• Nie Znaleziono Wyników

Index of /rozprawy2/11632

N/A
N/A
Protected

Academic year: 2021

Share "Index of /rozprawy2/11632"

Copied!
12
0
0

Pełen tekst

(1)

105

References

[1] J. G. Betts et al., “Bone tissue and sceletal system; Joints,” in Anatomy &

Physiology, Huston: OpenStax, 2013, pp. 213–246; 355–392.

[2] P. F. Gomez and J. A. Morcuende, “Early attempts at hip arthroplasty — 1700s to 1950s,” Iowa Ortopeadic J., vol. 25, pp. 25–29, 2005.

[3] C. Y. Hu and T.-R. Yoon, “Recent updates for biomaterials used in total hip arthroplasty,” Biomater. Resarch, vol. 22, no. 33, pp. 1–12, 2018.

[4] J. J. Z. Prokopetz, E. Losina, R. L. Bliss, J. Wright, J. A. Baron, and J. N. Katz, “Risk factors for revision of primary total hip arthroplasty: a systematic review,”

BMC Musculoskelet. Disord., vol. 13, no. 1, pp. 1–13, 2012.

[5] M. Navarro, A. Michiardi, O. Castan, and J. A. Planell, “Biomaterials in orthopaedics,” J. R. Soc. Interface, vol. 5, pp. 1137–1158, 2008.

[6] P. Serekaian, “Hydroxyapatite: from plasma spray to electrochemical deposition,” in

Fifteen years of clinical experience with hydoxyapatite coatings in joint arthroplasty, J.-A. Epinette and M. T. Manley, Eds. Paris: Springer-Verlag France,

2004, pp. 29–33.

[7] E. Erfanifar, M. Aliofkhazraei, H. F. Nabavi, and A. S. Rouhaghdam, “Growth kinetics and morphology of microarc oxidation coating on titanium,” Surf. Coat.

Technol., vol. 315, pp. 567–576, 2017.

[8] M. S. Kim, J. J. Ryu, and Y. M. Sung, “One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation,” Electrochem.

commun., vol. 9, pp. 1886–1891, 2007.

[9] N. Huebsch and D. J. Mooney, “Inspiration and application in the evolution of biomaterials,” Nature, vol. 26, pp. 426–432, 2009.

[10] B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, “Introduction and A history of biomaterials,” in Biomaterials science: An introduction to materials in

medicine, Oxford: Academic Press, 2013, pp. 25–53.

[11] L. L. Hench and J. M. Polak, “Third-Generation Biomedical Materials,” Science, vol. 295, pp. 1014–1017, 2002.

[12] L. L. Hench and I. Thompson, “Twenty-first century challenges for biomaterials,” J.

R. Soc. Interface, vol. 7, pp. S379–S391, 2010.

[13] L. L. Hench, “The story of Bioglass®,” J. Mater. Sci. Mater. Med., vol. 17, pp. 967– 978, 2006.

[14] T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction and osseointegration,” Eur. Spine J., vol. 10, pp. S96–S101, 2001.

[15] J. Daemen and P. W. Serruys, “Drug-eluting stent update 2007 Part I: A survey of current and future generation drug-eluting stents: meaningful advances or more of

(2)

106

the same?,” Circulation, vol. 116, pp. 316–328, 2007.

[16] U. Gross and P. A. Revell, History of the European Society for Biomaterials. Arti Grafiche Pasquale Dargotti Napoli, 2002.

[17] D. F. Williams, The Williams dictionary of biomaterials. Liverpool: Liverpool University Press, 1999, pp.40-42.

[18] D. F. Williams, “On the nature of biomaterials,” Biomaterials, vol. 30, pp. 5897– 5909, 2009.

[19] A. S. Daar and H. L. Greenwood, “A proposed definition of regenerative medicine,”

J. Tissue Eng. Regen. Med., vol. 1, pp. 179–184, 2007.

[20] S. Kargozar, M. Mozafari, S. Hamzehlou, P. B. Milan, H.-W. Kim, and F. Biano, “Bone tissue engineering using human cells: a comprehensive review on recent trends, current prospects, and recommendations,” Appl. Sci., vol. 9, pp. 1–49, 2019. [21] J. Abduo and K. Lyons, “Rationale for the use of CAD/CAM technology in implant

prosthodontics,” Int. J. Dent., vol. 2013, pp. 1–8, 2013.

[22] S. A. Rodeo, “Cell therapy in orthopaedics: where are we in 2019?,” Bone Joint J., vol. 101B, pp. 361–364, 2019.

