

1098. Casing Design. N . C. W ells. Petrol. E n g r, J u n e 1945, 16 (9), 140.—T he p rinciples o f designing casing to w ith s ta n d collapse, b u rstin g , a n d te n s io n stresses

safely are o u tlin e d . A . H . N .

1099. Problems Encountered in Cutting and Fishing Below 13,000 it. E . H . S h o rt, J r . Oil Oas J ., 30.6.45, 44 (8), 98.— T he use o f a n inside a n d outside c u tte r in releasing stu c k drill-p ip es a t a d e p th o f 13,000 ft. is d escribed in som e d e ta il. T h e inside c u ttin g to o l is com posed o f frictio n blocks t h a t a re in c o n s ta n t c o n ta c t w ith th e inside w alls of th e fish, slips t h a t e x p a n d on a ta p e re d m a n d re l w h en released b y a ro ta tio n , a n d k n iv es t h a t a re fo rced in to th e fish th ro u g h th e a c tio n o f a w edge. T h is to o l is capable o f o p e ratin g a t a n y d esired p lace in th e strin g . W ith th e to o l a t th e d e p th selected, ro ta tio n o f th e o p e ra tin g p ip e causes : (1) the. friction-blocks to fu n c tio n b y ten d in g to p re v e n t th e o u te r sleeve, w h ich c o n ta in s th e blocks a n d slips, from tu rn in g ; (2) it ten d s to unscrew th e b o tto m , or nose-piece, w hich is a tta c h e d to th e stem o f th e tool. A fte r 'no m ore th a n th re e o r fo u r re v o lu tio n s o f th e ro ta ry , th e slip a n d frictio n block-sleeve is free fro m th e ste m , a n d a d o w n w ard m o v em e n t o f th e o p e ra tin g pip e allows th e slips to e x p a n d on th e ta p e re d m an d re l. T h is a c tio n forces th e te e th o f th e slips to b ite in to th e w alls o f th e fish, th e re b y s e ttin g th e to o l. C u ttin g o p e ratio n begins b y low ering th e o p e ra tin g p ip e still fu rth e r, u n til th e w edge a rm s force th e c u ttin g k n iv es in to th e w alls o f th e pip e. T h is is a v e ry d elicate o p e ratio n , a n d req u ires g en tle ap p lic atio n o f w e ig h t to p re v e n t fra c tu re o f th e k n ife-p o in ts. A fte r th e c u ttin g to o l begins to ta k e w eig h t, ro ta tio n accom plishes th e c u t. A. H . N . 1100. Preparing Swamp Locations in Coastal Louisiana. N . W illiam s. Oil Gas J ., 9.6.45, 44 (5), 93.— T h e s h o rt p a p e r discusses som e p ro b lem s ra is e d in sw am p y lo ca ­ tio n s w hen drillin g is co n te m p la te d . . T y p ic al o f th e in g e n u ity o ften called fo r in such in stan ces w as t h a t show n b y a m a jo r c o m p a n y in u n d e rta k in g a deep w ild ca t te s t in one o f c o astal «Louisiana's re m o te cy p ress a n d gum -sw am p areas. D en sely w ooded, an d h a v in g fro m u p to 4 ft. o f w a te r a n d d e ca y ed v e g etab le refuse o v erly in g a m ore or less u n sta b le clay b o tto m w ith a th ic k ta n g le o f su b m e rg ed tim b e r, th is sw am p p re sen te d a n u m b er o f u n u su a l difficulties a n d com p licatio n s in th e w ay o f access to a n d p r e p a r a ­ tio n s o f drillin g sites. 1 T he w ay th ese difficulties w ere overcom e is described.

A. H . N . 1101. Wells Completed in the United States. A non. Oil W kly, 15.6.45, 118 (2), 9 3 ; 25.6.45, 118 (3), 7 3 ; 2.7.45, 118 (4), 6 1 ; 9.7.45, 118 (5), 6 3 ; 16.7.45, 118 (6), 77 ; 23.7.45, 118 (7), 69.

F ie ld W ild cat.

W eek en d ed 16th J u n e , 1945 23rd J u n e , 1945 3 0th J u n e , 1945 7 th J u ly , 1945 . 14th J u ly , 1945 21st J u ly , 1945

(—----

-A _ --- —

> (— --- —,

Oil Gas T o ta l Oil G as T o ta l

252 31 404 11 2 86

291 29 424 4 3 81

273 53 420 10 2 92

268 48 417 4 3 77

259 45 397 20 0 90

329 39 450 18 3

G. D 83 . H .

Production.

1102. Convection Currents in a Porous Medium. C. W . H o rto n a n d F . T. R ogers, J r . J . A p p l. P h y s ., J u n e 1945, 16 (6), 367-370.— T he problem is considered of th e c o n ­ v e ctio n o f a fluid th ro u g h a p e rm e ab le m ed iu m as th e re su lt o f a v e rtic a l te m p e ra tu re - g ra d ie n t, th e m ed iu m being in th e sh ap e o f a flat lay e r b o u n d ed above a n d below b y

