• Nie Znaleziono Wyników

A classification of Q-ideals on the real line

N/A
N/A
Protected

Academic year: 2021

Share "A classification of Q-ideals on the real line"

Copied!
11
0
0

Pełen tekst

(1)

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ w BYDGOSZCZY P r o b le m y M a te m a ty c z n e 1985 z . 7

MAREK BALCERZAK U n iw e r s y te t Ł ó d z k i

A C L A S S IF IC A T IO N OF (Г -IDEALS ON THE REAL L IN E

T h r o u g h o u t t h e p a p e r we s h a l l c o n s i d e r s u b s e t s o f t h e r e a l l i n e TR e q u ip p e d w i t h t h e n a t u r a l t o p o l o g y . By oJ ( r e s p . w e mean t h e f i r s t i n f i n i t e ( r e s p . u n c o u n t a b l e ) o r d i n a l n u m ber. L e t Sb d e n o t e t h e f a m i l y o f a l l B o r e l s e t s . We s h a l l a l s o c o n s i d e r f a m i l i e s F^., G,< , ос с , d e f i n e d as i n L2 J , p p . 2 5 1 - - 2 52 . A f a m i l y ^ o f s e t s w i l l b e c a l l e d a j r ' - i d e a l i f and o n l y i f I t f u l f i l s t h e c o n d i t i o n s : ( i > i f 1 Ć . 3 and В £ A , t h e n В t ü ; ( i i ) i f A n f o r a l l n

со

, th e n n < u n^ A

3 ;

( i i i ) i f A é O i th e n t h e i n t e r i o r o f A i s e m p ty ; ( i v ) i f x é. 3R , t h e n ( x } ć-

3

. A f a m i l y 3 w i l l b e c a l l e d m o v a b le i f and o n l y i f i t f u l f i l s t h e c o n d i t i o n ( v ) i f A C Ü and x ć. 3R , t h e n A + x

3

, w h e re A + x = { y C - I R : y = a + x f o r some a £ A } . Rem ark 1. I f 3 i s m o v a b le , c o n d i t i o n s ( i ) , ( i i ) h o l d and IR ф 3 , th e n c o n d i t i o n s ( i i i ) , C iv ,) h o l d , a s w e l l . L e t 3 b e a t f ' - i d e a l and l e t "C b e a n y o f t h e f a m i l i e s Æ>, F^, , G ^ , oc OJ1 . D e f i n e I

(3

,

С

) = £a

:

A £ В f o r some B e 3 w i l l b e c a l l e d a B o r e l ( r e a p . n o n - B o r e l ) < r - i d e a l i f and o n l y i f l ( S , ( b ) = 3 i ( r e a p . 1 ( 3 * ^ ^ $ • We d e f i n e R F (3 ) ( r e s p . R G ( 4") ) a s t h e f i r s t o r d i n a l n um ber y - ^ Ceł, SUCh t h a t 1 H t Ob) = I (,3 , F^| ( r e s p . l ( ^ , ( b ) = 1 0 , G^)) H e r e F ^j = G (jJ = (£>• We s h a l l s a y t h a t t h e (з - i d e a l 3 1 » o f t y p e ( « C ; { î ) i f and o n l y i f cc = R F (3 ) and (b - R G (3 ).

Lemma 1. I f 3 i * a (Г- i d e a l o f t y p e ^ ; Г] ) , th e n o ( = p o r j j s o f t 1 o r Ы = ß + 1.

(2)

52 P r o o f , S u p p o se t h a t o f'/ ß , and l e t f o r e x a m p le oc <. ß . Ve h a v e l ( 4 ,0b) = 1 ( 3 , Г „ . ) 6