[23] “Biomaterials Market by Type of Materials (Metallic, Ceramic, Polymers, Natural) & Application (Cardiovascular, Orthopedic, Dental, Plastic Surgery, Wound Healing, Neurology, Tissue Engineering, Ophthalmology) - Global Forecast to 2021,” https://www.marketsandmarkets.com/Market-Reports/biomaterials-393.html. [24] “Hip reconstruction devices market by product (primary, partial, revision, hip

resurfacing), and geography (U.S., Canada, EU-5, Japan, BRIC, Turkey, Indonesia)

- Global Forecast to 2020,”

https://www.researchandmarkets.com/reports/3611039/hip-reconstruction-devices-market-by-product.

[25] “Knee reconstruction devices market by product type (primary (cemented & cementless), partial, and revision implants), and geography (U.S., Canada, Eu-5, Japan, Bric, Turkey, Indonesia - Global Analysis and Forecast to 2020,”

https://www.researchandmarkets.com/reports/3610565/knee-reconstruction-devices-market-by-product.

[26] M. L. Wolford, K. Palso, and A. Bercovitz, “Hospitalization for total hip replacement among inpatients aged 45 and over: United States, 2000 – 2010,”

NCHS Data Brief, no. 186, pp. 1–7, 2015.

[27] “Realizacja świadczeń endoprotezoplastyki stawowej w 2013 i 2017 r,”

http://www.nfz.gov.pl/o-nfz/publikacje/.

[28] “National Joint Replacement Registry; Hip, Knee & Shoulder Arthroplasty; Annual Report 2014 and 2018,” https://aoanjrr.sahmri.com/.

(3)

107

https://secure.cihi.ca/estore/productSeries.htm?pc=PCC51.

[30] “Swedish Hip Arthroplasty Register, Annual Report 2013 and 2017,”

https://shpr.registercentrum.se/shar-in-english/annual-reports-from-the-swedish-hip-arthroplasty-register/p/rkeyyeElz.

[31] “Swedish Knee Arthroplasty Register, Annual Report 2013 and 2017,”

http://www.myknee.se/en/publications/annual-reports.

[32] “The National Joint Registry (NJR) for England, Wales, Northern Ireland and the

Isle of Man, 11th and 15th Annual Report,”

http://www.njrcentre.org.uk/njrcentre/Reports-Publications-and-Minutes.

[33] P. Tate, “Histology and Physiology of Bones,” in Seeley’s Principles of Anatomy

and Physiology, New York: Science Engineering & Math, 2011, pp. 149–196.

[34] “Schematic of bone structure,” https://www.fahal-tecno.xyz/.

[35] J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Med. Enginnering Phys., vol. 20, pp. 92–102, 1998. [36] A. D. P. Bankoff, “Human musculoskeletal biomechanics,” in Biomechanical

characteristics of the bone, T. Goswami, Ed. London: IntechOpen Limited, 2012,

pp. 61–86.

[37] J.-H. Chen, C. Liu, L. You, and C. A. Simmons, “Boning up on Wolff ’s Law: Mechanical regulation of the cells that make and maintain bone,” J. Biomech., vol. 43, pp. 108–118, 2010.

[38] C.-B. James and T. L. Uhl, “A review of articular cartilage pathology and the use of glucosamine sulfate,” J. Athl. Train., vol. 36, pp. 413–419, 2001.

[39] “American Academy of Othopedic Surgeons, Orthoinfo: Hip resurfacing,”

https://orthoinfo.aaos.org/.

[40] Y. Öztürkmen, M. Karamehmetoğlu, M. Caniklioğlu, Y. İnce, and I. Azboy, “Cementless hemiarthroplasty for femoral neck fractures in elderly patients,” Indian

J. Orthop., vol. 42, pp. 56–60, 2008.

[41] J. Daniel, P. B. Pynsent, and D. J. W. Mcminn, “Metal-on-metal resurfacing of the hip in patients under the age of 55 years with osteoarthritis,” J. Bone Jt. Surg., vol. 86-B, no. March 1994, pp. 177–184, 2004.

[42] “Hip resurfacing schemtaic,”

http://www.mcminncentre.co.uk/birmingham-hip-resurfacing.html.

[43] “Hip resurfacing X-Ray,” https://orthoinfo.aaos.org/en/treatment/hip-resurfacing/. [44] P. Hernigou, “Smith–Petersen and early development of hip arthroplasty,” Int.

Orthop., vol. 38, pp. 193–198, 2014.

(4)

108

introduction to materials in medicine, Oxford: Academic Press, 2013, pp. 841–882.