(6)

a

p e rfe c tly co n d u ctin g m ed ia . I t a p p e a rs t h a t th e m in im u m te m p e ra tu re -g ra d ie n t fo r w hich c o n v ectio n c an occur is a p p ro x im a te ly ¡x ¡kgp0D 2, w here A2 is th e th e rm a l d iffu siv ity , g is th e .accelera tio n o f g ra v ity , p. is th e visco sity , k is th e p e rm e a b ility , a is th e coefficient o f cu b ic al ex p an sio n , p0 is th e d e n s ity a t zero te m p e ra tu re , a n d D is th e th ic k n e ss o f th e la y e r ; th is exceeds th e lim itin g g ra d ie n t fo u n d b y R a y le ig h fo r a sim ple fluid b y a fa c to r o f 16D 2/2lTr2kp0. A n u m erica l c o m p u ta tio n o f th is g ra d ie n t, b a se d on th e d a ta n o w a v ailab le, in d ic a te s t h a t c o n v e c tio n c u rre n ts should n o t o ccu r in su ch a geological fo rm a tio n as th e W o o d b in e s a n d o f E a s t T ex a s (west o f th e M exia F a u lt z o n e ) ; in view o f th e fa c t, h o w ev er, t h a t th e d is trib u tio n o f N aCl in th is fo rm a tio n seem s to re q u ire th e e x iste n ce o f co n v e c tio n c u rre n ts, a n d in view of th e a p p ro x im a tio n s in v o lv e d in a p p ly in g th e p re s e n t th e o ry , it seem s safe te n ta tiv e ly to conclude t h a t c o n v ectio n c u rre n ts do e x ist in th is fo rm a tio n , a n d t h a t th e expression g iv en ab o v e p re d ic ts excessive m in im u m g ra d ie n ts w h en a p p lie d to su c h a fo rm atio n .

A . H . N .

1103. Measurement of Capillary Pressures in Small Core Samples. G. L . H a ss le r an d E . B ru n n e r. P etrol. Tech., M arch 1945, 8 (2); A .I.M .M .E . T ech .^ P u b . N o. 1817, 1- 10.— I n stu d y in g cap illary p ressu re a n d th e w e ttin g o f oilfield rocks th e capillary d ia p h ra g m m e th o d h a s b e en used, b u t its u tility is sev erely lim ite d b y th e low d is­

p la c e m e n t p ressu res o f re a so n a b ly p e rm e ab le d ia p h ra g m s . T h erefo re a cen trifu g e m e th o d h a s b e en d ev elo p ed fo r m ak in g th is ty p e o f s tu d y .

T h e in itia lly s a tu r a te d core is c en trifu g e d a t in creasin g ra te s , a n d th e average s a tu r a tio n is m ea su re d a t each r a te w ith th e aid o f a stro b o sc o p ic device. T h e th eo ry a n d c alcu la tio n p ro c ed u re a re g iv en w h e reb y a cc e le ratio n s a n d s a tu r a tio n v alu es can b e c o n v e rte d in to a tr u e c u rv e o f c a p illa ry p re ssu re versus s a tu ra tio n . T h e re la tio n ­ sh ip b e tw ee n s a tu r a tio n a n d c a p illa ry p re ssu re u n d e r d ecreasin g s a tu r a tio n c an be q u ick ly d e te rm in e d fo r sm all-core sam p les. T h e sam p le is c e n trifu g e d alone, in th is re sp e c t differing fro m p re v io u sly d escrib ed tec h n iq u e s, a n d th u s th e w hole ra n g e of s a tu ra tio n s re q u ire d b y th e p ro p e rtie s of th e sa m p le a n d th e ra d ia lly v a ry in g c e n tri­

fu g a l force occurs w ith in th e sam p le. N e v erth e le ss th e c a lc u la tio n p ro c ed u re a d o p te d secures c o rre c t re su lts fro m sim p ly o b ta in e d v a lu e s o f th e a v era g e s a tu ra tio n . The te c h n iq u e c a n b e a p p lied w ith tw o im m iscible liq u id s, as w ell as w ith a g as a n d a liquid.

G. D . H .

1104. Average Permeabilities of Heterogeneous Oil-Sands. W . T . C ardw ell a n d R . L . P a rso n s. Petrol. Tech., M a rch 1945, 8 (2 ); A .I.M .M .E . T ech. P ub.’ N o. 1852, 1 -9 .— Oil reserv o irs h a v e co m p lica te d sh ap es, a n d n o n -u n ifo rm p e rm e a b ilitie s an d p o ro sities. I n p ra c tic a l a p p lic a tio n s o f th e th e o r y o f fluid-flow in p o ro u s m ed ia for p re d ic tin g re serv o ir b e h a v io u r, it m a y b e u sefu l to a p p ly a single e q u iv a le n t p e rm e ­ a b ility . T h is e q u iv a le n t p e rm e a b ility w ou ld give th e sam e flu x u n d e r th e sam e p re ssu re d ro p in a seg m en t o f th e sam e dim en sio n s as th e a c tu a l reserv o ir.

T h e e q u iv a le n t p e rm e a b ility o f a h etero g en eo u s o il-san d lies b e tw ee n a h arm onic v o lu m e a v era g e a n d a n a rith m e tic v o lu m e a v era g e o f th e a c tu a l p e rm e ab ilities, th e v o lu m e e lem en ts in th e s e av erag es b e in g w e ig h te d a cc o rd in g to th e in v erse squares (or h ig h er pow ers) o f th e ir d ista n c es fro m th e well. F o r p ra c tic a l p u rp o se s w h en th e p e rm e a b ility v a ria tio n s a w ay fro m a w ell a re u n k n o w n , it' is re aso n a b le to assu m e th a t th e e q u iv a le n t p e rm e a b ility o f a h e te ro g en e o u s o il-san d lies betw een, th e harm o n ic d e p th a v era g e a n d th e a rith m e tic d e p th a v era g e o f th e co re-sam p le p erm e ab ilities.

Q u a lita tiv e reaso n in g , b a se d on k n o w n re serv o ir c h a ra c te ris tic s , in d ic a te s t h a t th e e q u iv a le n t p e rm e a b ility lies n e a r to th e u p p e r, a rith m e tic , lim it t h a n to th e lower

h a rm o n ic, lim it. G. D . H .

