• Nie Znaleziono Wyników

Frequency response of photodetector measurements by means of heterodyne and interferometric techniques of detection

N/A
N/A
Protected

Academic year: 2021

Share "Frequency response of photodetector measurements by means of heterodyne and interferometric techniques of detection"

Copied!
7
0
0

Pełen tekst

(1)

Optica Applicata, Vol. X I I I , No. 3, 1983

Frequency response o f photodetector measurements

by means of heterodyne

and interferometric techniques of detection

Kr z y s z t o f M. Ab r a m s k i

Institute o f Telecom m unication and A coustics, Technical University o f W roclaw , Poland. Heterodyne and interferom etric detection has been used t o measure the frequency response o f photodetectors. Descriptions o f measurements and experim ental set-ups are presented. B oth m ethods are well suited for designation frequency response.

1 . Introduction

As far as the application of photodetectors are concerned, the frequency response is one of the most important parameters. It determines the detectability of fast optical phenomena such as short pulses or beating. The frequency response is usually measured by the analysis of time response of photodetectors detecting the short optical pulse or by the measurement of modulation characteristic.

The heterodyne and interferometric detection are other methods of fre­ quency response 8 ( f ) measurements. They may be more accurate and easier in practice.

2 . Heterodyne technique o f detection

The intensity of beating two single-mode laser beams operating on frequencies

vlf v2 may be expressed in the form

I(t) = El(v) + E22(v) + 2E1(v1)E 2(v2)co8{l27i(v1- v 2)t] + 0(t)} = I a + I h(t)

(1)

where E 1(v1), -B2(i<2) — amplitudes of electric-field intensity of both waves,

I 0 — mean intensity of radiation,

I h(t) — harmonic component of radiation (called heterodyne signal

below),

0 ( t ) — phase fluctuation of heterodyne signal.

If one of the laser frequencies is tuned linearly at the rate a (which can be simply performed by means of PZT driver), the heterodyne signal I h(t) may be written as

i h(t) = I h0 cos{231:[(iq + at) - v 2]t + &(t)}. (2) Derivative of the phase fluctuation d&(t)jdt presents the frequency fluctua­

(2)

224 K . M. Abr a h sk i

tion of heterodyne signal due to nonstability of lasers. When short-term fluctua­ tions of different laser frequency are less than bandpass of photodetector, &(t) in Eq. (2) may be neglected. Heterodyne signal is then a useful wobbling signal to measure the frequency response of investigated photodetector [1]. It should be noted that heterodyne component of intensity I h falls on the photodetector together with the mean intensity I 0. The ratio I,JI0 may vary from 0 to 1 by a precize adjustment of heterodyne optical set-up [2]. The width of emission laser line limits the range of frequency tunability. If the bandpass of investiga­ ted photodetector is comparable with the width of tbe laser line the heterodyne signal I h(t) is weighed b y the profile of output power line of tuned laser.

Heterodyne method is particularly useful for investigation of “fast” photo­ detectors. If the bandpass of photodetector is larger then the width of emission laser line, the measurement may be achieved by isotopical shift of emission line of the laser used. This problem may be eliminated if dye or waveguide laser are applied.

2 .1 . Experimental results

Figure 1 shows experimental block diagram for measurement of frequency response of InAs photodiode (J-12 LD, Judson) at A = 3.39 p.m (He-He lasers). In order to mark the frequency scale the heterodyne signal trains from photo­ detector to frequency discriminator tuned on v0 = 2.5 MHz. The oscilloscope

PZT DRIVERS

Fig. 1. B lock diagram o f frequency response measurement b y means o f heterodyne detection

record in Fig. 2 shows the simultaneous observation of heterodyne signal and discriminant signal. The frequency response of the investigated photodiode is presented in Fig. 3.

(3)

Frequency response o f photodetector measurements ... 225

Fig. 2. Simultaneous oscilloscope records o f heterodyne and discriminant signals

1.0 OS z Ui > £ 0.4 LU * 0.2

Fig. 3. F requency response o f InAs p h otodiode àt 3.39 pm measured b y means o f h eterodyne detection

S(cj) -TQ-0.16»10'6s

/ \

S(0) ■/l + (c jtn )2 • experimental points 10 kHz 100 kHz 1 MHz 10 MHz

3. Interferometric technique o f detection

The beating of two laser beams originating from the same source is an example of interference (vx = v2). In term I h(t) in Bq. (2) represents the interferometric pattern with small phase fluctuation $ 0(f) caused by the optical path difference disturbances in interferometer. In this case the term I h(t) may be called an interferometric signal and written as

I t(t) = 1 * 0 0 8 [<*>„(<)]. (3) In order to obtain a controlled signal I f(t) one of the arms of interferometer should be tuned in the well-known way [3]. If the displacement of one mirror

(4)

226 K. M. Abramski

in interferometer is x(t)\ the phase of interferometrie signal'is chańged/Bue to Doppler effect

0(t) = 4 7ix(t)

and

(4)

Ii(t) = I i0 cos + . (5)