1 ( 4

, e - + 1 ) i ф , б Ъ ) . Thue l ( 3 , G ^ + ^) = l(.3 ,6 b ) and b y t h e d e f i n i t i o n o f (b , we h a v e (b £ ot + 1 , w h ic h t o g e t h e r w i t h oi < ß g i v e s f l = <* ♦ 1 . I n t h e c a s e (b < cc t h e p r o o f i s a n a lo g o u s . Lenina 2 . I f 3 i s a ( ^ - i d e a l o f t y p e (aC i ß ) , th e n oC> 1 o r p> > 1 . P r o o f , S u p p o se t h a t oc ■£ 1 and A * 1 . S in c e oC ■£, 1, we h a v e I ( 3 t <b) = l ( 3 , F ^) • H e n o e , fr o m ( i n ’) and t h e d e f i n i t i o n o f ’ l ( t ) , F ^ i t e a s i l y f o l l o w s t h a t a l l s e t s fr o m Элdt> a r e o f t h e f i r s t o a t e g o r y . S in c e ß < 1, we h a v e I^*ł,<Sb) = 1 ^ 5 , G^) . I n v i r t u e o f U v ) , ( i i j , t h e s e t W o f a l l r a t i o n a l num bers b e l o n g s t o l(,3 ,6 b ) , S o , b y t h e d e f i n i t i o n o f " 1 (3 , G^) , t h e r e e x i s t s a s e t B Ê 1 П s u c h t h a t W Ç- В . Th e s e t В b e l o n g s t o 3n(fc) , s o i t i s o f t h e f i r s t c a t e g o r y . B ut t h e B a i r e C a t e g o r y T h eo rem e a s i l y i m p l i e s t h a t t h e s e t o f t y p e Gg an d o f t h e f i r s t o a t e g o r y i s n o w h e re d e n s e . T h is g i v e s a c o n t r a d i c t i o n s i n c e В c a n n o t s i m u l t a n e o u s l y b e n o w h e re d e n s e and c o n t a i n V . From Lemmas 1 ,2 we i m m e d ia t e ly o b t a i n t h e f o l l o w i n g T h eo rem 1. I f Ü i s a d '- i d e a l o f t y p e ; p ) , th e n ( 4 ) 2 i oc = ß o r 2 + 1 = ß z . o r Z ± p + 1 = oC . C o n v e r s e l y , we s h a l l p r o v e Сs e e T h eo rem 2 b e l o w ) t h a t i f a p a i r oC , p f u l f i l s c o n d i t i o n (je) , th e n t h e r e e x i s t s a O '- i d e a l 3 o f t y p e ( o c ; p ) . T h u s , c o n d i t i o n (_*) c h a r a c ­ t e r i z e s t h e t y p e o f c r - - i d e a l s . D e n o te b y and JL r e s p e c t i v e l y , t h e d '- i d e a l o f a l l s e t s o f t h e f i r s t c a t e g o r y and t h e » " - i d e a l o f a l l s e t s o f t h e L e b e s g u e m e a s u re z e r o . I t i s e a s i l y c h e c k e d t h a t and X, a r e B o r e l ( S '- id e a ls o f t y p e s Ć 1 ;2 ) and ( 2 ; 1 ) , r e s p e c ­ t i v e l y . L e t L 1 = I ( ,£ , F . j ) . N o t i c e t h a t i t i s a B o r e l ( T - i d e a l o f t y p e (1 ; 2 ) . We o b v i o u s l y h a v e 1 Ç. JC П JL . L e t A b e

(3)

53 a c l o s e d n o w h e re d e n s e s e t o f p o s i t i v e m e a s u re and l e t В 4 A b e a s e t o f t y p e G f su o h t h a t В b e lo n g s t o X and o o n t a ln s a c o u n t a b le d e n s e s u b s e t o f A . Th en we e a s i l y o b s e r v e t h a t B C C U n X ) ^ X 4 ' . P r o p o s i t i o n 1. i * a B o r e l t f '- l d e a l o f t y p e 2 ;2 . P r o o f . L e t 3-1Л£- b e o f t y p e («с > p ) • S ln o e c l e a r l y t h e r e f o r e 2 , j i i 2 . L e t d e n o t e t h e f a m i l y o f a l l n o ­ w h e r e d e n s e s e t s . We h a v e th u s oC i 2 , (i~> 2 , w h ic h en d s t h e p r o o f . Now , we a r e g o i n g t o g i v e a fe w e x a m p le s o f n o n - B o r e l s ' - i d e a l s . I n t h e s e q u e l , we s h a l l a lw a y s assum e t h a t a p e r f e c t s e t i s n o n e m p ty . R e c a l l t h a t a t o t a l l y I m p e r f e c t s e t means a s e t w h ic h d o e s n o t c o n t a i n a n y p e r f e c t s e t doomp. f2 _ }, p . k 2 ^ ) . 1 2 _ I f С ,C я г е f a m i l i e s o f s e t s , t h e n d e n o t e R F C ^ O - t , ’Umax^RFCtf.), R F ( I » , R G ( & О X )^ m a x ( R G ( t t ), R O U I ) ,

I ( 3 - l " £ f Ft ) = K & . F , ) n I e x , Ft) s St“

- LA

4 'ti.r'-L

x , G t) = 1 ( 1 ^ ) n H X , o t) =

A, 4

C1 ® l 2 = 1 ^ I / A j : A ^ C 1 , A2 É 3 b e a f a m i l y ( 1 ) 3 f u l f i l s c o n d i t i o n s ( 1 ) , (1 1 ) ; ( 2) 3 c o n s i s t s o f t o t a l l y i m p e r f e o t s e t s ; (