1105. Multistage Acidization Increases Recovery and Productivity From Multizone Wells. K . B. B arn es. Oil O a s J ., 9.6.45, 44 (5), 99.— A cidizing c an p a y off h an d so m ely in in creasin g well p ro d u c tiv ity a n d , v e ry o ften , in o b ta in in g m o re re co v e ry . T h is is p a rtic u la rly tr u e in m u ltizo n e fo rm a tio n s. A s to th e c h a ra c te r o f lim e sto n es an d d o lo m ites, th e p o ro u s m ak e -u p is h ere b riefly review ed, w h e th e r fo ra m e n u la r, in te r ­ m e d ia te , o r in te rg ra n u la r. O n th e p ra c tic a l side, tw o jo b s on C lear F o r k w ells a t F u lle rto n a re d escrib e d in d e ta il : th e first w h ere th r e e zones w ere acid ized , in five stag es, w ith a to ta l o f 24,000 g a l . ; th e second, also a m u ltizo n e p ro d u c er, w ith fo u r sta g es to ta llin g 16,000 gal., b y E le c tric P ilo t co n tro l. A. H . N .

(7)

ABSTRACTS. 3 3 5 a

1106. Automatic Scrapers Used in West Edmond Oil Wells. K . M. F a g in . Petrol.

E ngr, J u n e 1945, 16 (9), 105-106.— T h e sc rap e r is designed to fit loosely in th e tu b in g an d to w eigh en o u g h to d ro p freely th ro u g h th e fluid w h en th e w ell is closed in. T he larg est d ia m e te r o f th e sc rap e r sh o u ld be a n av erag e of th e inside a n d d rift d iam e te rs o f th e tu b in g in w hich it is to b e used. T he th re e w ash er-sh ap ed fins are slip p ed on a ro d a n d w elded in place. T h ree angle braces a re w elded to th e to p a n d b o tto m fins, and fo u r angle b ra ce s a re w elded to th e cen tre fin for re in fo rcem en t. A fishing-neck is p ro v id ed on th e u p p e r e n d o f th e device to p e rm it rem o v al fro m th e well in ease it becom es s tu c k o r th e well p re ssu re becom es insufficient to flow it b a c k to th e C h ristm a s tree. T he fishing-neck o n |- in . ro d u sed fo r 2-in. tu b in g scrap ers sh o u ld b e u p s e t to f-in . to insure a n a d e q u a te grip. P re c a u tio n s to b e ta k e n w ith th e sc ra p e r a n d its m eth o d

of o p e ratio n a re discussed in som e d e ta il. A. H . N .

1107. Salt-Water Disposal in East Texas. Part 9. A non. P etrol. E n g r, J u n e 1945, 16 (9), 125.— T h e c h em istry o f th e closed a n d open sy stem s of tre a tin g s a lt w a te r before disposal is o u tlin e d . T h e p u rp o ses a n d fu n c tio n s o f a e ra tio n a re g iv en in som e

d etail. A. H . N.

1108. Explosive Mixtures in Air-Drive Operation. R . F . N ielsen a n d S. T . Y u s te r.

Petrol. Engr, J u n e 1945, 16 (9), 96.— T h e p o ssib ility t h a t th e gases p ro d u c ed along w ith th e oil in a ir-d riv e o p e ratio n s m a y b e w ith in th e explosive ra n g e is discussed.

The m eth o d of calcu la tin g th e explosive ra n g e fro m th e chem ical a n aly sis is illu s tra te d w ith th re e differen t sam ples o f casin g h ead gas, one of w hich w as v e ry n e a r th e explosive lim it. A sim ple field a p p a ra tu s , m ad e from easily a v ailab le m a te ria ls , for d e te rm in in g th e explosive lim its is d escribed, a n d th e m ea su re d lim its a re show n to agree reaso n ab ly

well w ith th e c alcu la te d values. A. H . N.

1109. Experimental Water-flood in a California Oilfield. E . C. B ab so n , J . E . S h e r­

borne, a n d P . H . Jo n e s. Petrol. Tech., M arch 1945, 8 (2); A .I.M .M .E . Tech. P u b . No. 1816, 1 -9 .— S tu d ies of th e C h a p m a n zone o f th e R ichfield field, O range C ounty, California, show t h a t th e oil reco v ery to d a te is a b o u t 19% o f th e oil in place, a n d co n tin u a tio n of th e p re se n t m e th o d s o f p ro d u c tio n m ig h t b e ex p ected to give a n u l ti ­ m a te yield of 2 1 -2 2 % . T he p rin cip al re co v e ry m ech an ism h as a p p a re n tly b een expansion of dissolved gas. A verage p o ro sity o f th e reserv o ir is a b o u t 31% , its a ir p e rm e ab ility is a p p ro x im a te ly 1100 m d., while th e in te rstitia l w a te r c o n te n t is believed to be 37% .

I n o rd er to d e te rm in e w h e th er w ater-flooding offers p rom ise o f becom ing a n eco n o m i­

cal m eth o d o f reco v erin g som e o f th e larg e p ro p o rtio n o f re sid u al oil believed to be p resen t, a n e x p erim e n tal w a ter-flooding o p e ratio n w as in s titu te d . A n a re a w as chosen w here th e w ells w ere ap p ro ac h in g a n u n p ro fitab le r a te o f p ro d u c tio n , w here n a tu ra l w a te r e n cro a ch m e n t w as a b se n t, a n d w here th e sa n d w as th in , so as to reduce dam age if th e e x p erim e n t failed. A single in je c tio n w ell w as d rilled b etw een old p ro d u cin g wells, a n d a w a te r-tre a tin g p la n t using alu m flocculation a n d ch lo rin atio n was designed a n d b u ilt. T h is p la n t is d escribed in som e d e ta il.

