• Nie Znaleziono Wyników

Wnioski

W dokumencie Index of /rozprawy2/11655 (Stron 153-176)

1. Metoda hydrotermalna przy zastosowaniu surfaktantów o różnej jonowości

pozwoliła na otrzymanie siarczku molibdenu MoS2 w formie warstwowej,

co potwierdzono metodą dyfrakcji promieni rentgenowskich (wzrost odległości międzypłaszczyznowej) oraz spektroskopii Ramana (zmniejszenie ilości warstw względem materiału objętościowego).

2. Zastosowanie metody hydrotermalnej do osadzania MoS2 na warstwach TiO2-L nie umożliwiło uzyskania pożądanych właściwości fotoelektrochemicznych układów TiO2/MoS2, które ulegały degradacji w trakcie pracy ogniwa.

3. Metoda elektroosadzania, z udziałem materiału osadzanego w formie zawiesiny

proszkowej, z powodzeniem może zostad zastosowana do nanoszenia MoS2 na TiO2

(warstwy i nanorurki), a optymalne warunki to U = 1.2 V i t = 40 s.

4. Poprawa właściwości fotoelektrochemicznych TiO2 związana z utowrzeniem

heterostruktury TiO2/MoS2 obejmuje: wzrost wartości fotoprądu, bardziej ujemne

wartości potencjału płaskich pasm, zwiększenie ilości wydzielonego wodoru

w stosunku do czystego TiO2 oraz długoczasową stabilnośd.

5. Syntezy nanokryształów TiO2 metodą hydrotermalną pokazały, że wzrost ilości

prekursora jonów tytanu (KTNWs) powoduje zwiększenie wymiarów nanokryształów, natomiast ilośd zastosowanego surfaktantu (mocznik) determinuje ich kształt. Zmiana parametrów nie wpływa jednak na skład fazowy i wartośd energii przerwy wzbronionej Eg. Wszystkie uzyskane materiały składają się z anatazu, a wartośd Eg

wynosi 3.30 eV.

6. Jednoczesne zwiększenie ilości prekursora i surfaktantu podczas syntezy

nanokryształów TiO2 wpływa korzystnie na właściwości elektrokatalityczne proszków,

powodując poszerzenie zakresu potencjału zeta ζ, co oznacza wzrost stabilności

dyspersji. Najlepszymi właściwościami fotokatalitycznymi charakteryzują się

nanokryształy o wydłużonym kształcie.

7. Reakcja chemiczna pomiędzy prekursorem jonów miedzi i wodorotlenkiem sodu, bez oraz z udziałem kwasu L-askorbinowego prowadzi do otrzymania odpowiednio,

154

8. Modyfikacja nanokryształów TiO2 tlenkami miedzi prowadzona może byd w sposób

analogiczny do syntezy tlenków miedzi, a także poprzez modyfikacje tej metody: zastosowanie ultradźwięków do ogrzewania i ujednorodniania mieszaniny reakcyjnej, czy też użycie chitozanu jako "kleju” łączącego TiO2 z CuxO. Zastosowane metody

modyfikacji TiO2 nie prowadzą jednak do poprawy właściwości fotokatalitycznych

zarówno w zakresie UV oraz UV-vis.

9. Metoda elektroosadzania posłużyd może do otrzymywania warstw tlenku miedzi (I) zarówno na tytanie jak i nanorurkach TiO2. Parametry wpływające na morfologię osadzanego związku to pH elektrolitu, różnica potencjałów oraz czas trwania procesu.

10. Elektroosadzanie prowadzone z udziałem mieszaniny, CuSO4 i kwasu mlekowego,

o pH=12, przy zastosowaniu potencjału -0.36 V i krótkiego czasu reakcji, umożliwiło uzyskanie nieciągłej warstwy Cu2O. Efekt ten jest korzystny jest z punktu widzenia

właściwości fotoelektrochemicznych powstałego heterozłącza TiO2-NT/Cu2O,

ponieważ umożliwia absorpcję zarówno w zakresie UV (TiO2) jak i vis (Cu2O).

11. Otrzymany układ TiO2-NT/Cu2O z powodzeniem został zastosowany jako elektroda podczas stanowiącego alternatywę do fotokatalizy – fotoelektrokatalitycznego rozkładu błękitu metylenowego, w efekcie czego wykazano poprawę właściwości względem niemodyfikowanego tlenku tytanu (IV).