3

) t h e r e i s a s e t A ć.3*-4 2 1 2 L e t 3 b e a C - i d e a l i n c l u d e d i n ^ and l e t 3 = 3 © 3 • T h en we h a v e : ( a ) 3 i s a n o n - B o r e l G - i d e a l ; ( b ) i f *j1 » 3 ^ a r e m o v a b le , s o i s 3 ; ( c ) i f

3^

i s a B o r e l

c

- i d e a l , t h e n

1(3,öb) = 3^

and P r o o f , ( a ) C o n d it io n s ( i ) , ( i i ) , d i v ) o f t h e d e f i n i t i o n

(4)

o f a C '- i d e a l a r e e a s y t o v e r i f y . I t r e m a in s t o p r o v e ( i l l ) . S u p p o s e t h a t t h e r e i s an o p e n I n t e r v a l U c Ü . Th en t h e r e e x i s t s e t s A^ć Э4, fc. !J2 s u c h t h a t J A2 . L e t B t J b e a B o r e l s e t s u ch t h a t ^ ® • Th en U \ B i s B o r e l and u n c o u n t a b le , s o , i n v i r t u e o f t h e A l e x a n d r o f f - - H a u s d o r f f th e o r e m ( s e e С 2 ] , p . 355) , i t c o n t a i n s a p e r f e c t s e t С , T h en C ê A ( w h ic h c o n t r a d i c t s ( 2 ) . Thus ( i i i ) h o ld and 3 i s a ( S '- i d e a l . To p r o v e t h a t 3 i s n o n - B o r e l , o b s e r v e t h a t A Ć. 3 an d A ^ 1 ( 3 , <fc> ) . Th e f o r m e r r e l a t i o n i s o b v i o u s . T o p r o v e t h e l a t t e r , s u p p o s e t h a t A ć 1 ( 3 , <to ) . Th en t h e r e i s a s e t s u c h t h a t A g В. L e t i 1 В = B 1 V B2 w h e r e B1 <L 3 , B2 ^ 3 • V e шаУ assum e t h a t B 1 , B2 a r e d i s j o i n t . Th e s e t B 1 = В \ B2 h as t h e B a i r e p r o p e r t y o r i s L e b e s g u e m e a s u r a b le s i n c e В ć j j and B2 t Ьг £ . M o r e o v e r , B 1 ^ s i n c e , i n t h e c o n t r a r y c a s e , we w o u ld h a v e A t J , w h ic h c o n t r a d i c t s ( 3 ) • Thus B.) c o n t a i n s a B o r e l u n c o u n t a b le s e t . So i t h a s a p e r f e c t s u b s e t and t h i s c o n t r a ­ d i c t s (23 . T h e r e f o r e A Ą 1 ( 3 j <fc>) . S t a t e m e n t ( b ) i s s e l f - e v i d e n t . ( o ) Th e i n c l u s i o n 3 2 - l ( 3 , f c ) i s o b v i o u s . T o p r o v e t h e c o n v e r s e i n o l u s i o n , assume t h a t E <£. l(,3 .fc ) . T h en t h e r e i s a s e t В e 3 fl <fc> s u ch t h a t E ^ B . L e t В = d B j w h e re 1 2 2 B ^ t 3 , B2 £ b • S in c e 3 i s B o r e l , we may assum e t h a t B2 Ł (fo . Th en В N, B2 i s B o r e l . O b s e r v e t h a t i t i s c o u n t a b l e . I n d e e d , i n t h e c o n t r a r y c a s e t h e r e i s a p e r f e c t s u b s e t С o f В N b2 and t h e n С Ç B.) w h ic h c o n t r a d i o t s ( 2 ) . Thus 2 в \ В i s c o u n t a b le and c o n s e q u e n t l y i t b e l o n g s t o 3 . 2 H en ce В £ 3 . T h e i n c l u s i o n l ( 3 , & ) Ç 3 h as b e e n p r o v e d . S in c e 3 , l ( 3 , <fe>) a r e o f t h e same t y p e , t h e r e f o r e 3 , b 2 a r e o f t h e same t y p e . T h is en d s t h e p r o o f . O b s e r v e t h a t , b y t h e A l e x a n d r o f f - H a u s d o r f f t h e o r e m , e a o h f f - i d e a l w h ic h c o n s i s t s o f t o t a l l y i m p e r f e c t s e t s and c o n t a i n s u n c o u n t a b le s e t s i s n o n - B o r e l . S e v e r a l e x a m p le s o f s u c h g ' - i d e a l s aj-e d e s c r i b e d i n (c o m p , a l s o f 2 ) , §

36

) .