W a te r h as b een in je c te d in to th e in p u t well for six m o n th s a t ra te s in excess o f 100 b rl./d a y . P ro d u c tio n fro m one o f th e n e ig h b o u rin g wells h as increased m ate ria lly , th e oil h a v in g risen fro m 7 to 30 b rl., a n d th e w a te r fro m 1 to 40 b rl./d a y . T h is well has p ro d u ced n e a rly 3000 b rl. o f oil ab o v e t h a t w hich it w ould n o rm ally h a v e p ro d u ced .

D efinite conclusions re g ard in g th e econom ic success of w ater-flooding in th e C h a p ­ m an zone a re n o t y e t ju stified , b u t th e ex p e rim e n t show s t h a t w a te r c an be in je c te d c o n tin u o u sly in to th e zone, a n d t h a t th is w a te r will displace ap p reciab le a m o u n ts of

oil fro m th e sa n d . CL D . H .

1110. Turner Valley Field Gets First Gas-Repressuring Programme. J . A. M cC utchin.

Oil G a s J ., 9.6.45, 44 (5), 89.— T h e B ritish A m ercian re p ressu rin g a n d g as-co n serv atio n

p ro g ram m es a re briefly discussed. ' A .-H . N .

1111. Calculation of Static Pressure Gradients in Gas Wells. M. J . R z asa an d D. L.

K a tz. P etrol. Tech., M arch 1945, 8 (2); A .I.M .M .E . Tech. P u b . No. 1814, 1-14.—

F o r m a n y y e a rs reserv o ir p re ssu res h a v e b een c o m p u te d from th e w ell-head pressures o f gas-w ells. T h ree m eth o d s o f c o m p u tin g th e s ta tic p re ssu re g ra d ie n ts in n a tu ra l

(8)

a

gas w ells a re p re s e n te d in d e ta il to show th e a ssu m p tio n s m ad e . A series o f c h a rts a re d ev elo p ed fro m w h ich th e p re ssu re g ra d ie n ts m a y b e re a d w h en t h e w ell-head p ressu re, th e w ell-fluid g ra v ity , d e p th , a n d a v era g e w ell te m p e ra tu r e a re know n.

T h ere is also a c h a r t fo r e s tim a tin g th e w ell-fluid g r a v ity fro m th e c o n d e n s a te c o n te n t a n d th e s e p a ra to r gas g ra v ity . E x a m p le s o f th e a p p lic a tio n o f th e d iffere n t form ulae a n d c h a rts a re given.

D u rin g flow th e w ell-bore a n d su rro u n d in g e a r th g ra d u a lly in crease in te m p e ra tu re o v er th e n o rm a l e a r th te m p e ra tu re g ra d ie n t. H e n ce a w ell w h ic h h a s b e e n flowing p rio r to m e a su re m e n t o f th e w ell-h ead p re ssu re w ill h a v e a h ig h e r a v era g e w ell tem p e ra ­ t u r e th a n a t th e rm a l e q u ilib riu m . T here fo re f u r th e r re fin e m e n ts in th e c o m p u ta tio n o f p re ssu re g ra d ie n ts in gas-w ells t h a t h a v e b e en flow ing ju s t b e fo re th e m ea su re m e n t o f th e w ell-h ead p re ssu re will in v o lv e som e allo w an ce fo r th is fa c to r. A fte r a lapse o f a d a y a fte r flow th e r e m a y s till b e in a ccu racies if n o allow ance is m a d e fo r th is

fa c to r. Gt. D . H .

Oilfield Developm ent.

1112. Petroleum Engineering Education and the Quantitative Approach. H . H . P ow er. Petrol. Tech., M arch 1945, 8 (2), A .I.M .M .E . T ech. P u b . N o. 1815, 1-8.—- T h e s tu d e n t in p e tro le u m e n g in eerin g m u s t h a v e a so u n d p r e p a r a tio n in basic fu n d a ­ m e n ta ls . H e m u s t b e ab le to a n a ly ze h is p ro b lem s q u a n tita tiv e ly a n d recognize s e p a ra te ly th e v a rio u s e le m en ts in v o lv e d . H e m u s t k n o w w h a t q u a litie s go to m ake u p en g in eerin g ju d g m e n t— t h a t is, skill in re ac h in g th e b e s t p o ssib le conclu sio n under t h e lim ita tio n s o f a llo tte d tim e a n d re q u ire d acc u rac y . H e m u s t a p p re c ia te th e im p o rta n c e o f co st a n d o f p ra c tic a l econom ics. H e m u s t b e a b le to organize his th o u g h ts a n d to ex p ress th e m c le arly in Speech a n d in w ritin g . H e m u s t b e willing a n d a b le to a d ju s t h is p e rs o n a lity t o h is e n v iro n m e n t. F in a lly , h e m u s t h av e a d ecid ed in te re s t in c o n tin u e d p ro fessio n al d e v elo p m e n t, a n d a so u n d p h ilo so p h y of

social v alu es. G. D . H .

1113. The Nation’s [U.S.A.] Reserves of Natural Gas. E . d e G olyer. O il Gas J ., 23.6.45, 44 (7), 76.— I n th e n e a r f u tu r e i t is lik e ly t h a t 10,000 cu. ft. o f gas m ay be re g a rd e d a s a p o te n tia l b a rre l o f gasoline. H e n ce gas c o n s e rv a tio n is o f im m ediate im p o rta n c e .

U .S .A . h a s a p ro v e d gas re se rv e exceed in g 140 m illio n m illio n cu b ic fe et, 91% of w h ich is free g as-cap gas. T hese reserv es a re a t 16-4 lb ./s q . in. a n d 60° E . The reserv es a re d is trib u te d a s follow s : D is tric t 1, 5,000,000 m illio n cu. f t . ; D istric t 2,

17.000.000 m illio n cu. f t . ; D is tric t 3, n e a rly 104,000,000 m illio n cu. f t . ; D is tric t 4, 2.000.000 m illio n cu. ft. ; D is tric t 5, 13,000,000 m illio n cu . ft.