[46] K. I. Nissen, “The Judet Arthroplasty of the hip via Gibson’s lateral apprach,”

Postgrad. Med. J., vol. 28, pp. 412–423, 1952.

[47] “Image of the Thompson and Moore hip implant,”

http://www.medicalexpo.com/prod/corin/product-80816-509352.html.

[48] “Charnley’s low friction hip prosthesis,”

http://www.luigigentilemd.com/HipKnee/THE%20CHARNLEY%20TOTAL%20HIP %20REPLACEMENT.htm.

[49] “Stryker webpage,”

https://www.stryker.com/us/en/portfolios/orthopaedics/joint-replacement.html.

[50] “Image of hip joint implant with ceramic head and inlay by Zimmer GmbH,”

http://www.imagenii.org/biomet-ceramic-hip-replacement/.

[51] “Image of hip joint implant with head of oxidized zirconium by Smith&Nephew,”

http://www.mcminncentre.co.uk/total-hip-replacement.html.

[52] P. Hernigou, S. Quiennec, and I. Guissou, “Hip hemiarthroplasty: from Venable and Bohlman to Moore and Thompson,” Int. Orthop., vol. 38, pp. 655–661, 2014.

[53] W. T. Stillwell, “Revision total hip arthroplasty,” in A history of hip replacement

surgery, J. V Bono, J. C. McCarthy, T. S. Thornhill, B. E. Bierbaum, and R. H.

Turner, Eds. New York: Springer, 1999, pp. IX–XVII.

[54] M. Windler and R. Klabunde, “Metallurgy and technological properties of titanium and titanium alloys; Titanium for hip and knee prosthesis,” in Titanium in medicine, D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Eds. New York: Spronger, 2001, pp. 25–51; 703–746.

[55] G. Rohman, “Materials used in biomaterial apoplications,” in Biomaterials, Hobkone: Wiley, 2014, pp. 27–81.

[56] M. F. Ashby, “Material Property Charts,” in Materials Selection in Mechanical

Design (Fourth Edition), Oxford: Elsevier, 2011, pp. 57–96.

[57] K. C. Dee, D. A. Puelo, and R. Bizios, “Introduction; Biomaterials and biocompatibility,” in An introduction to tissue-biomaterial interactions, New Jersey: Wiley, 2002, pp. 1–13; 173–184.

[58] H. Hermawn, D. Romdan, and J. R. P. Djuansjah, “Metals for biomedical applications,” in Biomedical engineering - from theory to applications, Riejka: InTech, 2011, pp. 411–424.

[59] K. Duan and R. Wang, “Surface modifications of bone implants through wet chemistry,” J. Mater. Chem., vol. 16, pp. 2309–2321, 2006.

[60] M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials , the ultimate choice for orthopaedic implants – A review,” Prog. Mater. Sci., vol. 54,

(5)

109 no. 3, pp. 397–425, 2009.

[61] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials, vol. 27, pp. 1728–1734, 2006. [62] H. J. Rack and J. I. Qazi, “Titanium alloys for biomedical applications,” Mater. Sci.

Eng. C, vol. 26, pp. 1269–1277, 2006.

[63] M. Niinomi, “Recent metallic materials for biomedical applications,” Metall. Mater.

Trans., vol. 33A, pp. 477–486, 2002.

[64] P. J. Andersen, “Stainless steel,” in Biomaterials Science: An introduction to

materials in medicine, Oxford: Academic Press, 2013, pp. 124–127.

[65] K. Kumagai, N. Nomura, T. Ono, M. Hotta, and A. Chiba, “Dry friction and wear behavior of forged Co29Cr6Mo alloy without Ni and C additions for implant applications,” Mater. Trans., vol. 46, pp. 1578–1587, 2005.

[66] M. A. Hussein, A. S. Mohammed, and N. Al-Aqeeli, “Wear characteristics of metallic biomaterials: A review,” Materials (Basel)., vol. 8, pp. 2749–2768, 2015. [67] M. Jackson and K. Dring, “A review of advances in processing and metallurgy of

titanium alloys,” Mater. Sci. Technol., vol. 22, pp. 881–887, 2013.

[68] R. R. Boyer, “Attributes, characteristics and applications of titanium and its alloys,”

J. inerals, Met. Mater. Soc., vol. 62, pp. 35–43, 2010.

[69] A. F. Mavrogenis, R. Dimitriou, J. Parvizi, and G. C. Babis, “Biology of implant osseointegration,” J. Musculoskelet. Neuronal Interact., vol. 9, pp. 61–71, 2009. [70] M. Łucki, “Wpływ mikrostryktury na właściwości mechaniczne azotowanych

jarzeniowo stopów tytanu przeznaczonych na endoprotezy,” Akdemia Górniczo-Hutnicza, Kraków, 2004.

