• Nie Znaleziono Wyników

Spis Tabel

W dokumencie Index of /rozprawy2/11656 (Stron 53-67)

Tabela 1. Porównanie wybranych właściwości fizycznych rtęci i galinstanu . . . 26

Tabela 2. Zestawienie parametrów charakterystycznych dla czujników elektrochemicznych opisanych w dysertacji . . . 48

Tabela 3. Zestawienie parametrów pomiaru oraz uzyskanych rezultatów aplikacji

55

Bibliografia

[1] A. Hulanicki, S. Głab, F. Ingman, Chemical Sensors: Definitions and Classification, Pure

Appl. Chem. 63 (1991) 1247–1250. doi:10.1515/iupac.63.0073.

[2] Z. Brzózka, W. Wróblewski, Sensory chemiczne, Oficyna Wydawnicza Politechniki

Warszawskiej, Warszawa, 1999.

[3] D.A. Skoog, D.W. West, F.J. Holler, S.R. Crouch, Podstawy Chemii Analitycznej, Tom 1

i 2, Wydawnictwo Naukowe PWN, Warszawa, 2006.

[4] A. Hulanicki, Współczesna chemia analityczna. Wybrane zagadnienia, Wydawnictwo

Naukowe PWN, Warszawa, 2001.

[5] B. Baś, Sensory elektrochemiczne z odnawialną elektrodą pracującą. Rozprawa

habilitacyjna, Kraków, 2010.

[6] W.W. Kubiak, J. Gołaś, Instrumentalne metody analizy chemicznej, Wydawnictwo

Naukowe Akapit, Kraków, 2005.

[7] W. Kutner, J. Wang, M. L’Her, R.P. Buck, Analytical Aspects of Chemically modified

Electrodes: Classification, Critical Evaluation and Recommendations, 1998.

[8] B. Baś, Czujniki woltamperometryczne z odnawialną powierzchnią elektrody pracującej,

in: M. Drach (Ed.), Nowe Trendy w Fizykochem. Badaniach Gran. Faz Pr. Zbior., Lublin, 2018: pp. 247–263.

[9] C.K. O’Sullivan, G.G. Guilbault, Commercial quartz crystal microbalances - Theory and

applications, Biosens. Bioelectron. 14 (1999) 663–670.

doi:10.1016/S0956-5663(99)00040-8.

[10] A.J. Bard, L.R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd

ed., John Wiley & Sons, Inc, New York, 2001.

[11] A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical

chemistry and the SIGNIFICANCE mnemonic of green analytical practices, TrAC - Trends Anal. Chem. 50 (2013) 78–84. doi:10.1016/j.trac.2013.04.010.

[12] A. Kurowska-Susdorf, M. Zwierżdżyński, A.M. Bevanda, S. Talić, A. Ivanković, J.

Płotka-Wasylka, Green analytical chemistry: Social dimension and teaching, TrAC - Trends Anal. Chem. 111 (2019) 185–196. doi:10.1016/j.trac.2018.10.022.

[13] R. Marcinkowska, J. Namieśnik, M. Tobiszewski, Green and equitable analytical

chemistry, Curr. Opin. Green Sustain. Chem. 19 (2019) 19–23.

doi:10.1016/j.cogsc.2019.04.003.

[14] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier, Amsterdam,

Holandia, 2005.

[15] J.O. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern electrochemistry.

Fundamentals of Electrodics, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow Print, 2002. doi:10.1016/0022-0728(93)80424-g.

[16] L.M. Moretto, K. Kalcher, Environmental Analysis by Electrochemical Sensors and

Biosensors. Volume 1: Fundamentals, Springer, Ottawa, Ontario, Canada, 2014.

[17] C.M.A. Brett, A.M.O. Brett, Electrochemistry: Principles, Methods, and Applications,

Oxford University Press, Oxford, 1993.

[18] Sustainable Development goals - improving human and planetary wellbeing, Glob.

Chang. 82 (2014).

[19] D.K. Zuzek, Świadomość ekologiczna przedsiębiorców jako element zrównoważonego

rozwoju, Stud. Ekon. Zesz. Nauk. Uniw. Ekon. w Katowicach. 326 (2017) 162–171.

[20] K.H. Lubert, K. Kalcher, History of electroanalytical methods, Electroanalysis 22 (2010)

1937–1946. doi:10.1002/elan.201000087.

[21] J. Barek, J. Zima, Eighty years of polarography - History and future, Electroanalysis 15

56

[22] P. Zuman, Role of mercury electrodes in contemporary analytical chemistry,

Electroanalysis 12 (2000) 1187–1194. doi:10.1002/1521-4109(200010).

[23] T. Navrátil, I. Švancara, K. Mrázová, K. Nováková, I. Šestáková, M. Heyrovský, D.

Pelclová, Mercury and Mercury Electrodes: The Ultimate Battle for the Naked Existence, 2011.

[24] J.O. Bockris, E.C. Potter, The Mechanism of the Cathodic Hydrogen Evolution Reaction,

J. Electrochem. Soc. 99 (1952) 169–186. doi:10.1149/1.2779692.

[25] S. Harinipriya, M. V. Sangaranarayanan, Hardness of metals from electron transfer

reactions at electrode surfaces, J. Chem. Phys. 117 (2002) 8959–8965. doi:10.1063/1.1514656.

