• Nie Znaleziono Wyników

Sensor applications for organ-on-chip platforms

N/A
N/A
Protected

Academic year: 2021

Share "Sensor applications for organ-on-chip platforms"

Copied!
2
0
0

Pełen tekst

(1)

Delft University of Technology

Sensor applications for organ-on-chip platforms

Aydogmus, Hande; Dostanic, Milica; Jahangiri, Mojtaba; Sinha, Rajarshi; Quiros Solano, William; Mastrangeli, Max; Sarro, Lina

Publication date 2019

Document Version Final published version Citation (APA)

Aydogmus, H., Dostanic, M., Jahangiri, M., Sinha, R., Quiros Solano, W., Mastrangeli, M., & Sarro, L. (2019). Sensor applications for organ-on-chip platforms. Poster session presented at International MicroNanoConference 2019, Utrecht, Netherlands.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

REFERENCES

[1] U. Marx et al., ALTEX - Alternatives to Animal Experimentation 33(3), pp. 272-321, 2016. [2] D. Khodagholy et al., Nature communications 4:2133, 2013.

[3] V. Benfenati et al., Nature Materials 12(7), pp. 672-680, 2013. [4] A. Spanu et al., Scientific Reports 5:8807, 2015.

[5] X. Chen et al., Neuroscience Bulletin 34(2), pp.341-348, 2018.

• Monitoring cell conditions and microenvironment in real time is crucial for Organ-on-Chip (OoC) functionality. In particular, biological cues such as ions, including metals and

metabolites, play a critical role in physiology and homeostasis in the human body. • Real-time monitoring of ions without optical systems is an unmet need for OOCs [1].

• Electrochemical sensors, such as organic electrochemical [2] and thin-film transistors [3], may address this need. Most of these sensors however rely on reference electrodes.

We present an innovative and extremely compact electrochemical charge sensor

for OoCs based on a floating gate field effect transistor (FGFET). This sensor:

• does not need a reference electrode

• achieves label-free measurement of ion concentration in real time • can be seamlessly integrated into silicon/polymer-based OoCs

• is compatible with wafer-scale CMOS-based microfabrication

SENSOR APPLICATIONS FOR

ORGAN-ON-CHIP PLATFORMS

Wafer scale fabrication

INTEGRATED ELECTRO-CHEMICAL CHARGE SENSING IN ORGANS-ON-CHIP

Ions present in the sensing region of the

OoC

Modulation of the threshold voltage of

the transistor

Effect can be tracked by measuring the

drain current

Front side Back side

Schematic of the device

Polyimide Ti PDMS n+ SiO2 Al n+

Front side: Electronic part, composed of 8 transistors.

Back side: Insulated gate extensions. Only sensing pads are in direct contact with the solution.

Silicon is etched to suspend the PDMS membrane, which will be used as the sensing area.

Fabrication of the transistor

Encapsulation of gate extensions

Etching Silicon from the backside

Preliminary Results & Discussion

Conclusions and Outlook

Change in the threshold voltage when a droplet of KCl solution is put on the sensing region. A single die wire-bonded

to a custom PCB.

4-needle probe station was used to bias the transistors and retrieve the drain current.

• We eliminate the need of a reference electrode by using a capacitive control gate to modulate the transistor threshold voltage.

• The output characteristics of transistors measured by biasing the control gate prove the functionality of the sensor both in dry and wet conditions.

• Measurements prove the change in drain current by the ions present in the electrolyte. • Our platform integrates CMOS-compatible fabrication with flexible polymer membrane,

which forms the sensing region with transistor’s gate extensions. It offers label-free and real-time sensing for biochemical cues in OoC applications.

• This platform could also be employed to monitor ionic displacement occurring at the cell membrane [4], and for disease modelling. For instance, abnormal changes in potassium channels of neurons can give information about Parkinson’s disease [5].

• Future work includes selectivity and sensitivity studies for specific ions.

Hande Aydogmus, Milica Dostanic, Mojtaba Jahangiri, Rajarshi Sinha, William F. Quirós-Solano, Massimo Mastrangeli, Pasqualina M. Sarro

ECTM, Department of Microelectronics, TU Delft, The Netherlands

Introduction

Fabrication of capacitive gate & gate extensions, encapsulating extensions with polyimide

1st layer of polyimide

Spin coating PDMS to obtain a membrane

80µm

80µm

Back side of the chip after etching silicon and releasing the suspended PDMS membrane with insulated

gate extensions.

80µm

80µm

Cross section of the device

Sensing area: Silicon is etched to release the PDMS membrane Encapsulated gate extension electrode Floating gate The control gate capacitively controls

the floating gate, eliminating the need for a reference electrode.

Characteristics of an n-MOS transistor. The extracted threshold voltage was 0.4 V.

Each die contains 4 NMOS and 4 PMOS transistors. Measurements were conducted across the whole wafer before dicing and mounting individual chips to a custom

PCB. For all the transistors on the wafer, mean and variance of threshold voltages were calculated.

Threshold

Voltage (V) NMOS PMOS Average 0.44 -3.69

Variance 0,000713 0,011257

• Each 4-inch Si wafer contains 52 OoC devices made of silicon and PDMS.

• After wafer-scale fabrication, the wafer is diced and the chips are electrically characterised. After dicing 3mm 1cm SiO2 Si Al Ti Polyimide PDMS SP SN N-well Sensing area Insulated gate extension Sensing electrodes w/o insulation layer PDMS membrane Capacitive control pad Transistor terminals & CO

Cytaty

Powiązane dokumenty

[r]

[r]

Так, например, в предложении Саше спится с синтаксической точки зрения имя в дательном падеже квалифицирует- ся как второстепенный член

W archidiakonacie warszawskim wikariusze nie pobierali wynagrodzenia od plebana, ale uposażeni byli dziesięcinami chłopskimi (podobnie było w diecezji płockiej).

In die jaren zestig waren we er (voor een groot deel) van overtuigd dat de norm-en doelstellingen waaronder de sociale woningbouw in die tijd gebouw werd, goed

Można spotkać opinie (np. Instrukcja obserwacji i badań osuwisk drogowych 1999 ), że na powierzchniach poślizgu osuwisk dochodzi do jednakowego (równomiernego) spadku

Gdy zatem widzicie, że nie było żadnej wojny prowadzonej przeciw chrześcijanom - a Bóg przypomina, że są również niektórzy zmarli, bez wojny, kiedy mówi: „Ci, co

O ile analiza stanu grzeszności wydaje się być pozbawiona szczególnej komplikacji, któż bowiem jest bez grzechu, o tyle analiza stanu pierwotnej niewinności