For a well stabilized interferometer 0 o(t) is less than n and it may be neglected. If x(t) is the saw-tooth function, I f (<) is the useful wobbling signal, like I h{t) in Eq. (2). In practice a fast saw-tooth mechanical displacement with a'large amplitude is difficult to obtain and that is why the harmonic tunning should be applied [4]

x{t) = ®0sin(i2i)·

The interferometric signal I {(t) has the form

Ii(t) = I,.„cos [ 4jriP0 — — sm(i2t) .^ T

The instantaneous frequency of signal l^ t) is

1 d0(t) 2x0

= ° ° s m ·

(6)

(7)

(8)

g. 4. B lock diagram o f frequency response measurements. Dy means o f interferom etric detection

(5)

Frequeney response o f photoâeteetor rn.easurem.ents ... 227

Fig. 5. Oscilloscope reconl* o f interierom et and d iivin g signais for different amplitude o f vibration

(6)

2 28 K . M. Abeam ski

and for Qt = lin the maximum value

I',,, m v 1 d&(t) 2n dt 2 û x 0 Ql=kn (9) is obtained.

The changes in amplitude x„ and angular frequency ü permit to obtain the optimal values of frequency deviation. By detecting the interferometric signal for difference rmax the frequency response characteristic of investigated photodetector may be easily found.

3.1. Experimental results

The author applied the above method to measurement of frequency response •characteristic of phototransistor (BPYP—21, UNTTRA-CEMI) at X = 0.63 [im (He-iTe 0.63 pm lasers). The experimentsl set-up is shown in Fig. 4. One mirror of the laser interferometer was placed on the mechanical vibrator. The amplitude of displacement x 0 was measured by counting the interferometric fringes in one period T = 2njQ of driving signal. The examples of interferometric signals •detected by phototransistor for different x 0 are presented in Fig. 5.

In order to compare the two presented methods the heterodyne measure­ ments of B PYP-21 phototransistor have been performed, in the heterodyne system with He-!Ne 0.63 pm lasers. Figure 6 shows the frequency response characteristic of phototransistor measured by means of both the above methods.

1.0 £ 0.8 z 3 0.6 LU I 0.4 - J LU 1 10 100 f [ kHz]

Fig. 6. F requency response o f phototransistor B P Y P -2 1 measured b y means of in terferom etric and heterodyne detection

T0 -17*10*6 s N· \ X \ S(u>) = sto) Vl*UoT0)1 2 • interferometric measurements V « heterodyne measurements -4. Summary

:The frequency response of photodetectors can be found by means of heterodyne or interferometric detection described above. Unlike the traditional methods

(7)

Frequency response o f photodetector measurements ... 229

the wobbling signal may be obtained when wide-band modulators are not applied.

References

[1] Bu c z e k C. J., P icu s Gr. S., Appl. Phys. L ett. 11 (1967), 125-126. [2] Ab b a m s k i K . M., Pl i&s k i E. F ., Optica Applicata 11 (1981), 563-570.

[3] Va n e c y a n R. A ., Ty c h in s k a y a M. P.·, Za k h a b o v V. P ., Nik o l a e v 0 . A ., Tis h c h e n k o

Kv a n t o v a y a V. A ., Elelctronika, No. 4 (1971), 27-33.

[4] Masatu k a N., Toshimitsu M., Toshihaetj T., J. Appl. Phys. 50 (1979), 2544-2547

Received January 4 1983, in revised form April 25, 1983

Измерения частотной характеристики фотодетекторов при использовании гетеродинного и интерференционного детектирования Гетеродинное и интерференционное детектирование было использовано для измерения частотной характеристики фото детекторов. Представлены измерения и экспериментальные установки. Оба метода удобны для определения частотных характеристик фото детекторов. Проверила Малгожата Хейдрих

Cytaty

Powiązane dokumenty

Badaczka ilustruje ten typ ba- śni książką XY Joanny Rudniańskiej, w której dostrzega dwie wykluczające się tendencje: „ubaśniowienie Holokaustu oraz zagładę baśni”

The article demonstrates that the first resonance on frequency response characteristic of any winding of the power transformer derives from another high voltage

Jana Waszkiewicza, Marszałka

In this Section it will be investigated if 10-min. maxima, rather than all maxima, can be used in the probabilistic method outlined in the previous Section. This will solve

Małgorzata Jacyno zauważa, że inspirowany Foucaultem dyskurs no- wych ruchów oporu wobec władzy jest dziś łatwo przez tę władzę przejmowany i adaptowany do jej

Konieczne jest także upowszechnianie informacji o rozwijających się nowych formach finan- sowania przedsięwzięć jak fundusze seed capital (fundusze finansujące

Bartsch stosuje wypracowane przez siebie defi nicje for- malne do wyjaśnienia: (1) metaforycznych i metonimicznych użyć wyrażeń, (2) defi niowania pojęć; (3) składania pojęć;

RECENZJE 267 autora: „Życzliwości i uwadze Czytelników polecamy w yniki naszej wspólnej pracy prosząc, aby staw ali się przyjaciółm i rzeczywistości, która tym,