(5)

55

Now, we s h a l l g i v e some o t h e r e x a m p le s o f n o n - B o r e l о—i d e a l s , u s i n g P r o p o s i t i o n 2 . E xa m p le 1 . L e t b e t h e <r—i d e a l o f a l l s e t s p o s s e s s ­ i n g t h e p r o p e r t y < s 0 ? ( e e e [ 8 j ; o n e o f p o s s i b l e d e f i n i t i o n i s : a s e t E h as t h e p r o p e r t y ( S Q) i f and o n l y i f e v e r y p e r f e c t s e t c o n t a i n s a p e r f e c t s e t d i s j o i n t fr o m E ) . Th en Э1 f u l f i l s (2 ) a n d , b y a s s u m in g t h e C on tin u u m H y p o t h e s is c o n d i t i o n ( 3 ) i s f u l f i l l e d , as w e l l ( s e e [ 8 ] , 5 . 3 ? • O b s e r v e t h a t 5 1 i s m o v a b le . Lemma 3 . E v e r y p e r f e c t s e t c o n t a i n s Z ^ ° d i s j o i n t p e r f e c t s e t s . P r o o f . By t h e A l e x a n d r o f f - H a u s d o r f f t h e o r e m , a p e r f e c t s e t c o n t a i n s a s e t С h om eo m o rp h ic w i t h a C a n t o r s e t . L e t h b e a hom eom orphism w h ic h maps С x С o n t o С (c o m p . [ 2 J , P .

2 3 5

) . Th e s e t s h (C x ^ t } ) , t C, j u s t f u l f i l t h e a s s e r t i o n . F o r a n y s e t A d e n o t e b y 9 (A ) t h e f a m i l y o f a l l s u b s e t s o f A. E xa m p le 2 . L e t E b e a B e r n s t e i n s e t , i . e . a s e t su ch t h a t D П E 0 0 , D \ E 0 0 f o r e a c h p e r f e c t s e t D ( s e e [ 5 ] , t h . 5 . 3 ) . By Lemma J , t h e s e t s D O E , D \ E a r e o f p o w e r 2 ^ ° Th e s e t E i s t o t a l l y i m p e r f e c t , n o n m e a s u r a b le i n t h e L e b e s g u e s e n s e and h a s n o t t h e B a i r e p r o p e r t y ( s e e t " 5 j, t h . 5 t b , 5 . 5 ) . Thus t h e f a m i l y j 1 = 9 ( E ) f u l f i l s c o n d i t i o n s ( 1 ) , ( 2 ) , ( 3 ) o f P r o p o s i t i o n 2 . E x a m p le 3 . L e t И b e t h e f a m i l y o f a l l s u b s e t s o f I R . o f p o w e r l e s s th a n 0 . C l e a r l y , TR 4- ^ » 34 i s m o v a b le and f u l f i l s c o n d i t i o n ( i ) . i n v i r t u e o f t h e K ö n ig th e o re m (C3J , P .

19 8

) , o o n d i t i o n ( i i ) h o l d s , as w e l l . T h u s , b y Rem ark 1, W i s a d ' - i d e a l . S i e r p i ń s k i c o n s t r u c t e d i n 1 7 ] a B e r n s t e i n s e t E s u ch t h a t t h e s y m m e tr ic d i f f e r e n c e E & (E + x ) b e lo n g s t o 34 f o r e a c h

1

t IR . L e t H ( e ) = 9 ( E ) ® W . O b s e r v e t h a t i f we p u t t) 1 = 3 U e ) , th e n c o n d i t i o n s ( l ) , ( 2 ) , (

3

) o f P r o p o ­ s i t i o n 2 w i l l b e f u l f i l l e d . I n d e e d , ( i ) , ( i i ) o b v i o u s l y h o l d , th u s (

1

) i * v a l i d . T o v e r i f y ( 2 ) , s u p p o s e t h a t t h e r e

(6)