12. Uzyskane wyniki badao pozwoliły na zaproponowanie występowania rodzaju

heterozłącza półprzewodników n-n typu II dla układów TiO2/MoS2 oraz TiO2/Cu2O oraz wyjaśnienie przeciwdziałania procesom fotokorozji półprzewodników

155

Bibliografia

[1] J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review, Catal. Sci. Technol. 5 (2015) 1360–1384.

[2] J.A. Barltrop, J.D. Coyle, Principles of photochemistry, Wiley, England, 1978.

[3] J. Dereo, J. Haber, R. Pampuch, Chemia ciała stałego, 1st ed., PWN, Warszawa, 1977.

[4] J. Schneider, D. Bahnemann, J. Ye, G.L. Puma, D.D. Dionysiou, eds., Photocatalysis Fundamentals and Perspectives, The Royal Society of Chemistry, 2016.

[5] G. Bessegato, M.V. Boldrin Zanoni, T. Tasso Guaraldo, Enhancement of Photoelectrocatalysis Efficiency by Using Nanostructured Electrodes, in: M. Aliofkhazraei (Ed.), Mod. Electrochem. Methods Nano, Surf. Corros. Sci., IntechOpen, 2014: pp. 271–319.

[6] R. Beranek, (Photo)electrochemical Methods for the determination of the band edge positions of TiO2-based nanomaterials, Adv. Phys. Chem. 2011 (2011) 1–21.

[7] M. Synowiec, A. Micek-Ilnicka, K. Szczepanowicz, A. Różycka, A. Trenczek-Zajac, K. Zakrzewska, M. Radecka, Functionalized structures based on shape-controlled TiO2, Appl. Surf. Sci. 473 (2019) 603–613.

[8] M. Kosmulski, Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature, Adv. Colloid Interface Sci. 152 (2009) 14–25.

[9] C.-C. Li, M.-H. Chang, Colloidal stability of CuO nanoparticles in alkanes via oleate modifications, Mater. Lett. 58 (2004) 3903–3907.

[10] M. Sharon, An Introduction to the Physics and Electrochemistry of Semiconductors, Wiley, Canada, 2016.

[11] M. Radecka, M. Rekas, K. Zakrzewska, Titanium dioxide in photoelectrolysis of water, Trends Inorg. Chem. 9 (2009) 81–126.

[12] A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A Chem. 108 (1997) 1–35.

[13] S.E. Braslavsky, A.M. Braun, A.E. Cassano, A. V. Emeline, M.I. Litter, L. Palmisano, V.N. Parmon, N. Serpone, Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011)*, Pure Appl. Chem. 83 (2011) 931–1014.

[14] J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today. 53 (1999) 115–129.

[15] Z. Wang, C. Jiao, X. Chen, Photocatalytic degradation kinetics in Rhodamine B dye degradation with poriferous TiO2 photocatalyst, J. Mar. Sci. Appl. 5 (2006) 60–64.

[16] C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, J. Catal. 122 (1990) 178–192.

[17] V. Kalousek, J. Tschirch, D. Bahnemann, J. Rathouský, Mesoporous layers of TiO2 as highly efficient photocatalysts for the purification of air, Superlattices Microstruct. 44 (2008) 506– 513.

[18] A. Zaleska, A. Hänel, M. Nischk, Photocatalytic air purification, Recent Patents Eng. 4 (2010) 200–216.

156 [19] T. Kudo, Y. Kudo, A. Ruike, A. Hasegawa, M. Kitano, M. Anpo, The design of highly active rectangular column-structured titanium oxide photocatalysts and their application in purification systems, Catal. Today. 122 (2007) 14–19.

[20] B.-H. Kim, D. Kim, D.-L. Cho, S.-H. Lim, S. young Yoo, J. Kook, Y. ick Cho, S.-H. Ohk, Y.-M. Ko, Sterilization effects of a TiO2 photocatalytic film against a streptococcus mutans culture, Biotechnol. Bioprocess Eng. 12 (2007) 136–139.

[21] J. Bogdan, A. Jackowska-Tracz, J. Zarzyoska, J. Pławioska-Czarnak, Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties, Nanoscale Res. Lett. 10 (2015) 1–10.

[22] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (2000) 1–21.

[23] A. Heller, Chemistry and applications of photocatalytic oxidation of thin organic films, Acc. Chem. Res. 28 (1995) 503–508.