I n 1944 th e t o ta l p ro d u c tio n o f n a tu r a l gas, in clu d in g t h a t flare d o r w a ste d , was a b o u t 4,000,000,000,000 cu. ft.

I t is o n ly re aso n a b le to e x p e c t t h a t w ith in creasin g d e p th th e r a tio o f gas to oil d isco v ered w ill in crease. A d d itio n a l gas c a n b e fo u n d if th e r e is n e e d fo r it. R a th e r t h a n o b s tru c t o r a id in th e o b s tru c tio n o f th e e x p a n s io n o f g as m a rk e ts , su p p ly , and th e fin d in g a n d develo p in g o f a d d itio n a l su p p lies o f n a tu r a l gas, a ll fe d era l agencies a n d all th e S ta te re g u la to ry b o d ies sh o u ld a id th e n a tu r a l g as p ro d u c e rs to g e t all a v ailab le n a tu r a l gas in to pipe-lines, so as to in cre ase th e n a tu r a l w e a lth o f th e in d iv i­

d u a l S ta te s a n d th e n a tio n as a w hole. A d e q u a te p ric e is th e g re a te s t conserving ag en t.

M an y S ta te s p e rm it oil p ro d u c tio n w ith g a s -o il ra tio s u p to 2000 cu . f t./b r l., a lth o u g h cases o f fields w ith m o re th a n 1000 cu. f t./b r l. dissolved a re ra re , a n d th e general a v era g e is 500-600 cu. f t./b r l. T h e re is th e erro n e o u s n o tio n t h a t i t is n o t w a ste fu l to b u r n so lu tio n gas, since i t h a s b e en effective in b rin g in g oil to th e su rface.

M a rk ets a n d su ita b le p rices w ill re d u c e w aste . I n C alifo rn ia less t h a n 1 % o f th e to ta l gas p ro d u c e d in 1944 w as w a ste d , b ecau se th e g as sells a t 6 -1 2 c e n ts./1 0 0 0 cu. ft.

G . D . H . 1114. Fullerton Pool is Guide-tfost in Developing Clear Fork and Devonian Reserves.

K . B . B arn es. Oil Gas J . , 2.6.45, 44 (4), 69.— C lear F o rk p ro d u c tio n w as o p en ed a t F u lle rto n in F e b ru a ry 1945, a n d D e v o n ian p ro d u c tio n in A u g u s t 1944. T o th e n o r th C lear F o rk p ro d u c tio n o ccurs a t L u b b o ck , L u b b o c k C o u n ty , S m y er, H o c k le y C o u n ty , R u ssell, E u b o c k a n d W asso n , G aines C o u n ty , to th e s o u th in E c to r, W in k le r, W a rd ,

(9)

ABSTRACTS. 3 3 7 a

C rane a n d P ecos C ounties. I n A ndrew s C o u n ty th e re are th e U n io n (W ichita-A lbany) a n d th e E m b a r (Clear F o rk ) fields. D ev o n ian p ro d u c tio n h as b een fo u n d in th e T X L p ool of E c to r C o u n ty , a n d b etw ee n T X L a n d F u llerto n .

F u lle rto n h a s a b o u t 200 C lear F o rk wells. I t s reserves a re e s tim a te d a t 250-300 m illion b a rre ls. T he C lear F o rk p a y s occur a t 6800-7300 ft. W ells ta k e 40-50 d ay s to drill. Special m u d s a re n e ed e d fo r th e Salado sa lt fo rm atio n . A ll b u t 4 o f th e w ells flow.

G eological, p ro d u c tio n , a n d reserv o ir d a ta are being collected, a n d a re being s tu d ied w ith re g a rd to th e p o ssib ility o f p re ssu re m ain ten a n ce . S tra te g ica lly selected wells hav e b een cored.

A 12,500 M. cu. f t./d a y n a tu r a l gasoline p la n t h a s b een b u ilt.

P ressu re m ain te n a n c e m a y increase th e re co v e ry to 60 m illion brl.

S tru c tu ra lly F u lle rto n is a b ro a d n o r th - s o u th high. T he h ig h est a n d edge wells differ in ele v atio n b y 400 ft. in th e C lear F o rk . T h e m a in s tru c tu re h as n u m ero u s local highs. O v er m u ch o f F u lle rto n th e re a re 3 Clear F o rk pay-zones. I n th e c e n tra l area th e U p p e r zone to ta ls 70 ft. in th ic k n e s s ; th e second zone 10-50 ft. low er is 200 ft. th ic k a t its m a x im u m ; th e th ir d zone averages 150 ft. in th ick n ess. M ost of th e to p a n d b o tto m p ay -zo n es a re dolom ite. T he b e tte r p ay -sectio n s h a v e p e r ­ m eabilities o f 1-10 m d ., b u t m u ch o f th e p e rm e a b ility is u n d e r 1 m d . T h e p o ro sity is 8 -1 0 % . T he m id d le p ay -zo n e h a s a p o ro sity o f 15% a n d a h ig h er p e rm e a b ility (generally u n d e r 50 m d .).

T he pro v e d a re a in th e U p p e r C lear F o rk oil-zone m a y b e 30,000 acres. T he original b o tto m -h o le p ressu re w as 3000 lb ./sq . in. C lear F o rk p ro d u c tio n a t th e beg in n in g of 1945 to ta lle d 3,233,258 b rl. T h e D ev o n ian h a d p ro d u c ed 27,785 brl. a t th e sam e d ate.

T he w ells receive acid tr e a tm e n t w hich s u b s ta n tia lly increases th e p ro d u c tiv ity

index. G. D . H .