56 l e a p e r f e c t s e t D é ’ł fc (E ). Th en we h a v e D ^ E <J H f o r some H ć. îH , and E 0 H = 0 c a n b e a ssu m ed . C o n s e q u e n t ly , D n E £ H , w h ic h i s I m p o s s i b l e s i n c e D ^ E i s o f p o w e r 2 ^ ° and H fc 'łt . C l e a r l y , t h e s e t E q u a r a n t e e s t h e v a l i d i t y o f ( 3 ) • N e x t , n o t i c e t h a t Ж.Е) fo r m s a m o v a b le O ' - i d e a l . I t i s a n o n - B o r e l © - - i d e a l s i n c e E t Л ( E ) and E ^ i(ït C E ) , <fc) , Now, o u r a im w i l l b e t o d e m o n s t r a t e t h a t i f ( * ) h o l d s , t h e n t h e r e i s a m o v a b le S '- i d e a l 3 o f t y p e F o r a n y n o n e m p ty f a m i l y С o f s e t s , d e n o t e b y C0 C r e e p . C g ) , t h e f a m i l y o f a l l c o u n t a b le u ndon e ( r e s p , i n t e r s e c t i o n s ) o f s e t s fr o m С . L e t X,* = £ A + x : A i t , X Ć. Л О . S+fC )= £ A : A : A ^ B f o r borne . P r o p o s i t i o n 3 . L e t t b e a f a m i l y o f s e t s w h ic h c o n t a in s a n o n em p ty s e t and l e t IR Th en S + C C ) i s t h e m in im a l m o v a b le ^ - i d e a l i n c l u d i n g t . I f . t s f o , t h e n t h e S '- i d e a l S + U ) i s B o r e l . P r o o f . By t h e d e f i n i t i o n o f S +C C ), i t f o l l o w s t h a t S +(C ) i s a m o v a b le f a m i l y and i t f u l f i l s c o n d i t i o n s Ci) , C i i ) . T h u s , b y Rem ark 1 , S+("C) fo rm s a < r - i d e a l . Th e i n c l u s i o n t S. S +( t ) i s o b v i o u s . I f 3 i a a m o v a b le c r - i d e a l s u c h t h a t X Ł 3 » th e n (C+ ) c^Ç !j an d c o n s e q u e n t l y S+( t ) Ç *3 . Thus t h e f i r s t a s s e r t i o n h o l d s . I f СЛ <fo , t h e n ( ,C +) e. 4 <$Ъ and s o , b y t h e d e f i n i t i o n o f S +( ’C.) , t h e C T '-id ea l S + C ^) i s B o r e l . The p r o o f i s c o m p le t e d . I n f 6 ] R u z i e w i o z and S i e r p i ń s k i c o n s t r u c t e d a p e r f e c t s e t P su o h t h a t t h e s e t CP + * ) О P i s a t m ost o n e - p o i n t f o r e a o h x 0 0 . N o t i o e t h a t e a c h s e t ( P + x ) n CP + y ) w h e r e x , y <= I R , x 0 у , i s a l s o a t m o st o n e - p o i n t . L e t С b e a s e t o f m e a s u re z e r o w h ic h i s i n c l u d e d i n P and h o m eo m o rp h ic t o t h e C a n t o r s e t Cs e e f 5D» lemma 5 . 1 , ). C h o ose p a i r w i s e d i s j o i n t , p e r f e c t s e t s C ^ , C^ ; aC i ß

1

»

(7)

\ 57 c o n t a i n e d i n С (с о и р . Lemma з ) • S in o e t h e y a r e i n c l u d e d i n P ; t h e r e f o r e , f o r a l l

01

, [b < i»>. } x , y t IR , e a o h o f t h e s e t s ( C ^ + X ) f) ( С p * У ) ! ( C p + x ) 0 ( c p + y ) , (C ^ + x ) (\ c c * ♦ y ) f o r a l l f o r cC / p o r x 0 y , i s a t m o st o n e - p o i n t . L e t D = D = E = E = 0 a n d , f o r e a c h o r ,

2

£ o T £ c J , О 1 О 1 F 1 ! • * D <*-. b e su o h t h a t De . ^ , E „ , Ç , Dx £ F^NG«., E ^ ć G0r ' ( * • * L’1 J ) • F o r e a o h oC, O ^ c C ^ u J ^ t we d e n o t e b y T ( o r) t h e f a m i l y o f a l l d o u b le r e a l - v a l u e d s e q u e n c e s ( t I . F o r a n y t &- T ( o f ) , t = [ t \ . ^ l e t I n t ’ n ^ u , ^ « : * < n y J П< Ut f <à C us denote

пел*) = U U <Dr + **,)» ■<•'■**>- U U ( ♦

t

)

r<-«r ^<и) ® л х <л <4<«J 4 U. L e t 2 i OĆ <r , t e T ( « r ) . Th en D (oC,t ) é. _ 1 , E ( » f , t ) é. G^ when o r - 1 e x i s t e , and