[24] K. Takagi, T. Makimoto, H. Hiraiwa, T. Negishi, Photocatalytic, antifogging mirror, J. Vac. Sci. Technol. A. 19 (2001) 2931–2935.

[25] Y. Takata, S. Hidaka, M. Masuda, T. Ito, Pool boiling on a superhydrophilic surface, Int. J. Energy Res. 27 (2003) 111–119.

[26] Y. Takata, S. Hidaka, J.M. Cao, T. Nakamura, H. Yamamoto, M. Masuda, T. Ito, Effect of surface wettability on boiling and evaporation, Energy. 30 (2005) 209–220.

[27] T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Energy storage of TiO2-WO3 photocatalysis systems in the gas phase, Langmuir. 18 (2002) 7777–7779.

[28] Y. Ohko, S. Saitoh, T. Tatsuma, A. Fujishima, Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel, J. Electrochem. Soc. 148 (2001) B24–B28.

[29] M. Sugimoto, K. Tashiro, T. Bessho, I. Koiwa, H. Honma, Surface reforming of ABS resin using TiO2 under UV light irradiation, J. Surf. Finish. Soc. Japan. 57 (2006) 162–166.

[30] T. Bessho, K. Inoue, K. Ishikawa, I. Koiwa, H. Honma, Electroless cooper plating on the insulating resin for bulid-up process using TiO2 as a photocatalyst, J. Surf. Finish. Soc. Japan. 57 (2006) 157–161.

[31] M.C. Lee, W. Choi, Solid phase photocatalytic reaction on the Soot/TiO2 interface: The role of migrating OH radicals, J. Phys. Chem. B. 106 (2002) 11818–11822.

[32] T. Tatsuma, W. Kubo, A. Fujishima, Patterning of solid surfaces by photocatalytic lithography based on the remote oxidation effect of TiO2, Langmuir. 18 (2002) 9632–9634.

[33] K. Kawahara, K. Suzuki, Y. Ohko, T. Tatsuma, Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism, Phys. Chem. Chem. Phys. 7 (2005) 3851–3855.

[34] Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima, Multicolour photochromism of TiO2 films loaded with silver nanoparticles, Nat. Mater. 2 (2003) 29–31. [35] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode,

157

[36] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735–758.

[37] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.

[38] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582.

[39] W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion, Phys. Chem. Chem. Phys. 15 (2013) 2632–2649.

[40] N. Serpone, D. Lawless, R. Khairutdinov, E. Pelizzetti, Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp= 1.0-13.4 nm). Relevance to heterogeneous photocatalysis, J. Phys. Chem. 99 (1995) 16655–16661.

[41] K. Vasanth Kumar, K. Porkodi, F. Rocha, Langmuir – Hinshelwood kinetics – A theoretical study, Catal. Commun. 9 (2008) 82–84.

[42] M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis, J. Power Sources. 181 (2008) 46–55.

[43] M.F. Finlayson, B.L. Wheeler, N. Kakuta, K.H. Park, A.J. Bard, A. Campion, M.A. Fox, S.E. Webber, J.M. White, Determination of flat-band position of cadmium sulfide crystals, films, and powders by photocurrent and impedance techniques, photoredox reaction mediated by intragap states, J. Phys. Chem. 89 (1985) 5676–5681.

[44] D. Tafalla, P. Salvador, R.M. Benito, Kinetic approach to the photocurrent transient in water photoelectrolysis at n-TiO2 electrodes II. Analysis of the photocurrent-time dependence, J. Electrochem. Soc. 137 (1990) 1810–1815.

[45] Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical water splitting - standards, experimental methods, and protocols, Springer, New York, 2013.

[46] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials related aspects, Int. J. Hydrogen Energy. 27 (2002) 991– 1022.

[47] S. Edition, Applied photovoltaics, Second edi, ARC Centre for Advanced Silicon Photovoltaics and Photonics, 2007.

[48] H. Gerischer, Solar photoelectrolysis with semiconductor electrodes, in: B.. Seraphin (Ed.), Sol. Energy Convers. Solid-State Phys. Asp., Springer-Verlag Berlin Heidelberg, Heidelberg, 1979: pp. 115–172.

[49] A. Trenczek-Zajac, J. Banas, M. Radecka, Photoactive TiO2/MoS2 electrode with prolonged stability, IJHE. 43 (2018) 6824–6837.