[26] J. Heyrovsky, Elektrolysa se rtuťovou kapkovou kathodou, Chem. List. 16 (1922) 256–

264. doi: 10.1002/tcr.201200103.

[27] J. Heyrovsky, Electrolysis with a Dropping Mercury Cathode, Philos. Mag. 45 (1923)

303–314.

[28] W. Kemula, Z. Kublik, Zastosowanie nieruchomej „wiszącej” elektrody rtęciowej do

badań oscylopolarograficznych, Rocz. Chem. 30 (1956) 1005–1008.

[29] W. Kemula, Z. Kublik, Observation of Transient Intermediates in Redox Processes by

Variable Voltage Oscillo-polarography and Cyclic Voltammetry. Nature 182 (1958) 793– 794. doi:10.1038/182793a0.

[30] W. Kemula, Z. Kublik, Application de la goutte pendante de mercure á la determination

de minimes quantités de différents ions, Anal. Chim. Acta 18 (1958) 104–111.

[31] W.M. Peterson, The Static Mercury Drop Electrode, Am. Lab. 69 (1979) 11.

[32] W.M. Peterson, Static mercury drop electrode, Int. Lab. 10 (1980) 51–62.

[33] W.M. Peterson, Modified static mercury drop electrode, Anal. Chem. 54 (1982) 2629–

2631.

[34] L. Novotny, The multi-purpose dropping mercury electrode, in: J. Heyrovsky Meml.

Congr. Congr. Polarogr. Prague, Proc. 2, 1980: p. 129.

[35] L. Novotny, Patent Czeski A.0. 202 316, 1978.

[36] L. Novotny, Patent Czeski A.0. 202 772, 1978.

[37] J.G. Osteryoung, Z. Kowalski, United States Patent, 4,846,955 (1989).

[38] B. Baś, M. Jakubowska, Estimation of non-ionic, surface-active substances in aqueous

solutions by means of the Controlled Growth Mercury Electrode, Anal. Chim. Acta 592 (2007) 218–225. doi:10.1016/j.aca.2007.04.030.

[39] W.T. de Vries, E. van Dalen, Linear potential-sweep voltammetry at a plane mercury-

film electrode, J. Electroanal. Chem. Interfacial Electrochem. 14 (1967) 315–327. doi:10.1016/0022-0728(67)80008-1.

[40] M. Penczek, Z. Stojek, Anodic stripping voltammetry at a micro-disc mercury film

electrode: Theory of the reversible case, J. Electroanal. Chem. Interfacial Electrochem. 191 (1985) 91–100. doi:10.1016/S0022-0728(85)80007-3.

[41] M. Donten, Z. Stojek, Z. Kublik, Theory of cyclic voltammetry at the mercury film

electrode. Reversible case with substrate present initially in aqueous solution, J. Electroanal. Chem. 163 (1984) 11–21. doi:10.1016/S0022-0728(84)80039-X.

[42] M. Donten, Z. Kublik, Application of a copper-based mercury film electrode in cathodic

stripping voltammetry, Anal. Chim. Acta 185 (1986) 209–218. doi:10.1016/0003-2670(86)80048-4.

[43] T.L. Marple, L.B. Rogers, Polarographic Studies with a Stationary Mercury-Plated

Platinum Electrode, Anal. Chem. 25 (1953) 1351–1354. doi:10.1021/ac60081a014.

[44] S. Bruckenstein, T. Nagai, The Rotated, Mercury-Coated Platinum Electrode: Preparation

and Behavior of Continuously Deposited Mercury Coatings and Applications to Stripping Analysis, Anal. Chem. 33 (1961) 1201–1209. doi:10.1021/ac60177a023.

[45] W.R. Heineman, T. Kuwana, Mercury-platinum optically transparent electrode, Anal.

57

[46] Z. Stojek, Z. Kublik, Silver based mercury film electrode. Part III. Comparison of

theoretical and experimental anodic stripping results obtained for lead and copper, J. Electroanal. Chem. Interfacial Electrochem. 77 (1977) 205–224. doi:10.1016/S0022-0728(77)80473-7.

[47] R. Fadrná, K. Cahová-Kucharíková, L. Havran, B. Yosypchuk, M. Fojta, Use of polished

and mercury film-modified silver solid amalgam electrodes in electrochemical analysis of DNA, Electroanalysis 17 (2005) 452–459. doi:10.1002/elan.200403181.

[48] M. Ciszkowska, M. Donten, Z. Stojek, Preparation of a Mercury Disk Microelectrode

Based on Solid Silver Amalgam, Anal. Chem. 66 (1994) 4112–4115.

doi:10.1021/ac00094a040.

[49] B. Baś, Refreshable mercury film silver based electrode for determination of

chromium(VI) using catalytic adsorptive stripping voltammetry, Anal. Chim. Acta 570 (2006) 195–201. doi:10.1016/j.aca.2006.04.013.

[50] M.L. Meyer, T.P. DeAngelis, W.R. Heineman, Mercury-Gold Minigrid Optically

Transparent Thin-Layer Electrode, Anal. Chem. 49 (1977) 602–606.

doi:10.1021/ac50012a025.