D(oCt t ) , E (*c, t ) é. F ^ П when o c i s a l i m i t n u m ber. P r o o f . Ve s h a l l d e m o n s t r a t e t h e a s s e r t i o n w h ic h d e a l s w i t h D ( « T , t ) ; t h e p r o o f c o n c e r n i n g E ^ o r , * ' i s a n a lo g o u s , N o t i o e t h a t 0 ( 2 , t ) = 0 £ F.) , t h e r e f o r e , i n t h i s c a s e , th e a s s e r t i o n h o l d s . Now, l e t oC > 2 . L e t t = f t } . , , . I n y П <,1 0 ,У’<оГ Denote С = С ♦ t , D = D „ + t , D ' = С \ D ; njj. f n j - n y t * X n y n y 4 n y-n < CJ , y 4. oC . From t h e n o t a t i o n s and p r o p e r t i e s d e s o r l b e d a b o v e i t f o l l o w s t h a t f o r a l l к , ^ ; к ^ c f , t h e r e i s a c o u n t a b le s e i ^ i n o l u d e d i n s u c h t h a t “ k j \ D с « - , о - \ \ s■ Ve then have D ( * , t ) = П D ( U и ( с п Л ^ ) ^ 3 ) к Г<^ * 5 v h i e h e a s i l y i m p l i e s t h a t D ) 6 f

U

* л • cm t h e »<<

(8)

58 • q u a l i t y * D ( < * , t ) = U U D i ’ f o l i o w e t h a t D(aC, t ) fc I F. ) s i n c e D <e F f o r a l l n V ' J p><ot p o ' i%ÿ t and f o r e a c h ^ £ o C . Thus we h a v e o b t a i n e d D f r f . t J С ( Assume t h a t o<~ - 1 e x i s t s , Ve h a v e (

U *>) = <^_lV =

F « r - 1 w h e n

^

l e

even-(3<eС = (F > - 1 > 6 = when * i e ° d d * Thus D { q t ) ć F , I f cĆ i s a l i m i t n u m ber, th e n OĆ — 1

^

V

. s | ^

4

=

' - •

Thwis D ( o C' , t) £ F K О G^, T h e Lemma h as b e e n p r o v e d , Le—» a 5

.

I f 3 < o c c t ^ i 3 i ( З С о ^ , 2 fr ^<ГоГ, , я e Т ( к ) t t £ T ( p ) , th e n ( a ) t h e r e i s n o s e t A £ G ^ s u ch t h a t - A ^ E ( < , • ) W D ( p , t ) ; (b ) t h e r e i s n o s e t A £ F ^ s u ch t h a t E fe 9 A <£• В ( « ; , я ) U D ( ($ , t ) . P r o o f , V e s h a l l show ( a ) ; t h e p r o o f o f ( b ) i s a n a lo g o u s . S u p p o se t h a t t h e r e i e a s e t A £ G ^ s u c h t h a t D y ć A Ç E O r , s . ) U D ( p , t ) . T h e n , o b v i o u s l y , D^ — C| f l A. L e t a = î s I s | t . 1 , I n v i r t u e o f t h e c o n -t n ^ I I K W , ^ ; l П XMO), ^CoC • t r u c t i o n and n o t a t i o n s , t h e s e t s С j n (E ^. + ®n ^ ) » C j O C D ^ + t - y ) > n < : C v ) , £ - < 0r * 3 /3 » a r e m o st o n e - p o i n t e x c e p t f o r t h e c a s e J = ^ , t = 0 ( t h e n C ^ n (D j+ * п $ ) = -H en ce

(9)

59 =

U U

Cc Л (Е + i ) ) u U

U

CC? n (D + t \) c . Dr u B J r * -

5

<fJh s o n j i w h e re В i s a c o u n t a b le s e t . V e may assum e t h a t Dj-,B a r e d i s j o i n t . Thus D | £ С^ r \ A é \J В , and s o = (C ? П А ) Ч В . S in c e D ^ e q u a ls t h e d i f f e r e n c e o f £h e s e t s o f t y p e s t h e r e f o r e i t i s o f t y p e G . T h is c o n t r a d i c t s t h e d e f i n i t i o n o f . P r o p o s i t i o n k . F o r an a r b i t r a r y p a i r oc , p o f o r d i n a l num bers su ch t h a t