[50] J. Yu, Y. Hai, M. Jaroniec, Photocatalytic hydrogen production over CuO-modified titania, J. Colloid Interface Sci. 357 (2011) 223–228.

[51] C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting-materials and challenges, Chem. Soc. Rev. 46 (2017) 4645–4660.

158 [52] P. Salvador, Hole diffusion length in n-TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis, J. Appl. Phys. 55 (1984) 2977– 2985.

[53] B. Moss, K.K. Lim, A. Beltram, S. Moniz, J. Tang, P. Fornasiero, P. Barnes, J. Durrant, A. Kafizas, Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2, Sci. Rep. 7 (2017) 1–7.

[54] H. Gerischer, On the stability of semiconductor electrodes against photodecomposition, J. Electroanal. Chem. 82 (1977) 133–143.

[55] E. Halary-Wagner, F. Wagner, P. Hoffmann, Titanium Dioxide Thin-Film Deposition on Polymer Substrate by Light Induced Chemical Vapor Deposition, J. Electrochem. Soc. 151 (2004) C571– C576.

[56] D.H.K. Murthy, H. Matsuzaki, Q. Wang, Y. Suzuki, K. Seki, T. Hisatomi, T. Yamada, A. Kudo, K. Domen, A. Furube, Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalyst, Sustain. Energy Fuels. 3 (2019) 208–218.

[57] M. Cardona, Optical Properties and Band Structure of SrTiO3 and BaTiO3, Phys. Rev. 140 (1965) A651–A655.

[58] I.E. Paulauskas, G.E. Jellison Jr., L.A. Boatner, G.M. Brown, Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes, Int. J. Electrochem. 563427 (2011) 1–10.

[59] Y. Liu, X. Yan, Z. Kang, Y. Li, Y. Shen, Y. Sun, L. Wang, Y. Zhang, Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting, Nat. Publ. Gr. 6 (2016) 1–7.

[60] K. Nagashima, T. Yanagida, K. Oka, T. Kawai, Unipolar resistive switching characteristics of room temperature grown SnO2 thin films, Appl. Phys. Lett. 94 (2009) 1–3.

[61] N. Alonso-Vante, Chalcogenide Materials for Energy Conversion, 1st ed., Springer, Poitiers, 2018.

[62] F. Kurnia, Band-Gap Control of Zinc Sulfide Towards an Efficient Visible-Light-Sensitive Photocatalyst, Chem.Phys.Chem. 16 (2015) 2397–2402.

[63] O. Stroyuk, Semiconductor-Based Photocatalytic Systems for the Solar-Light-Driven Water Splitting and Hydrogen Evolution, in: Sol. Light Harvest. with Nanocrystalline Semicond., 2018: pp. 61–71.

[64] I. Song, C. Park, H. Cheul, Synthesis and properties of molybdenum disulphide: from bulk to atomic layers, RSC Adv. 5 (2015) 7495–7514.

[65] M. Placidi, M. Dimitrievska, V. Izquierdo-Roca, X. Fontané, A. Castellanos-Gomez, A. Pérez-Tomás, N. Mestres, M. Espindola-Rodriguez, S. López-Marino, M. Neuschitzer, V. Bermudez, A. Yaremko, A. Pérez-Rodríguez, Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS2: vibrational properties of atomically thin MoS2 layers, 2D Mater. 2 (2015) 1–12.

[66] M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron, J. Alloys Compd. 521 (2012) 178–182.

159

[67] A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy. 31 (2006) 1999–2017.

[68] L. Jia, K. Harbauer, P. Bogdanoff, I. Herrmann-Geppert, A. Ramírez, R. Van De Krol, S. Fiechter, α-Fe2O3 films for photoelectrochemical water oxidation - insights of key performance parameters, J. Mater. Chem. A. 2 (2014) 20196–20202.

[69] A. Cortes, H. Gómez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Grain size dependence of the bandgap in chemical bath deposited CdS thin films, Sol. Energy Mater. Sol. Cells. 82 (2004) 21–34.

[70] K.P. Bhandari, P.J. Roland, H. Mahabaduge, N.O. Haugen, C.R. Grice, S. Jeong, T. Dykstra, J. Gao, R.J. Ellingson, Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS, Sol. Energy Mater. Sol. Cells. 117 (2013) 476–482.

[71] S. Chen, L.W. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution, Chem. Mater. 24 (2012) 3659–3666.

[72] A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O’Mullane, K. Kalantar-zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications, J. Mater. Chem. C. 2 (2014) 5247–5270.