[51] S.P. Kounaves, J. Buffle, An iridium-based mercury-film electrode. Part I. Selection of

substrate and preparation, J. Electroanal. Chem. Interfacial Electrochem. 216 (1987) 53– 69. doi:10.1016/0022-0728(87)80197-3.

[52] C. Wechter, J. Osteryoung, Square Wave and Linear Scan Anodic Stripping Voltammetry

at Iridium-Based Mercury Film Electrodes, Anal. Chem. 61 (1989) 2092–2097. doi:10.1021/ac00193a018.

[53] J. Fischer, L. Vanourkova, A. Danhel, V. Vyskočil, K. Cizek, J. Barek, K. Pecková, B.

Yosypchuk, T. Navratil, Voltammetric determination of nitronaphthalenes at a silver solid amalgam electrode, Int. J. Electrochem. Sci. 2 (2007) 226–234.

[54] B. Yosypchuk, L. Novotný, Combined voltammetric-potentiometric sensor with silver

solid amalgam link for electroanalytical measurements, Electroanalysis 14 (2002) 1739– 1741. doi:10.1002/elan.200290019.

[55] Mikkelsen, K. Schrøder, Dental amalgam in voltammetry some preliminary results, Anal.

Lett. 33 (2000) 3253–3269. doi:10.1080/00032719.2000.10399499.

[56] T.M. Florence, Anodic stripping voltammetry with a glassy carbon electrode mercury-

plated in situ, J. Electroanal. Chem. Interfacial Electrochem. 27 (1970) 273–281. doi:10.1016/S0022-0728(70)80189-9 Get.

[57] W. Frenzel, Mercury films on a glassy carbon support: attributes and problems, Anal.

Chim. Acta 273 (1993) 123–137. doi:10.1016/0003-2670(93)80151-A Get.

[58] T. Kubiǎárová, M. Fojta, J. Vidic, M. Tomschik, D. Suznjevic, E. Paleček, Voltammetric

and chronopotentiometric measurements with nucleic acid-modified mercury film on a glassy carbon electrode, Electroanalysis 12 (2000) 1390–1396. doi:10.1002/1521-4109(200011).

[59] L.S. Rocha, J.P. Pinheiro, H.M. Carapuça, Evaluation of nanometer thick mercury film

electrodes for stripping chronopotentiometry, J. Electroanal. Chem. 610 (2007) 37–45. doi:10.1016/j.jelechem.2007.06.018.

[60] L.C. Martiniano, V.R. Abrantes, S.Y. Neto, E.P. Marques, T.C.O. Fonseca, L.L. Paim,

A.G. Souza, N.R. Stradiotto, R.Q. Aucélio, G.H.R. Cavalcante, A.L.B. Marques, Direct simultaneous determination of Pb(II) and Cu(II) in biodiesel by anodic stripping voltammetry at a mercury-film electrode using microemulsions, Fuel 103 (2013) 1164– 1167. doi:10.1016/j.fuel.2012.07.002.

[61] S.P. Perone, K.K. Davenport, Application of mercury-plated graphite electrodes to

voltammetry and chronopotentiometry, J. Electroanal. Chem. 12 (1966) 269–276. doi:10.1016/S0022-0728(96)80001-5.

58

[62] Z. Stojek, B. Stpnik, Z. Kublik, Cyclic and stripping voltammetry with graphite based

thin mercury film electrodes prepared “in situ,” J. Electroanal. Chem. Interfacial Electrochem. 74 (1976) 277–295. doi:10.1016/S0022-0728(76)80112-X.

[63] I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, J. Wang, Carbon paste electrodes in

facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis, Electroanalysis 21 (2009) 7–28. doi:10.1002/elan.200804340.

[64] I. Svancara, K. Kalcher, A. Walcarius, K. Vytras, Electroanalysis with Carbon Paste

Electrodes, CRC Press, Taylor & Francis Group, Boca Raton, London, Naw York, 2012. doi:10.1201/b11478.

[65] R. Trouillon, D. O’Hare, Comparison of glassy carbon and boron doped diamond

electrodes: Resistance to biofouling, Electrochim. Acta 55 (2010) 6586–6595. doi:10.1016/j.electacta.2010.06.016.

[66] K. Pecková, J. Musilová, J. Barek, Boron-doped diamond film electrodes-new tool for

voltammetric determination of organic substances, Crit. Rev. Anal. Chem. 39 (2009) 148–172. doi:10.1080/10408340903011812.

[67] A. Kraft, Doped diamond: A compact review on a new, versatile electrode material, Int. J.

Electrochem. Sci. 2 (2007) 355–385.

[68] B. Yosypchuk, M. Fojta, J. Barek, Preparation and properties of mercury film electrodes

on solid amalgam surface, Electroanalysis 22 (2010) 1967–1973.

doi:10.1002/elan.201000032.

[69] B. Yosypchuk, L. Novotný, Nontoxic electrodes of solid amalgams, Crit. Rev. Anal.

Chem. 32 (2002) 141–151. doi:10.1080/10408340290765498.

[70] B. Yosypchuk, L. Novotný, The Arrangement of a Combined

Voltammetric-Potentiometric Sensor with the Solid Silver Amalgam Bridge, Chem. List. 96 (2002) 886–888.