3

* of = ( i n O y o r

3

é « " + 1 =/î<'‘^ 1

or

3

?/3 +1 = « г cJ 1 , t h e r e i s a ( î '- i d e a l w h ic h i s B o r e l , m o v a b le , o f t y p e ( cT ; ß ) , i n o lu d e d i n « . M o r e o v e r , ( y - i d e a l s ca n b e d e f i n e d i n su ch a w ay t h a t i f o r « and p g p th e n P r o o f . ' F o r t h e o f , / ? f u l f i l l i n g t h e a s s u m p tio n , l e t I ' u s p u t = S + S in c e ?r С^Г and С a r e c l o s e d s e t s b e l o n g i n g t o , t h e r e f o r e 4 (^ac l From P r o p o s i t i o n 3 i t f o l l o w s t h a t 3 (e r, /3 ) i s a m o v a b le B o r e l 5 " - i d e a l . I t i s e a s y t o c h e c k t h a t i f о*.<о0 and |b£(b’ , t h e n . V e h a v e o n l y t o show t h a t t h e a - i d e a l 3 = 3(ot, fs) i s o f t y p e (o c ; p ) . A t f i r s t , as sume t h a t < ш , ^ / u ) ^ By t h e d e f i n i t i o n o f 3 , f o r e a c h A fe 3 , t h e r e a r e s e q u e n c e s s €. T C o f ) i t <£ T ( p ) su ah t h a t ( o ) A é E ( * , а ) U D ( ^ , t ) O f c o u r s e , t h e s e t В = E (< * ,s ) v D f p , t ) b e lo n g s t o З . M o r e o v e r , b y Lemma 4 , we h a v e B ć PoC П G oC when 3 é oC = /3 i I

(10)

60

В é F a . when 3 г cC + 1 = р ; В ć. when 3 # ft +1 = <*■ • H ence R F (3 ) - g a f , RG[3^ g ft . I n o r d e r t o p r o v e t h e i n ­ e q u a l i t i e s RF(3)?o(. , RG(3)>(b f o b s e r v e t h a t i f 2 ij < ec , 2 £ f t , th e n E^ ć f D^e 3 "• I И , G j) . F o r e x a m p le , we s h a l l show t h a t E. ^ l ( 3 , F „) . By t h e d e f i n i t i o n o f 3 f t we h a v e E ^fe3 . S u p p o se t h a t E ^ 6 l ( 3 , F ^ ) . Th en t h e r e a r e

a s e t A £ F^ and s e q u e n c e s s fc T(,ot) , t t T((i>) , su ch t h a t E^ £ A and c o n d i t i o n (o ) h o l d s . T h i s c o n t r a d i c t s L e w a 5 (b ) . Now, assum e t h a t Ы = p> = u) , T h e i n e q u a l i t i e s R F (3 )$ o O ^ , RG(3)Sco^ are e v i d e n t . Th e c o n v e r s e i n e q u a l i t i e s f o l l o w s fr o m t h e r e l a t i o n s E^ M 4 1 ( 3 , F ^ , D,C Î K 1 ( 3 , G^) F b r i n s t a n c e , we s h a l l p r o v e t h e f i r s t o f t h e s e r e l a t l o h s . By t h e d e f i n i t i o n o f У , we h a v e E ^ t 3 . S u p p o se

that E^fc 1 ( 3 , F,^ . Then t h e r e i s a s e t A t 3 n F^ su ch

that E^ £ A , By t h e d e f i n i t i o n o f 3 , t h e r e a r e a num ber J , {? and s e q u e n c e s a , t e ? ( $ ) su ch t h a t

A ^ E ( J , s ) V/ D f t ) . T h is o o n t r a d i c t s Lemma 5 (b ‘) .

T h eo rem 2 . L e t ос , p b e an a r b i t r a r y p a i r o f o r d i n a l num bers su ch t h a t ( * ) h o l d s . Then t h e r e a r e m o v a b le < r - i d e a l s

\ A 3 (o k ,(b ) , 3 ( oC, f t ) O f t y p e ( ы ; P ) ^ eo u h t h a t ( y % f t > B o r e l and i n c l u d e d i n JL , and (К '*!?») i s n o n - B o r e l . P r o o f . P u t *3 О ,a>*= Jt,t , 3 ( 2 , 1 ) = X , 3 C 2 , 2 ; = ^ . n x ( com p. P r o p o s i t i o n 1 ) . L e t t h e r e m a in in g o r - i d e a l s b e t h e same as i n P r o p o s i t i o n U, L e t 3 (<* ' f t ) = И ( E ) ® 3 ( * , ? ) w h e re H ( E > i s t h e < T - id e a l d e s c r i b e d i n E x a m p le 3 . ВУ Л P r o p o s i t i o n 2 , 3 (<*"'p ) i * n o n - B o r e l m o v a b le <

5

~ - i d e a l o f t y p e ( ^ ; p ) , REFERENCES [ 1 ] F r e i w a l d R . C. Mc D o w e ll R. ,Mc Hugh E . F . , B o r e l s e t s o f e x a c t c l a s s , C o l l o q . M a t h ., 41 (1 9 7 9 ), 187-191 [

2 ]

K u r a t o w s k i K , . T o p o l o g i e I PWN, W a rsza w a 1958 .