[73] J. Mahla, S. Neppl, F. Roth, M. Borgwardt, C. Saladrigas, B. Toulson, J. Cooper, T. Rahman, H. Bluhm, J. Guo, W. Yang, N. Huse, W. Eberhardt, O. Gessner, Decomposing Electronic and Lattice Contributions in Optical Pump – X-ray Probe Transient Inner-Shell Absorption Spectroscopy of CuO, Faraday Discuss. 216 (2019) 414–433.

[74] T. Ito, H. Yamaguchi, K. Okabe, T. Masumi, Single-crystal growth and characterization of Cu2O and CuO, J. Mater. Sci. 33 (1998) 3555–3566.

[75] P. Dias, M. Schreier, S.D. Tilley, J. Luo, J. Azevedo, L. Andrade, D. Bi, A. Hagfeldt, A. Mendes, M. Grätzel, M.T. Mayer, Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting, Advaned Energy Mater. 5 (2015) 1501537 (1–9). [76] W. Niu, L. Zhu, Y. Wang, Z. Lou, Z. Ye, The interfacial study on the Cu2O/Ga2O3/AZO/TiO2

photocathode for water splitting fabricated by pulsed laser deposition, Catal. Sci. Technol. 7 (2017) 1602–1610.

[77] D. Deng, M.G. Kim, J.Y. Lee, J. Cho, Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries, Energy Environ. Sci. 2 (2009) 818–837.

[78] S.-D. Mo, W.Y. Ching, Electronic and optical properties ofthree phases oftitanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B. 51 (1995) 13023–13032.

[79] C. Colbeau-Justin, M. Kunst, D. Huguenin, Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption, J. Mater. Sci. 38 (2003) 2429–2437.

[80] T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita, Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films, Appl. Surf. Sci. 200 (2002) 21–26.

[81] Z. Znang, J.T. Yates, Band bending in semiconductors: chemical and physical consequences at surface and interface, Chem. Rev. 112 (2012) 5520–5551.

160 [82] D.P. Joshi, D.P. Bhatt, Theory of grain boundary recombination and carrier transport in polycrystalline silicon under optical illumination, IEEE Trans. Electron Devices. 37 (1990) 237– 249.

[83] K.M. Doshchanov, Temperature dependence of the electrical properties of polycrystalline silicon in the dark and in sunlight, Semiconductor. 31 (1997) 813–814.

[84] Q. Wu, M. Liu, Z. Wu, Y. Li, L. Piao, Is photooxidation activity of {001} facets truly lower than that of {101} facets for anatase TiO2 crystals?, J. Phys. Chem. C. 116 (2012) 26800–26804. [85] M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, W. Wang, Anatase TiO2 single crystals with

exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis, Chem. Commun. 46 (2010) 1664–1666.

[86] A. Kusior, M. Synowiec, K. Zakrzewska, M. Radecka, Surface-Controlled Photocatalysis and Chemical Sensing of TiO2 , α-Fe2O3 , and Cu2O Nanocrystals, Crystals. 9 (2019) 1–51.

[87] W. Jaegermann, H. Tributsch, Interfacial properties of semiconducting transition metal chalcogenides, Prog. Surf. Sci. 29 (1988) 1–167.

[88] S. Ji, Z. Yang, C. Zhang, Z. Liu, W.W. Tjiu, I.Y. Phang, Z. Zhang, J. Pan, T. Liu, Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution, Electrochim. Acta. 109 (2013) 269–275.

[89] A. J. Nozik, Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion, Inorg. Chem. 44 (2005) 6893–6899.

[90] J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett. 102 (2013) 22–25.

[91] F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42 (2013) 2294–2320.

[92] J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons, J. Am. Chem. Soc. 130 (2008) 13364–13372.

[93] J. Low, S. Cao, J. Yu, S. Wageh, Two-dimensional layered composite photocatalysts, Chem. Commun. 50 (2014) 10768–10777.

[94] M. Grundmann, The physics of semiconductors: An introduction including devices and nanophysics, Springer, Berlin, 2006.

[95] M. Li, J. Zhang, W. Dang, S.K. Cushing, D. Guo, N. Wu, P. Yin, Photocatalytic Hydrogen Generation Enhanced by Band Gap Narrowing and Improved Charge Carrier Mobility in AgTaO3 by Compensated Co-doping, Phys. Chem. Chem. Phys. 15 (2013) 16220–16226.