[71] B. Yosypchuk, L. Novotný, Mercurous Sulfate Reference Electrode Based on Solid Silver

Amalgam, Chem. List. 97 (2003) 1083–1086.

[72] B. Yosypchuk, L. Novotný, Copper solid amalgam electrodes, Electroanalysis 15 (2003)

121–125. doi:10.1002/elan.200390012.

[73] B. Baś, Z. Kowalski, Preparation of silver surface for mercury film electrode of

prolonged analytical application, Electroanalysis 14 (2002) 1067–1071.

doi:10.1002/1521-4109(200208).

[74] A. Bobrowski, A. Królicka, R. Bobrowski, Renewable silver amalgam film electrodes in

electrochemical stripping analysis — a review, J. Solid State Electrochem. 20 (2016) 3217–3228. doi:10.1007/s10008-016-3275-7.

[75] R. Piech, J. Wymazała, J. Smajdor, B. Paczosa-Bator, Thiomersal determination on a

renewable mercury film silver-based electrode using adsorptive striping voltammetry, Anal. Methods 8 (2016) 1187–1193. doi:10.1039/C5AY02706C.

[76] J. Smajdor, R. Piech, B. Paczosa-Bator, A Novel Method of High Sensitive

Determination of Prednisolone on Renewable Mercury Film Silver Based Electrode, Electroanalysis 28 (2016) 394–400. doi:10.1002/elan.201500262.

[77] A. Bobrowski, M. Gawlicki, P. Kapturski, V. Mirceski, F. Spasovski, J. Zarȩbski, The

silver amalgam film electrode in adsorptive stripping voltammetric determination of palladium(II) as its dimethyldioxime complex, Electroanalysis 21 (2009) 36–40. doi:10.1002/elan.200804336.

[78] S. Smarzewska, D. Guziejewski, A. Leniart, W. Ciesielski, Nanomaterials vs Amalgam in

Electroanalysis : Comparative Electrochemical Studies of Lamotrigine, J. Electrochem. Soc. 164 (2017) B321–B329. doi:10.1149/2.0221707jes.

[79] B. Baś, S. Baś, Rapidly renewable silver amalgam annular band electrode for

voltammetry and polarography, Electrochem. Commun. 12 (2010) 816–819. doi:10.1016/j.elecom.2010.03.041.

59

[80] B. Baś, M. Jakubowska, Z. Kowalski, Rapid Pretreatment of a Solid Silver Electrode for

Routine Analytical Practice, Electroanalysis 18 (2006) 1710–1717.

doi:10.1002/elan.200603590.

[81] B. Baś, M. Jakubowska, M. Jeż, F. Ciepiela, Novel renovated silver ring electrode for

anodic stripping analysis of Pb (II) and Cd (II) traces in water samples without removal of

oxygen and surfactants, J. Electroanal. Chem. 638 (2010) 3–8.

doi:10.1016/j.jelechem.2009.10.029.

[82] D.U.U. Europejskiej, Rozporządzenie Parlamentu Europejskiego i Rady UE 2017/852 z

dnia 17 maja 2017 r. w sprawie rtęci, 2017.

[83] J. Wang, J. Lu, Bismuth film electrodes for adsorptive stripping voltammetry of trace

nickel, Electrochem. Commun. 2 (2000) 390–393. doi:10.1016/S1388-2481(00)00045-X.

[84] L. Lin, N.S. Lawrence, S. Thongngamdee, J. Wang, Y. Lin, Catalytic adsorptive stripping

determination of trace chromium(VI) at the bismuth film electrode, Talanta 65 (2005) 144–148. doi:10.1016/j.talanta.2004.05.044.

[85] V. Jovanovski, S.B. Hocevar, B. Ogorevc, Bismuth electrodes in contemporary

electroanalysis, Curr. Opin. Electrochem. 3 (2017) 114–122.

doi:10.1016/j.coelec.2017.07.008.

[86] J. Wang, D. Lu, S. Thongngamdee, Y. Lin, O.A. Sadik, Catalytic adsorptive stripping

voltammetric measurements of trace vanadium at bismuth film electrodes, Talanta 69 (2006) 914–917. doi:10.1016/j.talanta.2005.11.029.

[87] M. Korolczuk, A. Moroziewicz, M. Grabarczyk, Determination of subnanomolar

concentrations of cobalt by adsorptive stripping voltammetry at a bismuth film electrode, Anal. Bioanal. Chem. 382 (2005) 1678–1682. doi:10.1007/s00216-005-3358-2.

[88] A. Krolicka, A. Bobrowski, K. Kalcher, J. Mocak, I. Svancara, K. Vytras, Study on

Catalytic Adsorptive Stripping Voltammetry of Trace Cobalt at Bismuth Film Electrodes, Electroanalysis 15 (2003) 1859–1863. doi:10.1002/elan.200302763.

[89] L. Jiajie, Y. Nagaosa, Cathodic stripping voltammetric determination of As(III) with in

situ plated bismuth-film electrode using the catalytic hydrogen wave, Anal. Chim. Acta 593 (2007) 1–6. doi:10.1016/j.aca.2007.04.052.

[90] A. Bobrowski, A. Królicka, J. Zarebski, Morphology and electrochemical properties of

the bismuth film electrode ex situ electrochemically plated from perchloric acid, Electroanalysis 22 (2010) 1421–1427. doi:10.1002/elan.200900543.