(11)

61

[ 3 ] K u r a t o w s k i К , (M o s t o w s k i A . , S e t t h e o r y w i t h an i n t r o d u c t ­ io n t o d e s c r i p t i v e s e t t h e o r y PWN, W a rs z a w a ; N o r t h H o l l a n d , Am sterdam 1976 [ 4 ] M i l l e r A . , S p e c i a l s u b s e t s o f t h e r e a l l i n e t o a p p e a r f o r H andbook o f S e t T h e o r e t i c T o p o lo g y [

5

] O x to b y J . C . , M ea su re and C a t e g o r y S p r i n g e r - V e r l a g , New Y o r k - H e i d e l b e r g - B e r l i n [6] 1980 R u z ie w ic z S . , S i e r p i ń s k i W ., S u r une e n s e b l e p a r f a i t q u i a a v e c t o u t e sa t r a n s l a t i o n au p lu s un p o i n t commun, Fund. M a th . 19 (1 9 3 2 ) 17-21 [

7

] S i e r p i ń s k i W ., S u r l e s t r a n s l a t i o n s d e s e n s a b le s l i n é a i r e s Fund. M a th . 19 (1 9 3 2 ) 2 2 -2 8 [ 8 ] S z p i l r a j n E . , S u r une c l a s s e d e f o n c t i o n s d e W. S i e r p i ń s k i e t l a c l a s s e c o r r e s p o n d a n t e d 'e n s e m b l e s , Fund. M a th . 24 (1 9 3 5 ) 1 7 -3 4 ABSTRACT I n t h e p a p e r , f o r a n y S'—i d e a l I o f s u b s e t s o f t h e r e a l l i n e , a t y p e o f I i s d e f i n e d as a p a i r ( Л '; ß ) o f o r d i n a l num bers s u c h t h a t e a c h B o r e l s e t fr o m I h as s u p e r s e t s fr o m I o f c l a s ­ s e s F^ (G ^ an d oc t p a r e m in im a l. Some e x a m p le s a r e g i v e n and a c o n d i t i o n n e c e s s a r y and s u f f i c i e n t f o r a p a i r (ы. ’,p) t o b e a t y p e o f a ( T - i d e a l i s f o r m u l a t e d . KLASYFIKACJA C- ID E A ŁÓW N A P R O S T E J S t r e s z c z e n i e W prow ad za s i ę p e w ie n s p o s ó b k l a s y f i k a c j i C- i d e a ł ó w p o d z b io r ó w p r o s t e j . J e d n o c z e śn i e a u t o r d o k o n u je w e d łu g t e g o k r y t e r iu m k l a s y f i k a c j i k i l k u z n a n y c h p r z y k ła d ó w C- i d e a ł ó w . i

Cytaty

Powiązane dokumenty

These studies were focussed on relationship between exter- nalizing behaviour problems – such as criminal acts and de- moralized behaviours – and the level of general hostility and

N a­ leży ponadto uwzględnić i to, że starowierstwo za Piotra w znacznym stopniu zm ieniło swój skład, w chłaniając prze­ ciwników Piotra; stąd późniejsza

Here we extend to the real case an upper bound for the X-rank due to Landsberg and Teitler.. the scheme X is cut out inside P n by homogeneous polynomials with

Wyszyński, Realizacja praw osoby ludzkiej jako warunek pokoju, w: tenże, Nauczanie.. społeczne 1946-1981, Warszawa

Promocja idei rozwoju Międzychodu jako ośrodka miejskiego o cha- rakterze wypoczynkowo-leczniczym wraz z  ofertą uzupełniającą funkcji kreatywnych jest nowatorska,

In this paper, (r„) denotes a Rademacher sequence independent of all other random variables under consideration.. It was conjectured by

In §1, we observe that a weakly normal ideal has a saturation property; we also show that the existence of certain precipitous ideals is sufficient for the existence of weakly

Finally, observe that using the axioms of T , one can replace any formula with function symbols f &amp; by a formula of the language of ordered fields, and thus quantifier