[71] M. Biel, “Mikrostruktura i właściwości biomateriałów tytanowych po obróbce powierzchniowej,” Akademia Górniczo-Hutnicza, Kraków, 2006.

[72] J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyka, “Microstructure and mechanical properties of high strenght two-phasetitanium alloys,” in Titanium

alloys-advances in properties control, Rijeka: InTech, 2013, pp. 69–80.

[73] A. Molinari, G. Straffelini, B. Tesi, and T. Bacci, “Dry sliding wear mechanisms of the Ti6Al4V alloy,” Wear, vol. 208, pp. 105–112, 1997.

[74] S. Wang, Z. Liao, Y. Liu, and W. Liu, “Different tribological behaviors of titanium alloys modi fi ed by thermal oxidation and spraying diamond like carbon,” Surf.

Coat. Technol., vol. 252, pp. 64–73, 2014.

[75] T. Moskalewicz, B. Wendler, S. Zimowski, B. Dubiel, and A. Czyrska-Filemonowicz, “Microstructure, micro-mechanical and tribological properties of the nc-WC / a-C nanocomposite coatings magnetron sputtered on non-hardened and oxygen hardened Ti – 6Al – 4V alloy,” Surf. Coat. Technol., vol. 205, no. 7, pp.

(6)

110 2668–2677, 2010.

[76] J. Lu, “Orthopedic bone cements,” in Biomechanics and biomaterials in

orthopedics, D. G. Poitout, Ed. London: Springer-Verlag, 2016, pp. 123–138.

[77] J. R. Jones, “Review of bioactive glass: From Hench to hybrids,” Acta Biomater., vol. 9, no. 1, pp. 4457–4486, 2013.

[78] A. Hoppe, V. Mouriñobc, and A. R. Boccaccini, “Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond,” Biomater. Sci., vol. 1, pp. 254–256, 2013.

[79] R. Olkowski et al., “Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture,” J. Mater. Sci. Mater. Med., vol. 26, pp. 1–12, 2015.

[80] M. P. Ginebra, T. Traykova, and J. A. Planell, “Calcium phosphate cements as bone drug delivery systems: A review,” J. Control. Release, vol. 113, pp. 102–110, 2006. [81] M. G. Joshi, S. G. Advani, F. Miller, and M. H. Santare, “Analysis of a femoral hip

prosthesis designed to reduce stress shielding,” J. Biomech., vol. 33, pp. 1655–1662, 2000.

[82] A. Simchi, E. Tamjid, F. Pishbin, and A. R. Boccaccini, “Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications,” Nanomedicine Nanotechnology, Biol. Med., vol. 7, no. 1, pp. 22–39, 2011.

[83] M. Kulkarni, A. Mazare, P. Schmuki, and A. Iglič, “Biomaterial surface modification of titanium and titanium alloys for medical applications,” in

Nanomedicine, A. Seifalian, A. de Mel, and D. M. Kalaskar, Eds. Manchester: One

Central Press, 2014, pp. 111–136.

[84] A. Czyrska-Filemonowicz, P. A. Buffat, and T. Wierzchon, “Microstructure and properties of hard layers formed by duplex surface treatment containing nickel and phosphorus on a titanium-base alloy,” Scr. Mater., vol. 53, pp. 1439–1442, 2005. [85] A. Czyrska-Filemonowicz, P. A. Buffat, E. Czarnowska, and T. Wierzchon,

“Microstructure, Properties and Biocompatibility of the Nitrided Ti-6Al-4V Alloy for Medical Application,” Mater. Sci. Forum, vol. 513, pp. 15–24, 2006.

[86] A. Czyrska-Filemonowicz, P. A. Buffat, M. Łucki, and T. Moskalewicz, “Transmission electron microscopy and atomic force microscopy characterisation of titanium-base alloys nitrided under glow discharge,” Acta Mater., vol. 53, pp. 4367– 4377, 2005.

[87] D. Jugowiec et al., “Electrophoretic deposition and characterization of composite chitosan-based coatings incorporating bioglass and sol-gel glass particles on the Ti-13Nb-13Zr alloy,” Surf. Coat. Technol., vol. 319, pp. 33–46, 2017.

[88] A. R. Rafieerad, M. R. Ashra, R. Mahmoodian, and A. R. Bushroa, “Surface characterization and corrosion behavior of calcium phosphate-base composite layer

(7)

111

on titanium and its alloys via plasma electrolytic oxidation: A review paper,” Mater.