[91] M. Korolczuk, K. Tyszczuk, M. Grabarczyk, Adsorptive stripping voltammetry of nickel

and cobalt at in situ plated lead film electrode, Electrochem. Commun. 7 (2005) 1185– 1189. doi:10.1016/j.elecom.2005.08.022.

[92] A. Bobrowski, K. Kalcher, K. Kurowska, Microscopic and electrochemical

characterization of lead film electrode applied in adsorptive stripping analysis, Electrochim. Acta 54 (2009) 7214–7221. doi:10.1016/j.electacta.2009.07.052.

[93] M. Korolczuk, K. Tyszczuk, M. Grabarczyk, Determination of uranium by adsorptive

stripping voltammetry at a lead film electrode, Talanta 72 (2007) 957–961. doi:10.1016/j.talanta.2006.12.026.

[94] I. Švancara, K. Vytřas, A. Bobrowski, K. Kalcher, Determination of arsenic at a

gold-plated carbon paste electrode using constant current stripping analysis, Talanta 58 (2002) 45–55. doi:10.1016/S0039-9140(02)00255-2.

[95] E. Pinilla Gil, P. Ostapczuk, Potentiometric stripping determination of mercury(II),

selenium(IV), copper(II) and lead(II) at a gold film electrode in water samples, Anal. Chim. Acta 293 (1994) 55–65. doi:10.1016/0003-2670(94)00075-1.

[96] N. Serrano, J.M. Díaz-Cruz, C. Ariño, M. Esteban, Antimony- based electrodes for

analytical determinations, Trends Anal. Chem. 77 (2016) 203–213.

60

[97] A. Nsabimana, S.A. Kitte, T.H. Fereja, M.I. Halawa, W. Zhang, G. Xu, Recent

developments in stripping analysis of trace metals, Curr. Opin. Electrochem. 17 (2019) 65–71. doi:10.1016/j.coelec.2019.04.012.

[98] C. Kokkinos, A. Economou, T. Speliotis, Tin-film mini-sensors fabricated by a thin-layer

microelectronic approach for stripping voltammetric determination of trace metals, Electrochem. Commun. 38 (2014) 96–99. doi:10.1016/j.elecom.2013.11.018.

[99] E. Czop, A. Economou, A. Bobrowski, A study of in situ plated tin-film electrodes for the

determination of trace metals by means of square-wave anodic stripping voltammetry, Electrochim. Acta 56 (2011) 2206–2212. doi:10.1016/j.electacta.2010.12.017.

[100] Y. Nagaosa, P. Zong, A. Kamio, Selenium-coated carbon electrode for anodic stripping voltammetric determination of copper(II), Microchim. Acta 167 (2009) 241–246. doi:10.1007/s00604-009-0221-8.

[101] A. Bobrowski, A. Królicka, J. Śliwa, J. Zarębski, A. Economou, K. Kalcher, Tellurium Film Electrodes Deposited on Carbon and Mesoporous Carbon Screen-printed Substrates for Anodic Stripping Voltammetric Determination of Copper, Electroanalysis 30 (2018) 2004–2010. doi:10.1002/elan.201800165.

[102] G. Speckbrock, S. Kamitz, M. Alt, H. Schmitt, United States Patent No. 6,019,509. Low melting gallium, indium, and tin eutectic alloys, and thermometers employing same, 2000.

[103] S. Schreiber, M. Minute, G. Tornese, R. Giorgi, M. Duranti, L. Ronfani, E. Barbi, Galinstan Thermometer Is More Accurate Than Digital for the Measurement of Body

Temperature in Children, Pediatr. Emerg. Care. 29 (2013) 197–199.

doi:10.1097/PEC.0b013e3182809c29.

[104] S. Handschuh-Wang, Y. Chen, L. Zhu, X. Zhou, Analysis and Transformations of Room-Temperature Liquid Metal Interfaces – A Closer Look through Interfacial Tension, ChemPhysChem. 19 (2018) 1584–1592. doi:10.1002/cphc.201800129.

[105] B. Seifer, A. Reissner, N. Buldrini, F. Plesescu, C. Scharlemann, Development and verification of a µN thrust balance for high voltage electric propulsion systems, in: 33rd Int. Electr. Propuls. Conf., The George Washington University, USA, 2013: pp. 1–11. [106] T. Liu, P. Sen, C. Kim, Characterization of Nontoxic Liquid-Metal Alloy Galinstan for

Applications in Microdevices, J. Microelectromechanical Syst. 21 (2012) 443–450. doi:10.1109/JMEMS.2011.2174421.

[107] S.H. Jeong, A. Hagman, K. Hjort, M. Jobs, J. Sundqvist, Z. Wu, Liquid alloy printing of

microfluidic stretchable electronics, Lab Chip. 12 (2012) 4657–4664.

doi:10.1039/C2LC40628D.

[108] M. Hodes, R. Zhang, L.S. Lam, R. Wilcoxon, N. Lower, On the Potential of Galinstan-Based Minichannel and Minigap Cooling, IEEE Trans. Components, Packag. Manuf. Technol. 4 (2014) 46–56. doi:10.1109/TCPMT.2013.2274699.