[96] J. Li, F. Meng, S. Suri, W. Ding, F. Huang, N. Wu, Photoelectrochemical performance enhanced by a nickel oxide–hematite p–n junction photoanode, Chem. Commun. 48 (2012) 8213–8215. [97] J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, Origin of

photocatalytic activity of nitrogen-doped TiO2 nanobelts, J. Am. Chem. Soc. 131 (2009) 12290– 12297.

[98] D.N. Tafen, J. Wang, N. Wu, J.P. Lewis, Visible light photocatalytic activity in nitrogen-doped TiO2 nanobelts, Appl. Phys. Lett. 94 (2009) 093101–093103.

161

[99] F. Meng, J. Li, Z. Hong, M. Zhi, A. Sakla, C. Xiang, N. Wu, Photocatalytic generation of hydrogen with visible-light nitrogen-doped lanthanum titanium oxides, Catal. Today. 199 (2013) 48–52. [100] Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II

heterostructures and their enhanced photocatalysis properties: a review, Nanoscale. 5 (2013) 8326–8339.

[101] A. Dyson, I.D. Henning, M.J. Adams, Comparison of type I and type II heterojunction unitravelling carrier photodiodes for terahertz generation, IEEE J. Sel. Top. Quantum Electron. 14 (2008) 277–283.

[102] X. Pang, X. Zhang, K. Gao, S. Wan, C. Cui, L. Li, H. Si, B. Tang, T. Weihong, Visible Light-Driven Self-Powered Device Based on a Straddling Nano- Heterojunction and Bio-Application for Quantitation of Exosomal RNA, ACS Nano. 13 (2019) 1817–1827.

[103] N.N. Ledentsov, J. Böhrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B.Y. Meltser, S. V. Shaposhnikov, I.N. Yassievich, N.N. Faleev, P.S. Kop’Ev, Z.I. Alferov, Radiative states in type-II GaSb/GaAs quantum wells, Phys. Rev. B. 52 (1995) 14058–14066. [104] D. Kong, Y. Zheng, M. Kobielusz, Y. Wang, Z. Bai, W. Macyk, X. Wang, J. Tang, Recent advances

in visible light-driven water oxidation and reduction in suspension systems, Mater. Today. 21 (2018) 897–924.

[105] A.N. Baranov, N. Bertru, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, Observation of room-temperature laser emission from type III InAs/GaSb multiple quantum well structures, Appl. Phys. Lett. 71 (1997) 735–737.

[106] R. Marschall, Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity, Adv. Funct. Mater. 24 (2014) 2421–2440.

[107] Y. Bessekhouad, D. Robert, J. V Weber, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, J. Photochem. Photobiol. A Chem. 163 (2004) 569–580.

[108] W.-T. Sun, Y. Yu, H. Pan, X. Gao, Q. Chen, L. Peng, CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes, J. Am. Chem. Soc. 130 (2008) 1124–1125.

[109] R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari, Improvement of eosin visible light degradation using, J. Photochem. Photobiol. A Chem. 194 (2008) 173–180.

[110] H. Kim, J. Kim, W. Kim, W. Choi, Enhanced Photocatalytic and Photoelectrochemical Activity in the Ternary Hybrid of CdS/TiO2/WO3 through the Cascadal Electron Transfer, J. Phys. Chem. 115 (2011) 9797–9805.

[111] X. Wang, G. Liu, Z.-G. Chen, F. Li, L. Wang, G.Q. Lu, H.-M. Cheng, Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures, Chem. Commun. (2009) 3452–3454.

[112] K. Sayama, R. Abe, H. Arakawa, H. Sugihara, Decomposition of water into H2 and O2 by a two-step photoexcitation reaction over a Pt – TiO2 photocatalyst in NaNO2 and Na2CO3 aqueous solution, Catal. Commun. 7 (2006) 96–99.

[113] M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, K. Domen, Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light ( < 500 nm), Chem. Lett. 37 (2008) 138–139.

162 [114] E.M. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion, Appl. Catal. B, Environ. 217 (2017) 485–493.

[115] A. Trenczek-Zajac, J. Banas, M. Radecka, TiO2-based photoanodes modified with GO and MoS2 layered materials, RSC Adv. 6 (2016) 102886–102898.