Sci. Eng. C, vol. 57, pp. 397–413, 2015.

[89] E. Gongadze et al., “Adhesion of osteoblasts to a nanorough titanium implant surface,” Int. J. Nanomedicine, vol. 6, pp. 1801–1816, 2011.

[90] A. Civantos, E. Mart, V. Ramos, C. Elvira, A. Gallardo, and A. Abarrategi, “Titanium coatings and surface modifi cations: toward clinically useful bioactive implants,” ACS Biomater. Sci. Eng., vol. 3, pp. 1245–1261, 2017.

[91] R. B. Heimann, “Plasma-sprayed hydroxylapatite-based coatings: chemical, mechanical, microstructural, and biomedical properties,” J. Therm. Spray Technol., vol. 25, no. 5, pp. 827–850, 2016.

[92] H. Cimenoglu, M. Gunyuz, G. T. Kose, M. Baydogan, F. Ugurlu, and C. Sener, “Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications,” Mater. Charact., vol. 62, pp. 304–311, 2011.

[93] K. Suchanek et al., “Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modi fi ed titanium substrates,” Mater. Sci. Eng. C, vol. 51, pp. 57–63, 2015.

[94] A. Radtke et al., “Titania nanotubes/hydroxyapatite nanocomposites produced with the use of the atomic layer deposition technique: estimation of bioactivity and nanomechanical properties,” Nanomaterials, vol. 9, pp. 1–21, 2019.

[95] D. Jugowiec et al., “Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite / chitosan coatings on the Ti-13Nb-13Zr alloy,” Surf. Coat. Technol., vol. 324, pp. 64–79, 2017.

[96] A. Roguska, M. Pisarek, M. Andrzejczuk, and M. Lewandowska, “Synthesis and characterization of ZnO and Ag nanoparticle-loaded TiO 2 nanotube composite layers intended for antibacterial coatings,” Thin Solid Films, vol. 553, pp. 173–178, 2014.

[97] D. Teker, F. Muhaffel, M. Menekse, N. Gul, M. Baydogan, and H. Cimenoglu, “Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications,” Mater. Sci. Eng. C, vol. 48, pp. 579–585, 2015.

[98] P. Piszczek et al., “Biocompatibility of titania nanotube coatings enriched with silver nanograins by chemical vapor deposition,” Nanomiaterials, vol. 7, pp. 1–19, 2017.

[99] A. Kazek-Kęsik et al., “PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications,” Mater. Sci. Eng. C, vol. 94, pp. 998–1008, 2019.

[100] S. Cengiz, Y. Azakli, M. Tarakci, L. Stanciu, and Y. Gencer, “Microarc oxidation discharge types and bio properties of the coating synthesized on zirconium,” Mater.

Sci. Eng. C, vol. 77, pp. 374–383, 2017.

(8)

112

electrolysis for surface engineering,” Surf. Coat. Technol., vol. 122, pp. 73–93, 1999.

[102] R. O. Hussein, X. Nie, and D. O. Northwood, “An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing,”

Electrochim. Acta, vol. 112, pp. 111–119, 2013.

[103] Q. Li, W. Yang, C. Liu, D. Wang, and J. Liang, “Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy : Effects of electrolytes,” Surf. Coat. Technol., vol. 316, pp. 162–170, 2017.

[104] R. O. Hussein, D. O. Northwood, and X. Nie, “Processing-microstructure relationships in the plasma electrolytic oxidation (PEO) coating of a magnesium alloy,” Mater. Sci. Appl., vol. 5, pp. 124–139, 2014.

[105] R. O. Hussein, X. Nie, D. O. Northwood, A. Yerokhin, and A. Matthews, “Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process,” J. Phys. D. Appl. Phys., vol. 43, pp. 1–13, 2010.

[106] Y. Cheng et al., “New findings on properties of plasma electrolytic oxidation coatings from study of an Al – Cu – Li alloy,” Electrochim. Acta, vol. 107, pp. 358– 378, 2013.

[107] E. Matykina, A. Berkani, P. Skeldon, and G. E. Thompson, “Real-time imaging of coating growth during plasma electrolytic oxidation of titanium,” Electrochim. Acta, vol. 53, pp. 1987–1994, 2007.

[108] W. Ding, “Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials,” Regen. Biomater., vol. 3, pp. 79–86, 2016.

[109] J. Dou, Y. Chen, H. Yu, and C. Chen, “Research status of magnesium alloys by micro-arc oxidation: a review,” Surf. Eng., vol. 33, pp. 731–738, 2017.