[109] P. Surmann, H. Zeyat, Voltammetric analysis using a self-renewable non-mercury electrode, Anal. Bioanal. Chem. 383 (2005) 1009–1013. doi:10.1007/s00216-005-0069-7. [110] H. Channaa, P. Surmann, Voltammetric analysis of N-containing drugs using the hanging

galinstan drop electrode (HGDE), Pharmazie. 64 (2009) 161–165.

doi:10.1691/ph.2009.8720.

[111] P. Surmann, H. Channaa, Anodic Stripping Voltammetry with Galinstan as Working Electrode, Electroanalysis 27 (2015) 1726–1732. doi:10.1002/elan.201400752.

[112] J. Tang, X. Zhao, J. Li, R. Guo, Y. Zhou, J. Liu, Gallium-Based Liquid Metal Amalgams: Transitional-State Metallic Mixtures (TransM2ixes) with Enhanced and Tunable Electrical, Thermal, and Mechanical Properties, ACS Appl. Mater. Interfaces 9 (2017) 35977–35987. doi:10.1021/acsami.7b10256.

61

[113] G. Li, M. Parmar, D. Kim, J.-B. Lee, D.-W. Lee, PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan, Lab Chip. 14 (2014) 200–209. doi:10.1039/c3lc50952d.

[114] S.-Y. Tang, V. Sivan, K. Khoshmanesh, A.P. O’Mullane, X. Tang, B. Gol, N. Eshtiaghi, F. Lieder, P. Petersen, A. Mitchell, K. Kalantar-Zadeh, Electrochemically induced

actuation of liquid metal marbles, Nanoscale 5 (2013) 5949–5957.

doi:10.1039/c3nr00185g.

[115] F. Hoshyargar, J. Crawford, A.P. O’Mullane, Galvanic replacement of the liquid metal galinstan, J. Am. Chem. Soc. 139 (2017) 1464–1471. doi:10.1021/jacs.6b05957.

[116] B. Baś, K. Jedlińska, K. Węgiel, Zgłoszenie Patentowe Nr P.426464 pt. “Czujnik woltamperometryczny ze srebrną elektrodą roboczą pokrytą ciekłym filmem galinstanu,” 2018.

[117] F.J. Hingston, R.J. Atkinson, A.M. Posner, J.P. Quirk, Specific adsorption of anions, Nature 215 (1967) 1459–1461. doi:10.1038/2151459a0.

[118] A. Breeuwsma, J. Lyklema, Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe2O3), J. Colloid Interface Sci. 43 (1973) 437–448. doi:10.1016/0021-9797(73)90389-5.

[119] G. Herzog, D.W.M. Arrigan, Determination of trace metals by underpotential deposition-stripping voltammetry at solid electrodes, TrAC - Trends Anal. Chem. 24 (2005) 208– 217. doi:10.1016/j.trac.2004.11.014.

[120] I.M. Kolthoff, N.H. Furman, Potentiometric titration, WileyVCH, New York, 1931. [121] I.M. Kolthoff, N.H. Furman, Potentiometric titrations: A theoretical and practical treatise,

J. Soc. Chem. Ind. 51 (1932) 398–399. doi:10.1002/jctb.5000511912.

[122] H.A. Laitinen, I.M. Kolthoff, Voltammetry with Stationary Microelectrodes of Platinum Wire, J. Phys. Chem. 45 (1941) 1061–1079. doi:10.1021/j150412a002.

[123] P. Zuman, I.M. Kolthoff, Progress in polarography, John Wiley & Sons, Inc, New York, London, 1962.

[124] E.M. Skobets, S.A. Kacherova, ., Zavod. Lab. 13 (1947) 133–137.

[125] A.T. Vagramyan, Electrodeposition of metals, Izvestii︠a︡ Akademii nauk SSSR, Moskwa, 1950.

[126] A.T. Vagramyan, D.N. Usachev, The mechanism of the electrodeposition of chromium, Zhurnal Prikl. Khimii. 32 (1958) 1900.

[127] A.T. Vagramyan, A.P. Popkov, Overvoltage in the electrodeposition and solution of

metals, Bull. Acad. Sci. USSR, Div. Chem. Sci. 9 (1960) 765–770.

doi:10.1007/BF01179171.

[128] A.T. Vagramyan, M.A. Zhamagortsyants, Electrodeposition of Metals and Inhibiting Adsorption, Izvestii︠a︡ Akademii Nauk SSSR, Moskwa, 1969.

[129] I.M. Kolthoff, N. Tanaka, Rotated and Stationary Platinum Wire Electrodes, Anal. Chem. 26 (1954) 632–636. doi:10.1021/ac60088a005.

[130] S. Smoliński, P. Zelenay, J. Sobkowski, Effect of surface order on adsorption of sulfate ions on silver electrodes, J. Electroanal. Chem. 442 (1998) 41–47. doi:10.1016/S0022-0728(97)00469-5.

[131] S. Gilman, The anodic film on platinum electrodes, in: A.J. Bard (Ed.), Electroanal. Chem. Vol. 2, Marcel Dekker, New York, 1967: pp. 111–192.