1115. Argentina’s Oil Production Registers Slight Drop. A non. Oil Gas J ., 9.6.45, 44 (5), 76.— I n 1944 A rg e n tin a p ro d u c ed 3*852,088 cu. m . of oil, 96,324 cu. m . less th a n in 1943. T he S ta te fields p ro d u c ed 2,576,369 cu. m . in 1944. I t w as n ecessary to im p o rt crude a n d refined oils, a n d ra tio n in g h a d to be in s titu te d . G. D . H . 1116. First-quarter Oil Output in Bolivia 75,680 Brl. A non. Oil Gas J ., 9.6.45, 44 (5), 76.— B olivia p ro d u c ed 75,680 b rl. o f crude in th e first q u a rte r o f 1945, a n d 40,985 brl. o f oil w as p ro cessed a t C am iri a n d S a n a n d ita . G. D . H . 1117. Venezuela Production up 36-2 Per Cent. A non. Oil Gas J ., 9.6.45, 44 (5), 76.— I n th e first q u a rte r o f 1945 V enezuela p ro d u c ed a n av erag e of 771,252 b rl./d a y , 36-2% m ore t h a n in th e corresp o n d in g p e rio d o f 1944. 50-5% o f th e oil w as p ro v id ed b y Creole.

T he c o u n try ’s p o te n tia l is e stim a te d to be 900,000 b rl./d a y a n d m a y be 1,000,000

b rl./d a y a t th e b eg in n in g o f 1946. G. D . H .

1118. Cuba’s Newest Field Contains 14 Producers. A non. Oil Gas J ., 9.6.45, 44 (5), 76.— T he J a ra h u e c a field o f S a n ta C lara P ro v in ce, C uba, is c u rre n tly p ro d u cin g 4 0 0 - 500 b r l./d a y fro m serp en tin e a t d e p th s ran g in g do w n to 1800 ft. T h e M otem bo field

is being ra p id ly d ep leted . G. D. H .

1119. Ecuador’s Crude Output for Quarter 27,393,324 gal. A non. Oil Gas J ., 16.6.45, 44 (6), 98.— I n th e first q u a rte r o f 1945 E cu a d o r p ro d u ced 27,393,324 gal. o f crude.

T he figure fo r th e first q u a rte r o f 1944 w as 26,834,472 gal., a n d fo r th e la s t q u a rte r 30,261,084 gal. 618,235,000 cu. ft. o f n a tu r a l gas w as p ro cessed y ield in g 403,177 gal.

o f n a tu r a l gasoline in th e first q u a rte r o f 1945. G. D . H .

1120. Valuable East Indian Oilfields Wrested from Japanese Army. A non. Oil Gas J ., 7.7.45, 44 (9), 64.— I t is re p o rte d t h a t th e Ja p a n e s e h a d n o t b e en able to raise th e B orneo oil p ro d u c tio n to m ore t h a n 245,000 b rl./m o n th , a b o u t o n e -th ird o f th e p re-w ar o u tp u t, in sp ite o f drilling 200 new wells.

I n 1940 T a ra k a n gav e 4,374,000 b rl. o f cru d e fro m 500 wells. T he B a lik p a p a n a n d S a m a rin d a a rea s y ield ed 9,476,000 b rl. o f cru d e in 1940, fro m 400 wells, 1500- 3300 ft. deep.

(10)

T h ere a re possib ilities of new fields in th e B a rito e stu a rie s o f D u tc h B o rn e o , in th e m a rs h y reg io n ro u n d B a n d je rm asin . T h e M iri fields gav e 1,314,000 b rl. o f oil in 1940, a n d th e S eria field y ield e d 5,732,559 b rl. fro m w ells 1800-6000 ft. deep. T h ere are p ro sp e c ts o f new fields a t M u k a in S a ra w a k a t L a b i in c e n tra l B ru n e i, a n d a t L a h a d D a tu a n d T aw au in B ritis h N o rth B o rn eo , ju s t n o r th o f T a ra k a n . G. D . H .

Tr a n s p o r t a n d St o r a g e.

1121. Experimental Investigation of Turbulence Diffusion— A Factor in Transportation of Sediment in Open-Channel Flow. B . R . V a n D rie st. J . A p p l. M ech., J u n e 1945, 12 (2), A 91-A 100.— A n e x p e rim e n t w as c o n d u c te d fo r th e p u rp o se o f m easu rin g c e rta in diffusion p ro p e rtie s o f w a te r flow ing in a n o p en c h an n e l. B y m ea su rin g th e d isp lac em e n ts o f im m iscible globules, m ea n -sq u a re d e v ia tio n d a ta w ere o b ta in e d a t v a rio u s d e p th s fo r th re e ra te s o f flow in a sm o o th c h an n e l, a n d fo r one r a te in an artificially ro u g h e n ed ch an n el, all flows h a v in g th e sam e to ta l d e p th . T h eo ry w as rev iew ed to p ro v id e th e re a d e r w ith th e n e ce ssa ry b a c k g ro u n d fo r a n aly sis o f th e d a ta . I t w as seen t h a t it w as possible to fit e ith e r one o f tw o ty p e s o f c u rv e to th e d a ta p re s e n te d in th is p a p e r, one co rre sp o n d in g to a p o w e r-co rre latio n law a n d th e oth er to a n e x p o n en tial-co rre la tio n law . Since th e tw o c u rv es differed w id ely in th e ir c h a ra c te ris tic s , it w as c o n clu d ed t h a t th e e x p e rim e n ta l d a ta , in sp ite o f th e fa c t t h a t a b o u t 400 o b se rv atio n s w ere ta k e n for e ac h m ea n -sq u a re d e v ia tio n p o in t, w ere n o t of sufficient p recisio n to w a r r a n t th e c o m p u ta tio n o f seco n d d e riv a tiv e s a n d , co n seq u en tly , th e d e te rm in a tio n o f th e sh a p e o f th e c o rre la tio n cu rv e. O f th e tw o c u rv es suggested, th e one co rresp o n d in g to th e e x p o n e n tia l-c o rre la tio n law is o f m o re in te re s t because o f its close co n fo rm ity to th e e x p ec te d n a tu r e o f th e c o rre la tio n c u rv e — i.e., a t a tim e in te rv a l o f zero th e v a lu e o f th e c o rre la tio n coefficient is u n ity , a n d a t a tim e in terv al larg e c o m p a red to T 0 th e v a lu e o f th e defin ite in te g ra l o f th e c o rre la tio n fu nction

ap p ro ac h es a finite q u a n tity . A. H . N.