[110] H. T. Siu and H. C. Man, “Fabrication of bioactive titania coating on nitinol by plasma electrolytic oxidation,” Appl. Surf. Sci., vol. 274, pp. 181–187, 2013.

[111] J. L. Xu, Z. C. Zhong, D. Z. Yu, F. Liu, and J. M. Luo, “Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy,” J.

Mater. Sci. Mater. Med., vol. 23, pp. 2839–2846, 2012.

[112] A. Krząkała et al., “Formation of bioactive coatings on a Ti – 6Al – 7Nb alloy by plasma electrolytic oxidation,” Electrochem. Acta, vol. 104, pp. 407–424, 2013. [113] L. T. Duarte, C. Bolfarini, S. R. Biaggio, R. C. Rocha-Filho, and P. A. P. Nascente,

“Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation,” Mater. Sci. Eng. C, vol. 41, pp. 343–348, 2014.

[114] A. Kazek-Kęsik et al., “Hybrid oxide-polymer layer formed on Ti-15Mo alloy surface enhancing antibacterial and osseointegration functions,” Surf. Coat.

(9)

113

[115] T. C. Yang, H. Y. Shu, H. T. Chen, C. J. Chung, and J. L. He, “Interface between grown osteoblast and micro-arc oxidized bioactive layers,” Surf. Coat. Technol., vol. 259, pp. 185–192, 2014.

[116] S. A. Yavari, B. S. Necula, L. E. Fratila-Apachitei, J. Duszczyk, and I. Apachitei, “Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys,” Surf. Eng., vol. 32, pp. 411–417, 2016.

[117] A. Kazek-Kęsik, G. Dercz, I. Kalemba, J. Michalska, J. Piotrowski, and W. Simka, “Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension,” Arch. Civ. Mech. Eng., vol. 14, pp. 671–681, 2014.

[118] I. Apachitei, B. Lonyuk, L. E. Fratila-Apachitei, J. Zhou, and J. Duszczyk, “Fatigue response of porous coated titanium biomedical alloys,” Scr. Mater., vol. 61, no. 2, pp. 113–116, 2009.

[119] T. Moskalewicz, A. Kruk, M. Kot, S. Kayali, and A. Czyrska-Filemonowicz, “Characterization of microporous oxide layer synthesized on Ti-6Al-7Nb alloy by micro-arc oxidation,” Arch. Civ. Mech. Eng., vol. 14, no. 3, pp. 370–375, 2014. [120] B. S. Necula, I. Apachitei, F. D. Tichelaar, L. E. Fratila-Apachitei, and J. Duszczyk,

“An electron microscopical study on the growth of TiO2–Ag antibacterial coatings

on Ti6Al7Nb biomedical alloy,” Acta Biomater., vol. 7, no. 6, pp. 2751–2757, 2011. [121] J. Karbowniczek, M. Buzgo, F. Muhaffel, and A. Czyrska-Filemonowicz, “Surface modification of titanium alloy by micro-arc oxidation,” Eng. Biomater., vol. 16, pp. 40–42, 2013.

[122] J. Karbowniczek et al., “Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties,” Mater.

Sci. Eng. C, vol. 77, 2017.

[123] P. Stedelman, “JEMS Java Electron Microscopy Software.” 2004.

[124] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus usung load and displacement sensing indentation experiments,”

J. Mater. Res., vol. 7, no. 6, pp. 1564–1582, 1992.

[125] P. A. Midgley and Z. Saghi, “Electron tomography in solid state and materials science – An Introduction,” Curr. Opin. Solid State Mater. Sci., vol. 17, pp. 89–92, 2013.

[126] S. Jalota, S. B. Bhaduri, and A. C. Tas, “Using a synthetic body fluid (SBF) solution of 27 mM HCO3 to make bone substitutes more osteointegrative,” Mater. Sci. Eng.

C, vol. 28, pp. 129–140, 2008.

[127] Y. Wang, H. Yu, C. Chen, and Z. Zhao, “Review of the biocompatibility of micro-arc oxidation coated titanium alloys,” Mater. Des., vol. 85, pp. 640–652, 2015. [128] A. Lugovskoy and S. Lugovskoy, “Production of hydroxyapatite layers on the

plasma electrolytically oxidized surface of titanium alloys,” Mater. Sci. Eng. C, vol. 43, pp. 527–532, 2014.

(10)

114

[129] S. Durdu, Ö. F. Deniz, I. Kutbay, and M. Usta, “Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation,” J. Alloys

Compd., vol. 551, pp. 422–429, 2013.