[132] D.A.J. Rand, R. Woods, A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry, J. Electroanal. Chem. Interfacial Electrochem. 35 (1972) 209–218. doi:10.1016/S0022-0728(72)80308-5. [133] J. Sobkowski, A. Więckowski, A new approach to the radiometric study of methanol

adsorption on platinum, J. Electroanal. Chem. Interfacial Electrochem. 34 (1972) 185– 189. doi:10.1016/S0022-0728(72)80513-8.

62

[134] R. Parsons, F.G.R. Zobel, The interphase between mercury and aqueous sodium dihydrogen phosphate, J. Electroanal. Chem. 9 (1965) 333–348. doi:10.1016/0022-0728(65)85029-X.

[135] J.P. Carr, N.A. Hampson, R. Taylor, Fast linear sweep voltammetry studies on polycrystalline lead and electrodeposited lead dioxide (α and β) in aqueous sulphuric acid, J. Electroanal. Chem. Interfacial Electrochem. 33 (1971) 109–120. doi:10.1016/S0022-0728(71)80213-9.

[136] K. Engelsmann, W.J. Lorenz, E. Schmidt, Underpotential deposition of lead on polycrystalline and single-crystal gold surfaces: Part I. Thermodynamics, J. Electroanal. Chem. Interfacial Electrochem. 114 (1980) 1–10. doi:10.1016/S0022-0728(80)80431-1. [137] B. Baś, The renovated silver ring electrode, Electrochem. Commun. 10 (2008) 156–160.

doi:10.1016/j.elecom.2007.10.024.

[138] K. Węgiel, K. Jedlińska, B. Baś, Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium (I) using stripping voltammetry, J. Hazard. Mater. 310 (2016) 199–206. doi:10.1016/j.jhazmat.2016.02.036.

[139] B. Baś, K. Węgiel, K. Jedlińska, New voltammetric sensor based on the renewable bismuth bulk annular band electrode and its application for the determination of

palladium(II), Electrochim. Acta 178 (2015) 665–672.

doi:10.1016/j.electacta.2015.08.047.

[140] B. Baś, M. Jakubowska, The renovated silver ring electrode in determination of lead traces by differential pulse anodic stripping voltammetry, Anal. Chim. Acta 615 (2008) 39–46. doi:10.1016/j.aca.2008.03.042.

[141] B. Baś, M. Jakubowska, Ł. Górski, Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B1 and B2, Talanta 84 (2011) 1032–1037. doi:10.1016/j.talanta.2011.03.006.

[142] B. Baś, M. Jakubowska, W. Reczyński, F. Ciepiela, W.W. Kubiak, Rapidly renewable silver and gold annular band electrodes, Electrochim. Acta 73 (2012) 98–104. doi:10.1016/j.electacta.2011.12.125.

[143] B. Baś, K. Węgiel, K. Jedlińska, The renewable bismuth bulk annular band working electrode: Fabrication and application in the adsorptive stripping voltammetric determination of nickel(II) and cobalt(II), Anal. Chim. Acta 881 (2015) 44–53. doi:10.1016/j.aca.2015.05.005.

[144] K. Węgiel, B. Baś, Voltammetric characteristics and determination of clothianidin using a bismuth bulk annular band electrode regenerated in situ, Ionics (2017) 1–9. doi:10.1007/s11581-017-2105-y.

[145] K. Węgiel, M. Grabarczyk, W.W. Kubiak, B. Baś, A Reliable and Sensitive Voltammetric Determination of Mo (VI) at the In Situ Renovated Bismuth Bulk Annular Band Electrode, J. Electrochem. Soc. 164 (2017) 352–357. doi:10.1149/2.1161706jes. [146] B. Baś, R. Piech, M. Ziemnicka, W. Reczyński, M. Robótka, Renewable ceramic (TiN)

ring electrode in stripping voltammetry. Determination of Pb (II) without removal of oxygen, Electroanalysis 21 (2009) 1773–1780. doi:10.1002/elan.200804598.

[147] T. Ishiyama, T. Tanaka, Cathodic Stripping Voltammetry of Selenium(IV) at a Silver Disk Electrode, Anal. Chem. 68 (1996) 3789–3792. doi:10.1021/ac960446r.

[148] V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures, Chem. Rev. 115 (2015) 4744–4822. doi:10.1021/cr500304f.

[149] W.E. Van der Linden, J.W. Dieker, Glassy carbon as electrode material in electro- analytical chemistry, Anal. Chim. Acta 119 (1980) 1–24. doi:10.1016/S0003-2670(00)00025-8.

63

[150] G.M. Swain, Solid Electrode Materials: Pretreatment and Activation, Handb. Electrochem. (2007) 111–153. doi:10.1016/B978-044451958-0.50006-9.

[151] H.E. Zittel, F.J. Miller, A Glassy-Carbon Electrode for Voltammetry, Anal. Chem. 37 (1965) 200–203. doi:10.1021/ac60221a006.

[152] S. Yamada, H. Sato, Some physical properties of glassy carbon, Nature 193 (1962) 261– 262. doi:10.1038/193261b0.

[153] Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker, R. Schlögl, Electrochemical corrosion of a glassy carbon electrode, Catal. Today 295 (2017) 32–40. doi:10.1016/j.cattod.2017.07.013.

[154] A. Dekanski, J. Stevanovic, R. Stevanovic, B.Z. Nikolic, V.M. Jovanovic, Glassy carbon electrodes: I. Characterization and electrochemical activation, Carbon. 39 (2001) 1195– 1205. doi:10.1016/S0008-6223(00)00228-1.