1122. Operation “ Pluto.” A non. P et. T im e s, 1945, 49, 433.— B y th e successful acc o m p lish m en t o f o p e ra tio n “ P lu to ” (P ip e-L in es U n d e r T h e O cean) th e 1000-mile p ip e-lin e sy s te m in B rita in w as e x te n d e d b y th e la y in g o f som e 20 p ip e-lin es u n d e r the E n g lish C hannel fro m th e Isle o f W ig h t a n d D u n g e n ess to C h erb o u rg a n d Boulogne, re sp ec tiv e ly . Tw o ty p e s o f p ip e w ere laid : (1) th e H a is cable, w h ich in co n stru ctio n resem b led th e su b m a rin e electric p o w er cable, b u t w ith th e core a n d in s u la tio n absent.

T h is h a d a c a p a c ity o f 30,000-40,000 gal. p e r d a y . F ir s t te s ts w ere c a rrie d o u t on cables laid across th e B risto l C hannel, a n d fro m th e re s u lts o b ta in e d th e d ia m e te r of th e cable w as in creased to 3 in. ; (2) T h e H a m el p ip e-lin e, m a d e u p o f 20-ft. len g th s of 2 in. (la te r 3 in.) d ia m e te r steel pip e, w elded to g e th e r to th e re q u ire d le n g th . The re s u lta n t p ip e w as w o u n d o n d ru m s o f 30 ft. o r m o re d ia m e te r, fro m w h ich it was u n w o u n d re la tiv e ly s tra ig h t. F ir s t successful p ip e-lay in g tr ia ls to o k p lac e in th e T h am es E s tu a r y a n d in th e S olent. T h e c o n stru c tio n o f th e H a is cab le a n d th e H ais cable coupling, th e m a n u fa c tu re o f th e H a m e l steel p ip e, as w ell as th e m eth o d s of la y in g each across th e C hannel, a re d escrib ed in d e ta il. R e fere n ce is m a d e to th e p erso n n el a n d th e firm s c o n cern ed in th e p ro je c t. L . B.

1123. Johnson Coupling. A non. P et. T im es, 1945, 49, 346.T h e c o n s tru c tio n o f th e J o h n s o n coupling, som e 200,000 o f w h ich w ere u se d as th e p ip e -jo in ts in th e 1000-mile p ipelines fo r B r ita in ’s u n d e rg ro u n d p e tro l g rid , is d e sc rib ed w ith illu stra tio n s. O ther a p p lic a tio n s o f th e c o u p lin g a re re fe rre d to . L . B.

Re f i n e r y Op e r a t i o n s.

Refineries and Auxiliary Refinery Plant.

1124. Stresses in a Cylindrical Shell Due to Nozzle or Pipe Connections. G. J . Schoes- sow a n d L . F . K o o istra . J . A p p l. M ech., J u n e 1945, 12 (2), A 107-A 112.— R e s u lts are re p o rte d o f a stra in -g u a g e te s t c o n d u c te d o n a 54-in. d iam . c y lin d rica l shell to w hich

(11)

ABSTRACTS. 3 3 9 a

w as a tta c h e d tw o 12-in. d iam . pipes. T h e p ip es w ere su b je c te d to d irec t ax ial-ten sio n loading, d ire c t ax ial-co m p ressio n loading, a n d tra n s v e rse b e n d in g m o m en ts. T his c o n stru ctio n sim u la tes th e c o n d itio n s ex istin g in b oiler dru m s, p ressu re piping, h y d ra u lic pen sto ck s, e tc ., w here p ip e con n ectio n s are s u b je c t to forces a n d m o m en ts t h a t develop stra in s in th e shell to w h ich th e p ipes a re a tta c h e d . M o d erate load in g a p p lie d to th e pipes re su lte d in 20,000-p.s.i. b e n d in g stresses in th e shell. T hese stresses a re o f a m ag n itu d e t h a t d e m a n d s th e re sp ec t a n d a tte n tio n o f th e designers. B y p u b lic a tio n of th ese d a ta th e a u th o rs h o p e to s tim u la te in te re s t in f u rth e r e x p erim e n tal a n d a n aly tical in v es tig a tio n s o f th e p ro b lem , w hich will e v e n tu ally estab lish a basis for pred ictin g th e m a g n itu d e o f stresses in cy lin d rical shells. Such d a ta a re n o t now

available. / A. H . N

1125. Method for Field Lining Vessel Heads with Stainless-Steel Strip. K. E . L u g er.

Oil Gas J ., 12.5.45, 44 (1), 92.— T he h e a d a n d p a r ts of th e vessel a re lin ed w ith a series of sh o rt len g th , n a rro w -w id th strip s, or p arallel-ed g e s trip s in h errin g b o n e p a tte rn . I t is claim ed t h a t th is m e th o d is sim ple, does n o t re q u ire e la b o rate d eta ilin g in th e d raftin g room , ta k e s less tim e since sm all pieces allow fit-u p flex ib ility , av oids w aste from scrap, a n d th e sam e sto c k is u se d for lining side w alls a n d heads.