[130] Y. Han, J. Sun, and X. Huang, “Formation mechanism of HA-based coatings by micro-arc oxidation,” Electrochem. commun., vol. 10, pp. 510–513, 2008.

[131] X. Wang et al., “Influence of surface structures on biocompatibility of TiO2/HA

coatings prepared by MAO,” Mater. Chem. Phys., vol. 215, pp. 339–345, 2018. [132] L. Feller, Y. Jadwat, R. A. G. Khammissa, R. Meyerov, I. Schechter, and J.

Lemmer, “Cellular responses evoked by different surface characteristics of intraosseous titanium implants,” Biomed Res. Int., vol. 2015, pp. 1–8, 2015.

[133] M. M. Stevens and J. H. George, “Exploring and engineering the cell surface interface,” Science, vol. 310, pp. 1135–1138, 2005.

[134] S. Ni, J. Chang, L. Chou, and W. Zhai, “Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro,” J. Biomed.

Mater. Res. Part B Appl. Biomater., vol. ?, pp. 1–8, 2006.

[135] M. Schamel, J. E. Barralet, J. Groll, and U. Gbureck, “In vitro ion adsorption and cytocompatibility of dicalcium phosphate ceramics,” Biomater. Res., vol. 21, pp. 1– 8, 2017.

[136] S. Abbasi, F. Golestani-Fard, S. M. M. Mirhosseini, A. Ziaee, and M. Mehrjoo, “Effect of electrolyte concentration on microstructure and properties of micro arc oxidized hydroxyapatite/titania nanostructured composite,” Mater. Sci. Eng. C, vol. 33, no. 5, pp. 2555–2561, 2013.

[137] R. B. Heimann, “Structure, properties, and biomedical performance of osteoconductive bioceramic coatings,” Surf. Coat. Technol., vol. 233, pp. 27–38, 2013.

[138] S. Kashyap, K. Griep, and J. A. Nychka, “Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5,” Mater. Sci.

Eng. C, vol. 31, no. 4, pp. 762–769, 2011.

[139] Z. Yang, L. Xia, W. Ii, and J. Han, “Effect of Ca/P ratio on bioactivity of PEO coatings,” J. Adv. Biomed. Eng. Technol., vol. 2, pp. 13–19, 2015.

[140] Z. Q. Yao et al., “Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation,” Acta

Biomater., vol. 6, pp. 2816–2825, 2010.

[141] L. H. Li et al., “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials, vol. 25, pp. 2867–2875, 2004. [142] T. Moskalewicz, M. Kot, S. Seuss, A. Kędzierska, A. Czyrska-Filemonowicz, and

A. R. Boccaccini, “Electrophoretic deposition and characterization of HA/chitosan nanocomposite coatings on Ti6Al7Nb alloy,” Met. Mater Int., vol. 21, no. 1, pp. 96– 103, 2015.

(11)

115

[143] X. Nie, A. Leyland, and A. Matthews, “Deposition of layered bioceramic hydroxyapatite/TiO coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis,” Surf. Coatings Technol., vol. 125, pp. 407–414, 2000.

[144] X. J. Tao et al., “Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation,” Mater. Sci. Eng. C, vol. 29, no. 6, pp. 1923–1934, 2009.

[145] E. Matykina, R. Arrabal, P. Skeldon, and G. E. Thompson, “Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium,” Acta

Biomater., vol. 5, no. 4, pp. 1356–1366, 2009.

[146] S. Aliasghari, P. Skeleton, and G. E. Thompson, “Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings,” Appl. Surf. Sci., vol. 316, no. 1, pp. 463–476, 2014.

[147] D. R. N. Correa et al., “Growth mechanisms of Ca- and P-rich MAO fi lms in Ti-15Zr-xMo alloys for osseointegrative implants,” Surf. Coat. Technol., vol. 344, pp. 373–382, 2018.

[148] J. Karbowniczek, F. Muhaffel, G. Cempura, H. Cimenoglu, and A. Czyrska-Filemonowicz, “Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy,” Surf. Coat. Technol., vol. 321, pp. 97–107, 2017.

[149] W. Xue, C. Wang, R. Chen, and Z. Deng, “Structure and properties characterization of ceramic coatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution,” Mater. Lett., vol. 52, pp. 435–441, 2002.

[150] P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, and S. A. Goldstein, “Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur,” J. Biomech., vol. 32, pp. 1005–1012, 1999. [151] J. Anguiano-Sanchez, O. Martinez-Romero, H. R. Siller, J. A. Diaz-Elizondo, E.

Flores-Villalba, and C. A. Rodriguez, “Influence of PEEK coating on hip implant stress shielding: a finite element analysis,” Comput. Math. Methods Med., vol. 2016, pp. 1–10, 2016.