[155] R.N. Adams, Carbon Paste Electrodes, Anal. Chem. 30 (1958) 1576.

doi:10.1021/ac60141a600.

[156] K. Kalcher, J.M. Kauffmann, J. Wang, I. Švancara, K. Vytřas, C. Neuhold, Z. Yang, Sensors based on carbon paste in electrochemical analysis: A review with particular

emphasis on the period 1990–1993, Electroanalysis 7 (1995) 5–22.

doi:10.1002/elan.1140070103.

[157] D. Lowinsohn, P. Gan, K. Tschulik, J.S. Foord, R.G. Compton, Nanocarbon Paste Electrodes, Electroanalysis 25 (2013) 2435–2444. doi:10.1002/elan.201300364.

[158] M. Brycht, P. Lochyński, J. Barek, S. Skrzypek, K. Kuczewski, K. Schwarzova-Peckova, Electrochemical study of 4-chloro-3-methylphenol on anodically pretreated boron-doped diamond electrode in the absence and presence of a cationic surfactant, J. Electroanal. Chem. 771 (2016) 1–9. doi:10.1016/j.jelechem.2016.03.031.

[159] M. Brycht, S. Skrzypek, K. Kaczmarska, B. Burnat, A. Leniart, N. Gutowska, Square-wave voltammetric determination of fungicide fenfuram in real samples on bare boron-doped diamond electrode, and its corrosion properties on stainless steels used to produce

agricultural tools, Electrochim. Acta 169 (2015) 117–125.

doi:10.1016/j.electacta.2015.04.069.

[160] N. Serrano, J.M. Díaz-Cruz, C. Ariño, M. Esteban, Antimony- based electrodes for analytical determinations, TrAC - Trends Anal. Chem. 77 (2016) 203–213. doi:10.1016/j.trac.2016.01.011.

[161] K.C. Honeychurch, J.P. Hart, Screen-printed electrochemical sensors for monitoring metal pollutants, TrAC - Trends Anal. Chem. 22 (2003) 456–469. doi:10.1016/S0165-9936(03)00703-9.

[162] M.N. Kale, R.S. Wanare, A.M. Tayade, P.A. Pangarkar, Carbon nanotube: Novel approaches, Int. J. Pharm. Technol. 5 (2014) 2787–2808.

[163] J.G. Manjunatha, M. Deraman, N.H. Basri, Electrocatalytic detection of dopamine and uric acid at poly (Basic Blue B) modified carbon nanotube paste electrode, Asian J. Pharm. Clin. Res. 8 (2015) 48–53.

[164] R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes - The route toward applications, Science 297 (2002) 787–792. doi:10.1126/science.1060928.

[165] D. Li, J. Li, X. Jia, E. Wang, Gold nanoparticles decorated carbon fiber mat as a novel sensing platform for sensitive detection of Hg(II), Electrochem. Commun. 42 (2014) 30– 33. doi:10.1016/j.elecom.2014.02.003.

[166] M.A. Miller, A. Bourke, N. Quill, B.J.S. Wainright, R.P. Lynch, D.N. Buckley, R.F. Savinell, Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency, J. Electrochem. Soc. 163 (2016) A2095–A2102. doi:10.1149/2.1091609jes.

[167] A.G. El-Deen, N.A.M. Barakat, K.A. Khalil, H.Y. Kim, Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process, New J. Chem. 38 (2014) 198–205. doi:10.1039/c3nj00576c.

64

[168] S. Dai, J. Zhang, Y. Fu, W. Li, Biothiol-mediated synthesis of Pt nanoparticles on graphene nanoplates and their application in methanol electrooxidation, J. Mater. Sci. 53 (2018) 423–434. doi:10.1007/s10853-017-1508-5.

[169] S.D. Xie, G. Wang, H.Y. Chen, H. Lin, Z.N. Yan, H. Zhang, Lycium ruthenicum murray and graphene nanoplates for dye sensitized solar cell, J. Inorg. Mater. 31 (2016) 1117– 1122. doi:10.15541/jim20160160.

[170] T. Peik-See, A. Pandikumar, H. Nay-Ming, L. Hong-Ngee, Y. Sulaiman, Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode, Sensors 14 (2014) 15227–15243. doi:10.3390/s140815227.

[171] L. Li, M. Chen, G. Huang, N. Yang, L. Zhang, H. Wang, Y. Liu, W. Wang, J. Gao, A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation, J. Power Sources. 263 (2014) 13–21. doi:10.1016/j.jpowsour.2014.04.021.

[172] L. Yang, D. Liu, J. Huang, T. You, Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode, Sensors Actuators, B Chem. 193 (2014) 166–172. doi:10.1016/j.snb.2013.11.104.

[173] B. Thirumalraj, S. Palanisamy, S.M. Chen, B.S. Lou, Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples, J. Colloid Interface Sci. 462 (2016) 375–381. doi:10.1016/j.jcis.2015.10.009.

[174] L. Bai, Y. Chen, Y. Bai, Y. Chen, J. Zhou, A. Huang, Fullerene-doped polyaniline as new

W dokumencie Index of /rozprawy2/11656 (Stron 53-67)

Powiązane dokumenty