[116] M. Kaur, A. Umar, S.K. Mehta, S.K. Kansal, Reduced graphene oxide-CdS heterostructure: An efficient fluorescent probe for the sensing of Ag(I) and sunset yellow and a visible-light responsive photocatalyst for the degradation of levofloxacin drug in aqueous phase, Appl. Catal. B Environ. 245 (2019) 143–158.

[117] B. Zhang, G. Liu, M. Cheng, Y. Gao, L. Zhao, S. Li, F. Liu, X. Yan, T. Zhang, P. Sun, G. Lu, The preparation of reduced graphene oxide-encapsulated -α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature, Sensors Actuators B. Chem. 261 (2018) 252–263. [118] J. Muscat, V. Swamy, N.M. Harrison, First-principles calculations of the phase stability of TiO2,

Phys. Rev. B. 65 (2002) 1–15.

[119] D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci. 46 (2010) 855–874.

[120] H. Tang, H. Berger, P.E. Schmid, F. Levy, Optical properties of anatase (TiO2), Solid State Commun. 92 (1994) 267–271.

[121] T. Sekiya, K. Ichimura, M. Igarashi, S. Kurita, Absorption spectra of anatase TiO2 single crystals heat-treated under oxygen atmosphere, J. Phys. Chem. Solids. 61 (2000) 1237–1242.

[122] A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the least known TiO2 photocatalyst, Catalysts. 3 (2013) 36–73.

[123] T. Zhu, S. Gao, The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs, J. Phys. Chem. C. 118 (2014) 11385–11396.

[124] D.C. Cronemeyer, Electrical and optical properties of rutile single crystals, Phys. Rev. 87 (1952) 876–886.

[125] F. Arntz, Y. Yacoby, Electroabsorption in rutile TiO2, Phys. Rev. Lett. 17 (1966) 857–860.

[126] A. Frova, P.J. Boddy, Y.S. Chen, Electromodulation of the Optical Constants of Rutile in the uv, Phys. Rev. 157 (1967) 700–708.

[127] K. Vos, H.J. Krusemeyer, Low temperature electroreflectance of TiO2, Solid State Commun. 15 (1974) 949–952.

[128] P. J., C. J., M. H., Fine structure in the intrinsic absorption edge of TiO2, Phys. Rev. B. 18 (1978) 5606–5614.

[129] N. Daude, C. Gout, C. Jouanin, Electronic band structure of titanium dioxide, Phys. Rev. B. 15 (1977) 3229–3235.

[130] J.L. Jourdan, C. Gout, J.P. Albert, Energy Band Structure of TiO2 and it’s dependence on uniaxial stress, Solid State Commun. 31 (1979) 1023–1028.

[131] S.K. Deb, Photoconductivity and photoluminescence in amorphous titanium dioxide, Solid State Commun. 11 (1972) 713–715.

163

[132] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder, J. Am. Chem. Soc. 99 (1977) 303–304.

[133] S.N. Frank, A.J. Bard, Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders, J. Phys. Chem. 81 (1977) 1484–1488.

[134] T. Watanabe, T. Takizawa, K. Honda, Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide, J. Phys. Chem. 81 (1977) 1845–1851.

[135] L. Yu, J. Xi, H.T. Chan, D.L. Phillips, The Degradation Mechanism of Methyl Orange Under Photo-Catalysis of TiO2, Phys. Chem. Chem. Phys. 14 (2012) 3589–3595.

[136] M.N. Rashed, Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources, Int. J. Phys. Sci. 2 (2007) 073–081.

[137] S. Chin, E. Park, M. Kim, J. Jurng, Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process, Powder Technol. 201 (2010) 171–176.

[138] X. Chen, G.P. Rangaiah, X.S. Zhao, Photocatalytic Degradation of Methylene Blue by Titanium Dioxide : Experimental and Modeling Study, Ind. Eng. Chem. Res. 53 (2014) 14641–14649. [139] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T.

Watanabe, Photogeneration of Highly Amphiphilic TiO2 Surfaces, Advaned Mater. 10 (1998) 135–138.

[140] T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films. 351 (1999) 260–263.

[141] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature. 388 (1997) 431–432.

[142] C. Chawengkijwanich, Y. Hayata, Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests, Int. J. Food Microbiol. 123 (2008) 288–292.

[143] N.G. Chorianopoulos, D.S. Tsoukleris, E.Z. Panagou, P. Falaras, G.E. Nychas, Use of titanium

W dokumencie Index of /rozprawy2/11655 (Stron 153-176)

Powiązane dokumenty