[152] P. Kutilek and J. Miksovsky, “The procedure of evaluating the practical adhesion strength of new biocompatible nano- and micro-thin films in accordance with international standards,” Acta Bioeng. Biomaechanics, vol. 13, no. 3, pp. 87–94, 2011.

[153] F. G. Oliveira et al., “Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and

magnesium,” Appl. Surf. Sci., vol. 341, pp. 1–12, 2015.

[154] M. Andrzejczuk, R. Marcin, A. Roguska, M. Pisarek, and M. Lewandowska, “An electron microscopy three-dimensional characterization of titania nanotubes,”

(12)

116

[155] U. Stachewicz et al., “3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration,” Acta Biomater., vol. 27, pp. 88–100, 2015.

[156] Y. Zou and J. Malzbender, “Development and optimization of porosity measurement techniques,” Ceram. Int., vol. 42, no. 2, pp. 2861–2870, 2016.

[157] F. A. Shah, P. Thomsen, and A. Palmquist, “Osseointegration and current interpretations of the bone-implant interface,” Acta Biomater., vol. 84, pp. 1–15, 2019.

[158] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, pp. 2907–2915, 2006.

[159] S. Li, W. Yu, W. Zhang, G. Zhang, L. Yu, and E. Lu, “Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro- / nanorod topography optimized for osseointegration,” Int. J. Nanomedicine, vol. 13, pp. 3643–3659, 2018.

[160] D. G. Bello, A. Fouillen, A. Badia, and A. Nanci, “A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells,” Acta Biomater., vol. 60, pp. 339–349, 2017.

[161] S. Metwally et al., “Single-step approach to tailor surface chemistry and potential on electrospun PCL fibers for tissue engineering application,” Adv. Mater. Interfaces, vol. 6, pp. 1–12, 2018.

[162] D. P. Ura, J. E. Karbowniczek, P. K. Szewczyk, S. Metwally, M. Kopyściański, and Stach, “Cell integration with electrospun PMMA nanofibers, microfibers, ribbons, and films: A microscopy study,” Bioengineering, vol. 6, pp. 1–12, 2019.

[163] A. Kruk, G. Cempura, S. Lech, and A. Czyrska-Filemonowicz, “STEM-EDX and FIB-SEM tomography of allvac 718plus superalloy,” Arch. Met. Mater., vol. 61, no. 2, pp. 535–542, 2016.

[164] A. Kruk and G. Cempura, “Application of analytical electron microscopy and FIB-SEM tomographic technique for phase analysis in as-cast Allvac 718Plus superalloy,” Int. J. Mater. Res., vol. 110, pp. 3–10, 2019.

[165] C. Kizilyaprak, J. Daraspe, and B. M. Humbel, “Focused ion beam scanning electron microscopy in biology,” J. Microsc., vol. 254, no. 3, pp. 109–114, 2014. [166] A. Friedmann, A. Hoess, A. Cismak, and A. Heilmann, “Investigation of cell –

substrate interactions by focused ion beam preparation and scanning electron microscopy,” Acta Biomater., vol. 7, no. 6, pp. 2499–2507, 2011.

[167] H. Chen, C. Chung, T. Yang, C. Tang, and J. He, “Microscopic observations of osteoblast growth on micro-arc oxidized titanium,” Appl. Surf. Sci., vol. 266, pp. 73–80, 2013.

Cytaty

Powiązane dokumenty

[r]

Jak widać, przedmiotem artykułu staje się więc nie tylko „pożyteczność” czasopism, ale także po- wody podejmowania działalności wydawniczej oraz etyka pracy krytyka

12/ Cena akcji spółki wypłacającej stałą dywidendę w wysokości 5 EUR o charakterze perpetuity, przy wymaganej stopie zwrotu 10% wynosi:. [X]

Metagenomics, proteomics and fluorescence in situ hybridization showed that this simplified community contained both a potential sulfur oxidizing Gammaproteobacteria (at 24 ±

Z jednej strony, B rentano oderw ał intencjonalność od świata zewnętrznego, podkreślając, że dla zagadnienia przedm iotowości doświadczenia nie ma znaczenia

Choć zm ieniają się ludzie głoszący orędzie, treść orędzia nie zm ienia się w cale. Zauw ażalny jest kontrast pom iędzy przełożonym i, którzy odchodzą, a

Skoro najbardziej reprezentatywne, a lepiej: najbardziej w ym ow ne są dla celów badawczych autora meszalim okresu tannaickiego, to siłą rzeczy na drabinie