A scale p r in t o f th e to w e r show ing a p p ro x im a te dim ensions o f th e h e ad is p re p are d , an d from sim ple fo rm u lae th e size o f w edges is d e te rm in e d . I n w elding p ro ced u re th e pieces m u s t n o t o v erlap , a n d a figure is g iv en for sequence fo r w elding th e strip s

in th e h errin g b o n e p a tte rn . G. A. C.

1128. Heat Transfer Equipment. Principles and Constructional Details of Typical Tubular Units are Reviewed to Aid a Better Understanding of Maintenance and Repair of Exchangers. P . W . B laylock. N a t. Petrol. N ew s, Tech. Sect., 3.1.45, 37 (1), R .1 6 .—

B riefly describes a n d illu stra te s v a rio u s ty p e s o f h e a t-tra n s fe r e q u ip m e n t u se d in in d u stry , p a rtic u la rly o f sh e ll-a n d -tu b e c o n stru c tio n w ith ty p e s o f flo atin g h e ad s or flexible ex p an sio n jo in ts. T h eir design a n d c o n stru c tio n a re discussed, a n d th e accepted codes, specifications, a n d to le ran c es a re given. T u b e len g th s, d iam eters, thicknesses, spacing a rra n g e m e n ts, tu b e -s h e e t m a te ria ls , a n d th e tools for, a n d m eth o d s of, ex p an d in g th e tu b e s , baffling, g a sk ets, a n d b o lts a n d p ressu re te s ts a re discussed.

W . H . C.

1127. Refining Mixtures of Kansas-West Texas Crude Oil Proves Practicable. A . L.

F o s te r a n d R . B . T u ttle . Oil Gas J ., 20.1.45, 43 (37), 58.— A p re lim in a ry re p o rt is p re sen te d o f th e exp erien ce o f one refin ery w hich h as b een processing a corrosive crude m ix tu re fo r a b o u t six m o n th s. T h e m ix tu re is com posed o f a p p ro x im a te ly 90% of a K a n sa s crude a n d 10% o f th e S la u g h te r so u r crude o f W est T exas. T he S lau g h ter cru d e oil c o n ta in s 325 lb./lOOO b rl. o f s a lt, 2-7 Ib./lOOO b rl. free a c id ity a n d p o ten tial a c id ity 22-7 lb./.lOOO b rl. ; i t h a s a su lp h u r c o n te n t o f 1-92% . T h e a m o u n t of S la u g h te r crude u se d in th e m ix tu re is co n tro lled b y th e follow ing fa cto rs : w hen kerosine is being m ad e conform ing to a m ax im u m su lp h u r c o n te n t of 0-10 % , n o t m ore th a n 10% c an b e m ix e d . I f kerosine is n o t bein g m ad e , it is possible to use up to 15% o f th e S la u g h te r cru d e a n d o b ta in a gasoline conform ing to specification.

W ith such m ix tu re s m a x im u m corrosion occurs b etw een 650° a n d 800° F . T h e m ix tu re of th e tw o crudes is d e sa lte d b y m ix in g w ith 3 % o f alk alin e w a te r a n d p assin g it th ro u g h a h e a t ex ch an g er to e n te r th e b o tto m o f a to w e r a t 250° F ., th e m ix tu re flowing o u t a t th e to p to a s e ttlin g receiver. T h is p ro ced u re rem oves 9 0% o f th e sa lt an d a larg e p ro p o rtio n o f th e H2S. T he desalted m ix tu re is th e n p re h ea te d b y passage th ro u g h a n e x ch an g er receiving h e a t fro m th e v a p o u rs fro m th e m a in crack in g u n its . As corrosion is first en co u n tere d h ere, th e ex ch an g er tu b e s a re m ad e of 11 -1 3 % Cr, an d th e shell is lin ed w ith th e sam e alloy, strip w elded. T h e s tre a m th e n flows to a tow er for d eb u ta n izin g , a n d th en c e th ro u g h a v a p o u r h e at-ex c h a n g er, w here it is h e a te d to 600° F . a g a in st crack ed v a p o u rs, befo re en te rin g th e s tra ig h t-ru n tow er.

T his v a p o u r h e at-ex c h a n g er is s itu a te d in th e u p p e r sec tio n o f th e v a p o u r se p a ra to r of th e larg e c rac k in g p la n t, a n d is e q u ip p ed w ith 5 % Cr tu b es, 7% Cr h ead ers, a n d 11- 13% Cr baffles. T h e shell side is lin ed w ith 11-13 Cr s trip . A sm all a m o u n t o f lim e s lu rry is in je c te d in to th e e x ch a n g er in le t stre am . C orrosion in th e s tra ig h t-ru n tow er is fo u n d o nly a t th e h o t c rude in let, so th is sectio n is lin ed w ith 11-13 % Cr. A d m ir­

a lty m e ta l tu b e s a re u sed in th e condensers, a n d w a te r is in je c te d w ith th e v a p o u rs

Cytaty

Powiązane dokumenty

Pap ers and ArtiqJ.es.—The Council invites Papers and Articles both for reading a t Ordinary Meetings of the Institute and for publication in the Journal.. All

Having agreed th a t a piece of research is suitable for sponsorship by the industry, the Research Committee will establish a Group, and appoint from its members

Mann in Die Ghemie, 1944, 1—2, reviews briefly developments in Germany in production of fatty acids by oxidation of paraffins, mainly Fischer-Tropsch wax, and

ABBREVIATED TITLES USED IN THE ABSTRACTS.. Abbreviated

United States Bureau of Standards Journal of Research, Washington.. California

ABBREVIATED TITLES USED IN THE ABSTRACTS.. Abbreviated

Abbreviated Title.. Glückauf

129 Some Observations on the Mechanism of the Development of Extreme Pressure Lubricating Properties by Reactive Sulphur in Mineral Oils.. 154 Analysis of Trinidad